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Chapter 1

Introduction

The field of geometric flows is one of the most important areas of geometric

analysis, forming at the nexus of differential equations and geometry. This field

of study is characterized by the deformation of geometric objects such as metrics,

mappings, and submanifolds by geometric attributes such as curvature and consists

of partial differential equations (PDEs) of parabolic type. These flows have wide

applications in many scientific fields. For example, in cell biology, they aid in

understanding dynamic network rewiring during cellular differentiation and cancer

(see [10]); in medical imaging, they used to conformal brain mapping and virtual

colonoscopy (see [115]); in computer graphics, they help model vorticity lines for

efficient smoke and dust animations in games and CGI effects (see [24, 72]); and in

physics, they can model dynamic systems and space-time geometries (see [75, 93]).

In pure mathematics, geometric flows have demonstrated their great potential

by solving various problems related to differential geometry and topology (see

[5, 69, 73, 78]). The field of geometric flows can be seen as a bridge between

analysis and geometry. Moreover, thanks to this intersection, researchers can use

tools and methods from the theory of PDEs, differential geometry, or both to

study challenging problems in this field.

This field’s starting point can come from Mullins’s work in 1956. He proposed

the curve shortening flow to model the motion of idealized grain boundaries in

[75]. However, the field became widely known through Eells-Sampson’s seminal

paper [38] on the harmonic map heat flow in 1964. Specifically, in this paper, they

established harmonic map heat flow and used it to prove the existence of harmonic

maps into targets with nonpositive sectional curvature. From the perspective of

Eells-Sampson’s paper, we can roughly understand that a geometric flow deforms

a geometric object over time via a differential equation, refining the object to make

it more comprehensible or better suited to a specific purpose.
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In the PDEs theory, investigating special solutions, such as radial or stable solu-

tions, plays an important role in establishing qualitative and quantitative proper-

ties for the general solutions of the equation under consideration. These solutions

are either expressible in closed form or, if not feasible, will be systematically clas-

sified. Solitons in geometric flows are a typical example of such special solutions.

They remain invariant in time to a certain degree under a particular flow. A basic

example of these solitons would be a family of round spheres in Euclidean space,

which gradually shrink in size over time and eventually collapse to a single point.

This behavior serves as a solution to the mean curvature flow, a type of geometric

flow that evolves shapes by smoothing them out. On the other hand, as the ge-

ometric flow progresses, it can lead to intricate geometric changes, including the

appearance of singularities, where quantities containing the norm of the curvature

tensor approach to infinity, typically forming in finite time, due in part to the

nonlinearity of geometric flow equations, as well as for geometric and topological

reasons. Solitons of some geometric flows, such as Ricci flows and mean curvature

flows, serve as prototypical singularity models. This is also one of the main moti-

vations to promote further research by mathematicians in this topic and the field

of geometric flows in general.

This dissertation investigates some aspects of geometric flows, with a particular

focus on two main research directions as follows.

• The first aim is to study some geometric and topological properties of gradient

Ricci solitons and translating solitons.

• The second aim is to explore the analytical aspects of some partial differen-

tial equations that originate from geometry within the context of some super

geometric flows.

In the following three subsections of this chapter, we will provide an overview of

the problems studied in the dissertation. The content of this chapter is essentially

adapted from [26, 28, 46, 69] and the introductory sections of the papers that make

up my dissertation [32, 33, 34, 35].

1.1 Gradient Ricci soltions and isometry groups

The Ricci flow equation is a geometric evolution equation that deforms the

metric g of a Riemannian manifold over time by adjusting it in a way proportional

2



to the Ricci curvature Ric:

∂g

∂t
= −2Ric. (1.1)

A Ricci flow (or a solution to the above equation) is a one-parameter family of

metrics g, defined on a smooth manifold M and parameterized by t within a

non-degenerate interval I , that satisfies the equation (1.1). The Ricci flow was

introduced in 1982 by Hamilton [41] as part of his ambitious program to prove

Poincaré’s conjecture and Thurston’s geometrization conjecture (see also [43]).

Since then, it has been a primary object of study in the field of geometric flows

and a groundbreaking tool for solving complex problems in pure mathematics such

as Poincaré’s conjecture, Thurston’s geometrization conjecture, the Differentiable

sphere theorem [15, 16] and a version of this theorem for the curvature of the

second kind [20], or the generalized Smale conjecture [5, 7]. For an overview of

recent advancements in the theory of Ricci flow, we refer the readers to the survey

paper of R. Bamler [5] and the references therein.

In the paper [41], using the Ricci flow, Hamilton proved that ifM is a compact

3-manifold that admits a Riemannian metric with strictly positive Ricci curva-

ture, then M also admits a metric of constant positive curvature. As pointed

out by him, this result strongly links to Poincaré’s conjecture on compact, simply

connected 3-manifolds and Smith’s conjecture concerning the group of covering

transformations [92]. If both conjectures hold, the result would naturally follow

as a corollary. Furthermore, it is essential to realize that the Ricci flow equa-

tion is only weakly parabolic, often leading to finite-time singularities. Hamilton

and many mathematicians have found that proving the Poincaré conjecture using

Ricci flow requires overcoming the challenges posed by singularity models of this

flow. This has prompted the study of singularity models to gain insight into the

underlying topological and geometric features of Ricci flows. Probably the most

important singularity model is the Ricci soliton, which is a self-similar solution

to the Ricci flow equation (1.1) and arises as a finite-time singularity model. Re-

call that a Ricci soliton is a Riemannian manifold (M, g) that is equipped with a

smooth vector field X satisfying the equation

Ric+
1

2
LXg = λg, (1.2)

where L is the Lie derivative with respect to X and λ ∈ R. In particular, if

X = ∇f where f : M → R is a smooth function, then we say that a triple

3



(M, g, f) is a gradient Ricci soliton. In this case the equation (1.2) becomes

Ric+Hess f = λg, (1.3)

where Hess is the Hessian of metric g. Depending on the value of λ, a gradient

Ricci soliton is called shrinking if λ > 0, steady if λ = 0, or expanding if λ < 0.

An Einstein manifold N is a Riemannian manifold whose Ricci curvature Ric

of N is proportional to the metric g of N , that is Ric = λg, where λ is a fun-

damental constant. Here λ is called the Einstein constant. These manifolds play

a central role in differential geometry and theoretical physics, particularly in gen-

eral relativity, where they model space-times with constant curvature. It is not

hard to see that an Einstein manifold is a basic example of gradient Ricci soliton

where the Hessian operator acting on the potential function f equals zero and

λ becomes the Einstein constant. Another basic example is the Gaussian soliton(
Rn, gRn, λ|x|

2

2

)
, followed by cylinders Sk×Rn−k with the product metric where the

sphere has Ricci curvature λ. Furthermore, a combination of the two mentioned

earlier, as the notation of Petersen and Wylie [81], is referred to as a rank k rigid

gradient Ricci soliton. In particular, it is isometric to an appropriate quotient of

N k × Rn−k, with f = |x|2

2
defined on the Euclidean factor [80]. Consequently,

a soliton is called non-trivial (or non-rigid) if at least a factor in its de Rham

decomposition is non-Einstein.

On the other hand, the study of isometric groups plays a pivotal role in clas-

sifying the geometric structure of smooth manifolds. Dantzig-Waerden’s ground-

breaking paper [30] nearly a century ago on the group of isometries of a connected,

locally compact metric space can be seen as the starting point for a series of

works on this subject. Myers and Steenrod in [76] showed that the isometry group

Iso(M) of a Riemannian manifoldM is a Lie transformation group concerning the

compact-open topology. Later, Kobayashi [53] determined the maximal dimension

of Iso(M) and showed that the Riemannian manifold M is of constant curvature

[53], provided the dimension of Iso(M) is maximal. While (non-gradient) Ricci

solitons have been found in various Lie groups and homogeneous spaces [9, 58], Pe-

tersen and Wylie [82] proved that all homogeneous gradient Ricci solitons are rigid.

Furthermore, they also demonstrated that if the Riemannian metric is reducible,

the soliton structure is also reducible. Their result is based on the existence of

splitting results induced by Killing vector fields.

Inspired by Petersen and Wylie’s work [82], in Chapter 2, we will study the

4



isometry group Iso(M) and its Lie algebra of an irreducible non-trivial gradient

Ricci soliton (M, g, f). Recall that a Riemannian manifold is said to be irreducible

if no finite cover of it can be expressed (in the isometric sense) as a direct product

of manifolds of smaller dimensions.

Problem 1.1. Find an upper bound on the dimension of the Lie algebra of Killing

vector fields on an irreducible non-trivial gradient Ricci soliton, and classify the

spaces where this maximal dimension is attained.

1.2 Nonlinear parabolic equations and super geometric

flows

Turning the framework of geometric flow theory, we now present the concept

of super Ricci flow, which was originally introduced by McCann and Topping [70]

from the perspective of optimal transport theory. A smooth manifold (M, g(x, t))t∈I
is called a super Ricci flow if

∂g

∂t
≥ −2Ric. (1.4)

In [70], the authors discovered that the monotonicity property of the Wasser-

stein distance along the heat flow characterizes supersolutions to the Ricci flow

equation. Later, several other characterizations have been investigated via im-

portant geometric inequalities of manifolds, Bakry-Émery gradient estimates, and

also convexity of Entropies (see [45, 64, 66, 96]). Drawing upon these character-

izations, Sturm [96] expanded the concept of super Ricci flow to time-dependent

(non-smooth) metric measure spaces. His work marks the beginning of a new ex-

ploration into super Ricci flow from the intriguing standpoint of metric measure

geometry. Recently, Bamler [6] demonstrated that the space of super Ricci flows,

when pointed in a suitable manner, is compact in a specific topology.

For each k ∈ R, a time-dependent Riemannian manifold (M, g(x, t))t∈I is

termed a k-super Ricci flow if it satisfies the following condition:

∂g

∂t
+ 2Ric ≥ 2kg, (1.5)

which is a natural extension of the concept of super Ricci flow. Moreover, the

k-super Ricci flow can be seen as a time-dependent version of the Riemannian

manifold whose Ricci curvature is bounded from below by k. It is evident that

the (0)-super Ricci flow is exactly the super Ricci flow. Besides, when the equal-
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ity in (1.5) holds, (M, g(x, t))t∈I is called k-Ricci flow. A k-supper Ricci flow

(M, g(x, t))t∈I is said to be ancient when I = (−∞, 0]. This concept is an exten-

sion of the ancient Ricci flow, which is well-known for its significant impact on the

study of singularities in Ricci flow analysis.

The reduced distance and reduced volume were first introduced by Perelman

in his groundbreaking paper [78] as two key tools for analyzing the Ricci flow.

Later, Ye proved several properties of Perelman’s reduced distance and obtained

some estimates for the reduced volume [112]. Besides, the applications of these

properties in the analysis of the asymptotic limits of κ-solutions of the Ricci flow

have been presented by Ye in the follow-up paper [113]. Recently, in noteworthy

paper [57], Kunikawa and Sakurai obtained Liouville type theorems for harmonic

maps under ancient super Ricci flow with controlled growth, approaching the topic

from Perelman’s reduced geometric perspective. This paper is the continuation of

a work with the same scope for functions in [56].

The next chapter of this thesis is also motivated from a work due to Ma [67]. In

[67], for some constants a, b, the author considered the following nonlinear elliptic

equation

∆u+ au lnu+ bu = 0 (1.6)

in a complete noncompact Riemannian manifold. From Ma’s observation in [67],

we know that the above equation is closely related to the equation (1.3) of the

gradient Ricci soliton (M, g, f). Indeed, taking the trace of the equality (1.3), we

deduce that

S +∆f = nλ.

Here S is the scalar curvature of M and n is the dimension of M. According to

Proposition 2.3 in Chapter 2, we get

|∇f |2 + S − 2λf = A0,

where A0 is a constant. Combining the two above equations, we have

|∇f |2 −∆f − 2λf + nλ− A0 = 0.

If we set u = e−f , then by a simple computation, it follows that u solves

∆u+ 2λu lnu+ (nλ− A0)u = 0. (1.7)

6



Clearly, the above equation is a special case of the equation (1.6). Moreover,

the equation (1.6) is naturally linked to geometric and functional inequalities on

manifolds, particularly the logarithmic Sobolev inequality [105] and Perelman’s

W-entropy [78]. Replacing u by e
b
au, we see that the equation (1.6) is equivalent

to the following equation

∆u+ au lnu = 0. (1.8)

Inspired by the works of Kunikawa, Sakurai, and Ma, in Chapter 3, we will study

gradient estimates for positive bounded solutions to the parabolic counterpart of

equation (1.8) along ancient k-super Ricci flow and explore some of its applications.

Specifically, we are interested in the following problem.

Problem 1.2. Establish gradient estimates and Liouville type results for positive

bounded solutions of the nonlinear parabolic equation related to Perelman’s reduced

distance

∂

∂t
u(x, t) = ∆u(x, t) + au(x, t) lnu(x, t) (1.9)

along ancient k-super Ricci flow, where a ∈ R.

A smooth metric measure space, also known as a weighted manifold or a man-

ifold with density, can be viewed as a natural generalization of gradient Ricci

solitons. Since Perelman’s works [78, 79], this space has been the subject of ex-

tensive study by many mathematicians worldwide. Recall that a smooth metric

measure space is a triple (M, g, e−fdµ), where (M, g) is a complete Riemannian

manifold of dimension n ≥ 3 endowed with a weighted measure e−fdµ for some

f ∈ C∞(M) and dµ is the standard Riemannian volume measure of metric g. On

(M, g, e−fdµ), the weighted Laplacian ∆f is defined by

∆f · := ∆ · −⟨∇f,∇·⟩,

which is a natural generalization of the Laplace-Beltrami operator∆ to the smooth

metric measure space context, and it coincides with the latter precisely when the

potential f is a constant function. For any real number m ≥ 0, the m-Bakry-

Émery curvature is defined by

Ricmf := Ric + Hessf − 1

m
df ⊗ df.

7



When m = 0, it means that f is constant and Ricmf becomes the usual Ricci

curvature Ric . When m→ ∞, we have the (∞-)Bakry-Émery Ricci curvature

Ricf := Ric∞f = Ric + Hessf.

It is not difficult to see that Ricmf ≥ c infers Ricf ≥ c, but the contrary may not

be accurateaccurate. When Ricf is bounded from below, many geometric prop-

erties of manifolds with the Ricci tensor bounded from below were also possibly

extended to smooth metric measure spaces, but some extra assumptions on f are

required; see [63, 103] for detailed discussion.

Motivated by the above works of Hamilton, McCann-Topping, and Perelman’s

work for the modified Ricci flow (see [66, 78], this flow is often referred to as

the Perelman-Ricci flow), X.-D. Li et al. [64, 65] introduced the concept (k,m)-

super Perelman-Ricci flow on manifolds equipped with time-dependent metrics and

potentials. For k,m ∈ R and m ≥ 0, a time-dependent smooth metric measure

space
(
M, g(x, t), e−f(x,t)dµ

)
t∈I is called (k,m)-super Perelman-Ricci flow if

∂g

∂t
+ 2Ricmf ≥ −2kg. (1.10)

It is worth noting that this flow is the weighted version of the k-super Ricci flow

(1.5). Moreover, the (k,m)-super Perelman-Ricci flow is equivalent to the so-

called curvature-dimension condition CD(k,m) in the sense of Sturm [95] and

Lott-Villani [59]. When m → ∞, i.e., if the metric g(x, t) and the potential

function f(x, t) satisfy the following inequality

∂g

∂t
+ 2Ricf ≥ −2kg, (1.11)

we call
(
M, g(x, t), e−f(x,t)dµ

)
t∈I a (k,∞)-super Perelman-Ricci flow, which can

be viewed as a natural extended of the modified Ricci flow [78].

One of the most studied topics in geometric analysis during the 20th century is

the Yamabe problem, introduced by Yamabe in his notable posthumous publica-

tion [108]. Let (M, g) be an n-dimensional smooth, compact Riemannian mani-

fold with n ≥ 3. The Yamabe problem can be viewed as a generalization of the

Poincaré-Köbe uniformization theorem, which is a state that determines a constant

scalar curvature metric g̃ that is pointwise conformally related to g. Recall that

the conformal class of g is defined to be [g] =
{
g̃ = u

4
n−2g : u ∈ C∞(M), u > 0

}
.

8



Then the scalar curvature Sg̃ of the conformal metric g̃ can be written as

Sg̃ = −4(n− 1)

n− 2
u−n+2

n−2

(
∆u− n− 2

4(n− 1)
Sgu

)
.

Here Sg is the scalar curvatures of g and ∆ is the Laplace-Beltrami operator asso-

ciated with g. From this observation, we see that the Yamabe problem amounts

to find a positive solution u of the Yamabe equation

∆u− n− 2

4(n− 1)
Sgu+

n− 2

4(n− 1)
Sg̃u

n+2
n−2 = 0 (1.12)

where Sg̃ is constant. This was resolved through the contributions of N. Trudinger

[100], T. Aubin [4], and R. Schoen [85]. Their proofs utilize results from the

calculus of variations and elliptic theory; for further details, refer to the survey

article by Lee and Parker [60].

The Yamabe flow was initially explored by Hamilton in the unpublished work

[42] as a tool for addressing the Yamabe problem. An n-dimensional manifold

(M, g(x, t))t∈I equipped with a time-dependent metric is referred to as a Yamabe

flow when it satisfies the following equation

∂g

∂t
= −Sg, (1.13)

where S is the scalar curvatures of the metric g. In [25], Chow studied the nor-

malized Yamabe flow and demonstrated that this flow converges to a metric with

constant scalar curvature. By assuming only that the initial metric is locally con-

formally flat, Ye established the convergence of the Yamabe flow [111], thereby

improving upon Chow’s result [25]. The scenario of metrics that are not confor-

mally flat has been studied in a series of papers by Schwetlick and Struwe [87] and

subsequently by Brendle [13, 14].

Inspired by the work presented in Chapter 3 and the advancements made in the

smooth metric spaces discussed earlier, Chapter 4 will investigate the following

problem.

Problem 1.3. Study some analytical aspects of a general type of nonlinear parabolic

equation concerning the weighted Laplacian(
∂

∂t
− a(x, t)−∆f

)
u(x, t) = F (u(x, t)) (1.14)
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on a smooth metric measure space with the metric evolving under the (k,∞)-super

Perelman-Ricci flow (1.11) and the Yamabe flow (1.13), where a(x, t) is a function

which is C2 in the x-variable and C1 in the t-variable, and F (u) is a C2 function

of u.

The nonlinear heat equation (1.14) has garnered significant attention from

mathematicians due to its applications in mathematics, physics, and various other

fields. In the case F (u) = 0 and f is constant, the equation (1.14) reduces to

the Schrödinger equation, which is one of the fundamental equations in quan-

tum mechanics. When F (u) = bu lnu for b ∈ R and a(x, t) ≡ 0, the equation

(1.14) is precisely the equation closely related to the Ricci gradient soliton (1.8).

When u is a stationay solution (namely ut ≡ 0), f is constant and F (u) = buα,

the equation (1.14) becomes the Yamabe type equation (1.12). Furthermore, when

F (u) = buα+cuβ, the equation (1.14) is closely associated with the Lichnerowicz-

type equations for Einstein-scalar fields, which are a key area of research in Ein-

stein scalar field theory within general relativity [11, 77]. In general, the nonlinear

parabolic equation (1.14) is referred to as a weighted reaction-diffusion equation,

which appears in various mathematical models across physics, chemistry, and bi-

ology (see [92]), where au+F (u) and ∆fu are the reaction term and the diffusion

term, respectively.

1.3 Translating solitons of the mean curvature flow

The last part of this thesis shifts the focus to issues related to mean curvature

flows. One of the primary motivations for mean curvature flow comes from geo-

metric applications, akin to the Ricci flow of metrics on Riemannian manifolds.

This flow is a powerful tool for obtaining classification results for hypersurfaces

that meet specific curvature conditions, deriving isoperimetric inequalities, and

producing minimal surfaces. Besides, mean curvature flow is pivotal in describ-

ing the evolution of interfaces in various multiphase physical models (see, e.g.,

[75, 93]), and its origin can be traced back to Mullins’ influential paper [75]. This

relevance stems from its characteristic as a gradient-like flow of the area functional,

making it inherently applicable to problems involving surface energy (see [69]).

We now recall the definition of mean curvature flow. Let X :Mn → Rn+m be a

smooth immersion of an n-dimensional smooth manifold in Euclidean space Rn+m.

A smooth one-parameter family Xt = X(·, t) of immersions Xt : M × [0, T ) →
Rm+n with corresponding images Mt = Xt(M) is called the mean curvature flow

10



for a submanifold M in Rm+n if it satisfies the following condition{
d
dt
X(x, t) = H(x, t),

X(x, 0) = X(x),
(1.15)

for any (x, t) ∈M × [0, T ), where H(x, t) is the mean curvature vector of Mt at

Xt(x) in Rm+n.

One of the key aspects of studying mean curvature flow is the analysis of sin-

gularities. In various scenarios, the second fundamental form with respect to the

familyMt may experience singularities. For instance, ifM is compact, the second

fundamental form will blow up in a finite time. Based on the blow-up rate of

the second fundamental form, we categorize the singularities of mean curvature

flow into two types: Type-I singularities and Type-II singularities. The geometry

of the solution near Type-II singularities is more challenging to control, making

the study of Type-II singularities significantly more complex than that of Type-I

singularities.

A solution to (1.15) is said to be a translating soliton (or simply a translator)

if there exists a constant vector V with unit length in Rn+m such that

H = V ⊥, (1.16)

where V ⊥ denotes the normal component of V in Rn+m. Translating solitons are

significant in the theory of mean curvature flow because they arise as blow-up

solutions at type II singularities. On the other hand, every translating soliton

is a special solution that moves only in a constant direction V without deform-

ing its shape under the mean curvature flow, specifically, the solution is given by

Mt = M + tV. There are few examples of translating solitons even in the hyper-

surface case. The primary examples are those translating solitons that are also

minimal hypersurfaces. Indeed, by (1.16) we know that V must be tangential to

the translator. Consequently, these solitons could have the form of M̃ ×L, where

L is a line parallel to V and M̃ is a minimal hypersurface in L⊥. We can find

more translating solitons, for examples in [48, 51] and the references therein.

Through examples of translating solitons, we can derive interesting results and

establish a framework for their classification. Recently, in [106], Xin studied var-

ious geometric aspects of translating solitons, including volume growth, the gen-

eralized maximum principle, Gauss maps, and certain functions related to the

Gauss map. In addition, he provided integral estimates for the squared norm of
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the second fundamental form. Using these results, Xin demonstrated a rigidity

theorem for translators in the Euclidean space in higher codimensions. Some of

Xin’s results were subsequently extended by Wang, Xu, and Zhao by using inte-

gral curvature pinching conditions of the trace-free second fundamental form (see

[101]).

Utilizing the approach direction from the theory of weighted minimal hypersur-

faces, in the papers [48, 49], Impera and Rimoldi studied the topological structure

at infinity of translating solitons of the mean curvature flow. In particular, they

established weighted Sobolev inequalities and utilized these results to demonstrate

that an f -stable translator can have at most one end. Additionally, they explored

the relationship between the space of L2-weighted harmonic 1-forms, cohomology

with compact support, and the index of the translator in terms of the generalized

Morse index of a stable operator. Building on the Sobolev inequalities established

by Impera and Rimoldi, Kunikawa and Sato [55] noted that any complete f -stable

translating soliton does not allow for any codimension one cycle. Consequently,

any two-dimensional complete f -stable translator must have genus zero.

Inspired by the research results on translating solitons mentioned above, in

Chapter 5 of this thesis, we are interested in the following problem.

Problem 1.4. Study of the rigidity properties and connectedness at infinity of

complete translating solitons in the Euclidean space via the second fundamental

form.

1.4 Structure of the present work

As mentioned earlier, the dissertation is divided into five chapters. In addition

to Chapter 1, the remaining four chapters will be described below. It also includes

a section listing the author’s related papers, a Conclusions section, and a list of

references. Below is a brief overview of the contents of each chapter, from Chapter

2 to Chapter 5.

In Chapter 2 of this dissertation, we investigate the isometry group Iso(M)

and its Lie algebra of an irreducible non-trivial gradient Ricci soliton (M, g, f).

This chapter aims to study Problem 1.1, which is based on the paper to appear in

Forum Mathematicum, https://doi.org/10.1515/forum-2024-0325.

Chapter 3 of this dissertation is devoted to studying the nonlinear parabolic

equation (1.9) related to Perelman’s reduced distance, along ancient k-super Ricci

flow. This chapter aims to study Problem 1.2, which is based on the paper [32]
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published in the Journal of Mathematical Analysis and Applications.

In Chapter 4 of this dissertation, we focus instead on studying the general type

of nonlinear parabolic equation (1.14) on a smooth metric measure space with

the metric evolving under the (k,∞)-super Perelman-Ricci flow (1.11) and the

Yamabe flow (1.13). Chapter 4 aims to study Problem 1.3, based on the paper

[34] published in Nonlinear Analysis.

Chapter 5 of this dissertation focuses on studying some aspects of complete

translating solitons in the Euclidean space. Chapter 5 aims to study Problem 1.4,

which is based on the paper [35] published in Manuscripta Mathematica.

The results of this dissertation were presented at

- The weekly seminar of Geometric Analysis group (June 28, 2023, Vietnam

Institute for Advanced Studies in Mathematics, Hanoi);

- The monthly seminar of the Department of Geometry, (December 12, 2023,

Hanoi National University of Education, Hanoi);

- The 10th Vietnam Mathematical Congress, Committee on Partial Differential

Equations (August 11, 2023, the University of Da Nang-University of Science

and Education, Da Nang);

- The Workshop “Some selected topics in Geometric Analysis and applications”

(February 1, 2024, Hanoi University of Civil Engineering, Hanoi).
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Chapter 2

On isometry groups of gradient Ricci

solitons

This chapter is written based on the paper “Ha Tuan Dung, Hung Tran (2025),

On isometry groups of gradient Ricci solitons, to appear in Forum Mathematicum,

https://doi.org/10.1515/forum-2024-0325” [35] and focuses on examining Prob-

lem 1.1 discussed in Chapter 1. We specifically investigate the isometry group and

its Lie algebra of an irreducible, non-trivial gradient Ricci soliton (M, g, f). Our

goal is to determine the maximum dimension of the isometry group and study the

structure of this manifold when the maximal dimension is attained. Towards that

end, we recall the Lie algebra of the isometry group of (M, g, f):

iso(M, g) := {X is a smooth tangent vector field on M,LXg = 0}.

Closely related to the Lie algebra iso(M, g) is the Lie algebra of Killing vector

fields preserving f :

isof(M, g, f) := {X is a smooth tangent vector field on M,LXg = 0 = LXf}.

Throughout this chapter, for convenience in presentation, we will abbreviate the

term gradient Ricci soliton as GRS.

In order to achieve the main goal, we first give a result estimating the dimension

of isof(M, g, f) and classify the spaces where this maximal dimension is achieved.

Theorem 2.1. Let (Mn, g, f), with n ≥ 3, be a GRS. If f is non-constant then

isof(M, g, f) is of dimension at most 1
2
(n− 1)n and equality happens iff each

connected component of a regular level set of f is a space of constant curvature.

Let (Nn−1, gN) denote the space form model. If gN is non-flat, the equality

happens iff the metric is locally a warped product. That is, there is an open dense
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subset such that around each of its points, there is a neighborhood diffeomorphic

to a product I ×N and the metric g is given by g = dt2 + F 2(t)gN. Here, I is an

open interval, and F : I 7→ R+ is a smooth function.

Furthermore, it is possible to relax the assumption on preserving f . A Rieman-

nian manifold is locally irreducible if it is not a local Riemannian product metric

around each point.

Theorem 2.2. Let (Mn, g, f), with n ≥ 3, be a locally irreducible non-trivial

GRS. Then iso(M, g) is of dimension at most 1
2
(n− 1)n. In addition, equality

happens iff it is smoothly constructed, as in the case of equality of Theorem 2.1.

The above theorems are essentially local. That is, there is no mention of the

completeness of the metric. Indeed, the soliton structure is so rigid that it is

difficult to complete the above metrics.

Theorem 2.3. Let (Mn, g, f), with n ≥ 3, be an irreducible non-trivial complete

GRS. Then iso(M, g) is of dimension at most 1
2
(n− 1)n. For λ ≥ 0, equality

happens iff λ = 0 and it is isometric to a Bryant soliton.

Chapter 2 is organized as follows. In Section 2.1, we recall basic notations and

collect preliminary materials that we will use in the rest of this chapter. The main

results will be proved in Section 2.2. Finally the Appendix considers the case that

each level set of a GRS is Euclidean.

2.1 Preliminaries

This section is to recall auxiliary results on Killing vector fields, group actions

on manifolds, and gradient Ricci solitons. The main references are [2, 26, 52, 53,

82, 83].

2.1.1 Killing vector fields and group actions on manifolds

In this subsection, we briefly review basic properties of Killing vector fields

and their relationship to the isometry group. Besides, we also recall some basic

concepts related to group actions on manifolds. The standard texts are [2, 52, 83].

We begin by providing the definition of Riemannian isometries.

Definition 2.1. Let (M, gM) and (N, gN) be Riemannian manifolds. An isometry
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from M to N is a diffeomorphism ϕ :M → N such that

ϕ∗ (gN) = gM .

In other words, ϕ is an isometry if for all p ∈ M and tangent vectors Xp, Yp ∈
TpM ,

gM |p (Xp, Yp) = gN |ϕ(p) ((dϕ)p (Xp) , (dϕ)p (Yp)) .

In this sense, we say that ϕ preserves the metric structure. In addition, M and

N are called isometric.

The set of all isometries of a Riemannian manifold (M, g) onto itself forms a

group (indeed a Lie group), which is denoted by Iso(M) and called the isometry

group of M.

Definition 2.2. A vector field X on a Riemannian manifold (M, g) is called a

Killing vector field if the Lie derivative with respect to X of the metric g vanishes,

i.e., LXg = 0.

The following proposition shows the relationship between Killing vector fields

and isometries. For a proof, we refer the reader to [83, Proposition 8.1.1].

Proposition 2.1. A vector field X on a Riemannian manifold (M, g) is a Killing

vector if and only if the local flows generated by X act by isometries.

Because of Proposition 2.1, Killing vector fields are also commonly known as in-

finitesimal isometries, a terminology that arises from the idea of integrating vector

fields to obtain isometries. Furthermore, they enjoy strong analytic properties.

Proposition 2.2. [83, Proposition 8.1.4] Let X be a Killing vector field on a

Riemannian manifold (M, g). If there exists a point p ∈M such that Xp = 0 and

(∇X)p = 0, then X is identical 0.

Remark 2.1. The set of all Killing vector fields on a Riemannian manifold (M, g)

is a Lie algebra, and denoted by iso(M, g). Furthermore, by Theorem 8.1.6 in

[83], if the Levi-Civita connection induced by the Riemannian metric g on M is

complete, then so is each Killing vector field. In that case, iso(M, g) is the Lie

algebra of Iso(M).

Next, we recall a result estimating the dimension of the Lie algebra iso(M, g)

and Iso(M, g), which will play an important role in our proof of Theorem 2.1.

Lemma 2.1. [83, Theorem 8.1.6] [52, Theorem 1, Note 10] Let (M, g) be a con-

nected Riemannian manifold of dimension n. Then the Lie algebra iso(M, g) is
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of dimension at most 1
2
n(n + 1). If dim iso(M, g) = 1

2
n(n + 1), then M is a

space of constant curvature. Furthermore, if dim Iso(M) = 1
2
n(n + 1), then M

is isometric to one of the following:

(i) an n-dimensional Euclidean space Rn,

(ii) an n-dimensional sphere Sn,

(iii) an n-dimensional real projective space,

(iv) an n-dimensional, simply connected hyperbolic space.

In the rest of this subsection, we recall some basic notions about group actions

on manifolds following the book by Alexandrino and Bettiol [2].

Definition 2.3. Let G be a Lie group and M a smooth manifold. A smooth map

l : G×M → M is called a (left) action of G on M , or a (left) G-action on M ,

if

(i) l(e, x) = x, for all x ∈M, where e is the identity element of G;

(ii) l (g1, l (g2, x)) = l (g1g2, x), for all g1, g2 ∈ G and x ∈M .

We often write g · x or just gx in place of the more pedantic notation l(g, x).

A right action r :M ×G→M can be defined analogously and we write x · g or

xg.

Definition 2.4. An action is said to be proper if the associated map G ×M 7→
M ×M , given by

G×M ∋ (g, x) 7−→ (g · x, x) ∈M ×M (2.1)

is proper, i.e., if the preimage of any compact subset of M ×M under (2.1) is a

compact subset of G×M .

From Proposition 3.62 and Theorem 3.65 in [2], we see that actions by closed

subgroups of isometries are proper, and conversely every proper action can be

made isometric with respect to a certain Riemannian metric.

Definition 2.5. A Riemannian manifold (M, g) is said to be homogeneous if its

isometry group acts transitively, i.e., for each pair of points x, y ∈ M there is a

g ∈ Iso(M) such that g · x = y.
17



2.1.2 Some basis results on gradient Ricci solitons

In this subsection, we shall recall some basic facts and collect preliminaries about

GRS. Then, the Let (M, g, f) be a GRS of dimension n ≥ 3. Then the smooth

potential function f :M → R satisfies the following equation

Ric+Hess f = λg, (2.2)

where λ ∈ R, Ric is the Ricci curvature of M and Hess f denotes the Hessian

of f . The quantities Ric, f , and the scalar curvature S of M are related by the

following equations [39, Proposition 2.1].

Proposition 2.3. For any gradient Ricci soliton (M, g, f), we have

∆fS + 2|Ric |2 = 2λS, (2.3)

S + |∇f |2 − 2λf = C (2.4)

for some constant C. Here ∆f denotes the f -Laplacian, ∆f · := ∆ · −⟨∇f,∇·⟩.

In [82, Proposition 2.1], Petersen and Wylie proved the following result about

a Killing field on a GRS.

Proposition 2.4. If X is a Killing field on a gradient Ricci soliton (M, g, f),

then ∇(Xf) is parallel. Moreover, if λ ̸= 0 and ∇(Xf) = 0, then also Xf = 0.

Remark 2.2. We emphasize that to prove the above result, Petersen and Wylie

used the condition that scalar curvature is bounded. However, such an assumption

can be omitted since, for λ ̸= 0, the scalar curvature of a GRS is always bounded

from either below or above [3, Theorem 8.6]). This is enough for the argument to

go through.

Consequently, Petersen and Wylie [82] gave the following splitting result.

Lemma 2.2. [82, Corollary 2.2] If X is a Killing field on a GRS (M, g, f, ) then

either ∇(Xf) = 0 or M locally splits a line isometrically. The latter means that

around each point p, there is a neighborhood U = V × I, where V is an open

neighborhood of a submanifold and TpV ⊥ (∇(Xf))p and I is an open interval.

The Riemannian metric in U is the direct product of the induced metrics on each

factor, and (V, g|V , f) is a GRS.

For (M, g, f) a shrinking gradient Ricci soliton, upon scaling the metric g by a
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constant, we can assume that λ = 1
2
. Then the equation (2.2) takes the form

Ric+∇2f =
1

2
g. (2.5)

By adding a constant to f if necessary and the equation (2.4), we may normalize

the soliton such that

S + |∇f |2 = f. (2.6)

Moreover, according to a result by Chen [22, Corollary 2.5] (see also [3, Theorem

8.6]), we have S ≥ 0 for any shrinking gradient Ricci soliton. This and (2.6) entail

that f ≥ 0. On the other hand, from Haslhofer-Müller’s works [44, Lemma 2.1]

(see also [18, Theorem 1.1]), we know that the potential function f has quadratic

growth at infinity. Using these results, we obtain the following proposition.

Proposition 2.5. Let (M, g, f) be an n-dimensional complete noncompact shrink-

ing gradient Ricci soliton with (2.5) and (2.6). Then, each regular level set of f

is a compact set.
Proof. For each regular value c ∈ f (M) , we consider the level set Mc of f . Since

f is a smooth function and {c} is a closed set, Mc = f−1(c) is also a closed set.

By Lemma 2.1 in [44], there exists a point p ∈ M where f attains its infimum

and f satisfies the following quadratic growth estimate

1

4

[
(r(x)− 5n)+

]2 ≤ f(x) ≤ 1

4

(
r(x) +

√
2n
)2
,

where r(x) is a distance function from p to x, and a+ = max{a, 0} for a ∈ R.
This and the fact that f ≥ 0 imply that Mc is a bounded set and, therefore, Mc

is a compact set.

2.2 Dimension bound and Rigidity

This section is devoted to the proof of our main results. Let (M, g, f) be a GRS

of dimension n ≥ 3. Recall

iso(M, g) := {X is a smooth tangent vector field on M,LXg = 0}.

We also define

isof(M, g, f)

:= {X is a smooth tangent vector field on M,LXg = 0 = LXf}. (2.7)
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Then, we see that isof(M, g, f) ⊂ iso (M, g) is a vector subspace. Towards our

goal, we will establish the following lemma concerning iso (M, g).

Lemma 2.3. If X ∈ iso(M, g) and g(X,∇f) = Xf is constant then

[X,∇f ] = 0.

Proof. We observe that

g (LX∇f, Y ) = g (∇X∇f −∇∇fX, Y )

= (Hess f)(X, Y ) + g (∇YX,∇f)− (LXg) (Y,∇f)
= (Hess f)(X, Y )− g (X,∇Y∇f) + Y (LXf)− (LXg) (Y,∇f)
= Y (LXf)− (LXg) (Y,∇f) (2.8)

for any Y ∈ TM. Since X is a Killing vector field, (LXg) (Y,∇f) = 0. Since

LXf = Xf is a constant, Y (LXf) = 0. Combining these results yields

[X,∇f ] = LX∇f = 0.

The proof is complete.

We now give the proof of Theorem 2.1.

Proof of Theorem 2.1. Let Mc be a level set of f with the induced metric gc :=

g|TMc, where c ∈ f (M) is a regular value. By the level set theorem [99], (Mc, gc)

is a smooth submanifold of co-dimension one. Consider X ∈ isof(M, g, f) and

let φXt denote the local flow generated by the vector field X. Then, we have

X =
d

dt

∣∣∣∣
t=0

φXt .

Since LXg = 0 and LXf = 0, we deduce that (φXt )
∗
g = g and(

φXt
)∗
f = f ⇔ f ◦ φXt = f, (2.9)

where (φXt )
∗
is the pull-back of φXt . By Proposition 2.1, we see that φXt :M →M

generates local isometries and φXt (Mc) ⊆ Mc. From this, we notice that φXt
induces a map φ̃Xt ≡ φXt |Mc

:Mc →Mc. We consider the vector field

X̃ = X|Mc
=

d

dt

∣∣∣∣
t=0

(
φXt
∣∣
Mc

)
=

d

dt

∣∣∣∣
t=0

φ̃Xt .
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Since φ̃Xt is an isometry on Mc, we conclude that

X̃ ∈ iso (Mc, gc) = {X ∈ TMc | LXgc = 0} .

Thus, the map

π : isof(M, g, f) → iso (Mc, gc)

X 7→ π(X) := X̃ = X
∣∣∣
Mc

is well-defined. Moreover, π is a linear map. Next, we will prove that π is injective.

Suppose that X|Mc
≡ 0, where X ∈ isof(M, g, f). Since LXg = 0 and LXf = 0,

Lemma 2.3 yields

[X,∇f ] = LX∇f = 0. (2.10)

Let p ∈Mc and Y ∈ TM be an arbitrary vector field. Then, we have Y = Z+W,

where Z ∈ TMc and W ∈ T⊥Mc. Since ∇f is a normal vector field of TMc,

W = η∇f, where η is a smooth function. Therefore, we get

(∇YX)|p = (∇Z+WX)|p = (∇ZX)|p + η (∇∇fX)|p = η (∇∇fX)|p . (2.11)

The last equality follows from X|Mc
= 0. Furthermore, using (2.10), we compute

(∇∇fX)|p = (−[X,∇f ] +∇X∇f)|p = (∇X∇f)|p = 0. (2.12)

Since Y ∈ TM is an arbitrary vector field, we conclude that (∇X)|p = 0. Since

Xp = 0, by Proposition 2.1, we deduce that X ≡ 0. This shows that the map π

is injective. From Lemma 2.1 and note that dimMc = n− 1, we obtain

dim isof(M, g, f) ≤ dim iso (Mc, gc) ≤
1

2
(n− 1)n. (2.13)

Next, we will consider the case dim isof(M, g, f) = 1
2
(n− 1)n. By Lemma 2.1,

each regular connected component of f with the induced metric must be of con-

stant curvature. Consequently, each is homogeneous and complete [52, Theorem

IV.4.5]. Thus, the Lie algebra isof(M, g, f) indeed generates a global group of

isometries on (M, g), and the action is transitive on each regular level set. There-

fore, S is constant on each regular level set and, by Proposition 2.3, so is |∇f |
and df

|∇f | is closed and locally exact. Define t by dt = df
|∇f | then the metric can be

written locally as

g = dt2 + gt,

21



where gt is a family of metrics on the differentiable manifold corresponding to a

regular connected component. Let L denote the shape operator and

ν :=
∂gt
∂t

= 2gt ◦ L.

Furthermore, by the constancy of |∇f | on each regular connected component,

singular values for f : M 7→ R are isolated. By continuity, nearby connected

components must be obtained from the same model space (Nn−1, gN).

Since gt is homogeneous, so is ν, and it suffices to consider its value at a point.

We recall the evolution of the Ricci tensor, Rict := Ric(gt), [26, page 109], for

normal coordinates,

∂

∂t
Ricij = −1

2

(
∆Lνij +∇i∇j trace(ν))−∇i(δν)j −∇j(δv)i

)
,

∆Lνij = ∆νij + 2Rmkijl νkl − Ricik νjk − Ricjk νik,

R̂m (ν)ij = 2Rmkijl νkl − Ricik νjk − Ricjk νik.

As ν is homogeneous, all spacial derivatives vanish.

Claim. If gN is non-flat then ν is a multiple of gN.

Proof of the claim. Since gt is isomorphic to a space form, Ric is a multiple of

the metric. Thus, Ric, when considered as a linear map on the tangent space, is a

multiple of the identity for each t. Thus, so is its derivative. If Rm(gN) ̸= 0 then

R̂m(ν) is a linear combination of a non-trivial multiple of ν and a multiple of the

identity. The result then follows.

Thus, if Rm(gN) ̸= 0 there is a local diffeomorphism ϕ : N× I 7→ U, an open

neighborhood in M , such that

ϕ∗(g) = ϕ∗(dt2 + gt) = dt2 + F 2(t)π∗gN.

The result then follows.

Remark 2.3. The case that gN is flat means each level set is an Euclidean space.

Their analysis will be carried out in the Appendix.

Next, we will apply Theorem 2.1 to prove Theorem 2.2.

Proof of Theorem 2.2. Since M is locally irreducible, by Lemma 2.2, ∇(Xf) ≡ 0

for any Killing vector field X ∈ iso(M, g). We then consider two possible cases.
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Case 1: λ ̸= 0. By Prop. 2.4, Xf = 0. That is, each Killing vector field

automatically preserves f . Thus, iso(M, g) ≡ isof(M, g, f) and the result then

follows from Theorem 2.1.

Case 2: λ = 0. If the scalar curvature S of (M, g, f) is a constant, then from

(2.3), we obtain Ric ≡ 0, and hence (M, g, f) is Ricci-flat, which is a contradiction

to our non-triviality assumption. Thus, S is non-constant, and one observes that

it is invariant under isometries. Hence

isoS(M, g, f) : = {X is a smooth tangent vector field on M,LXg = 0 = LXS}
= iso(M, g).

Repeating the argument as in the proof of Theorem 2.1 we have, for Mc a regular

level set of S,

dim iso(M, g) = dim isoS(M, g, f) ≤ dim iso (Mc, gc) ≤
1

2
(n− 1)n.

If the equality happens then, by Lemma 2.1, each regular connected component

of S with the induced metric must be of constant curvature. Furthermore, |∇S|
is also invariant by the isometric action, and the rest is verbatim as in the proof

of Theorem 2.1.

Proof of Theorem 2.3. First, by Theorem 2.2, dim iso(M, g) ≤ 1
2
(n − 1)n and

equality happens only if each connected component of a regular level set of f is a

space form (Nn−1, gN). We now suppose that dim iso(M, g) = 1
2
(n − 1)n. Con-

sequently, each regular level set is homogeneous and complete, and consequently,

iso(M, g) is the Lie algebra of the isometry group on each regular connected com-

ponent. We will divide the rest of the proof into cases.

Case 1: λ > 0. By Proposition 2.5 each regular connected component is com-

pact. Then, by Lemma 2.1, the model space (N, gN) must be spherical (round

sphere or the real projective space). Then, from Theorem 2.2, the Riemannian

metric is a local warped product g = dt2+F 2(t)gN. By [12, Theorem 1], the Weyl

tensor is vanishing, and (M, g) is locally conformally flat. The classification of a

GRS with such property for λ > 0 is well-known. By [54, Theorem 1], (M, g, f)

must be either the Gaussian shrinking gradient Ricci soliton on Rn, the round

cylinder shrinker on Sn−1 × R, or the round sphere shrinker on Sn. They are all

rigid.

Case 2: λ = 0. If the metric gN is flat, that is (Mn, g, f) (n ≥ 3) is a steady
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gradient Ricci solition with local Euclidean level sets:

g := dt2 + gt = dt2 +
∑
i

h2
i (t)dx

2
i ,

where each function hi is smooth, then from the system (2.19) in Appendix, we

get {
u′
j = (u0 − A)uj
u′
0 = B + (u0 − A)A,

(2.14)

where u0 := f ′, ui :=
h′i
hi

and

A :=
∑
i

h′
i

hi
, B :=

∑
i

(
h′
i

hi

)2

.

Note that A′ = (u0 − A)A. We rewrite the system (2.14) as by the first equation

of the above system, we obtain
u′
j

uj
=
u′
i

ui

for all j, i. This implies that there is a smooth function h such that
u′j
uj

= h′

h
for all

j. Then, we have (uj
h

)′
=
u′
jh− ujh

′

h2
= 0.

Thus uj = ajh for some constant aj. From this and (2.14), one finds that{
h′ = lh

l′ = bh2,
(2.15)

where

l = u0 − ah, a =
∑
i

ai, b =
∑
i

a2i .

One can notice that
dl

dh
=

dl

dt

dt

dh
=
b

l
h.

This implies that ∫
ldl =

∫
bhdh.

Consequently,

bh2 = l2 + C

24



for some constant C. This and (2.15) lead to

l′ = l2 + C. (2.16)

Now, we consider three possible cases.

Case 1: C = 0. Then the equation (2.16) becomes l′ = l2. Using this, we find

that

l(t) = − 1

t+ C1

, h(t) = ± 1√
b (t+ C1)

,

and

u0(t) = l(t) + ah(t) = − 1

t+ C1

± a√
b (t+ C1)

,

for some constant C1.

Case 2: C > 0. Then we set C = D2 for some constant D and the equation

(2.16) becomes l′ = l2 +D2. Thus, we have

l(t) = D tan (Dt+D1) , h(t) = ± D√
b cos (Dt+D1)

,

and

u0(t) = l(t) + ah(t) = D tan (Dt+D1)±
aD√

b cos (Dt+D1)
,

for some constant D1.

Case 3: C < 0. Then we set C = −D2 for some constant D and the equation

(2.16) becomes l′ = l2 −D2. From this, we get

l(t) =
D (e2Dt +D1)

e2Dt −D1

, h(t) = ± 4D1D
2e2Dt√

b (e2Dt −D1)
,

and

u0(t) = l(t) + ah(t) =
D (e2Dt +D1)

e2Dt −D1

± 4aD1D
2e2Dt√

b (e2Dt −D1)

for some constant D1 > 0. Then we see that the function u0 blows up as t ap-

proaches a finite time. Thus, the metric g is incomplete.

This result shows that the metric gN is non-flat. Then by Theorem 2.2 and

[12, Theorem 1], (M, g) is locally conformally flat. According to [19, Theorem 2],

(M, g, f) is either the Gaussian soliton or isometric to the Bryant soliton.

Finally, we observe that there is a gap in the dimension.

Corollary 2.1. Let (Mn, g, f), with n ̸= 5, be an irreducible non-trivial GRS and
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let d := dim iso(M, g). If d < 1
2
(n− 1)n then d ≤ 1

2
(n− 1)(n− 2) + 1.

Proof of Corollary 2.1. The proof is by contradiction. Suppose that d > 1
2
(n −

1)(n − 2) + 1. The group of isometries on (M, g) generates a Lie algebra of

complete Killing vector fields, which is a sub-algebra of iso(M, g). From the

proofs of Theorem 2.1 and 2.2, there is an injective map from iso(M, g) to that of

a co-dimension one regular submanifold (Mc, gc). Furthermore, the completeness

of a vector field is preserved under the map. Thus, for each regular connected

component,

dim(Iso(Mc, gc)) >
1

2
(n− 1)(n− 2) + 1.

By [53, Theorem 3.2], dim(Iso(Mc, gc)) =
1
2
n(n− 1) and each (Mc, gc) is a space

form which is homogeneous and complete. Thus, by continuity, we go back to the

case of Theorem 2.2 and d = 1
2
n(n− 1), a contradiction.

2.3 Appendix

In this Appendix, we consider the case of each level set of a GRS is Euclidean,

which was mentioned in the proof of Theorem 2.1. We first adapt the gradient

Ricci soliton equation (2.2) to the cohomogeneity one setting, essentially using the

methodology and notation of [30].

Let G be a Lie group acting isometrically on a Riemannian manifold (M, g).

The action is of cohomogeneity one if the orbit spaceM/G is one-dimensional. In

this case, we choose a unit speed geodesic γ(t) that intersects all principal orbits

perpendicularly. Then, it is possible to define a G-equivariant diffeomorphism

Φ : I × P 7→M0 given by

Φ(t, hK) = h · γ(t).

Here, M0 ⊂ M is an open dense subset, I is an open interval; P = G/K where

K is the istropy group along γ(t). Then, the pullback metric is of the form

Φ∗(g) = dt2 + gt

where gt is a one-parameter family of G-invariant metrics on P . We let L denote

the shape operator L(X) = ∇XN, whereN = Φ∗ (∂t) is a unit normal vector field.

We will consider Lt = L|Φ(t×P ) to be a one-parameter family of endomorphisms on

TP via identification T (Φ(t×P )) = TP . Following [30], we have ∂tg = 2gt ◦Lt,
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that is for X, Y ∈ TP ,

(∂tg) (X, Y ) = 2gt (Lt(X), Y ) .

From Gauss, Codazzi, and Riccati equations, we find that the Ricci curvature of

(M0, g) is totally determined by the geometry of the shape operator and how it

evolves. Moreover, if the function f is invariant by the group action, then the

gradient Ricci soliton equation (2.2) is reduced to

0 = −(δL)−∇ trL,

λ = − trace (L′)− trace
(
L2
)
+ f ′′, (2.17)

λgt(X, Y ) = Rict(X, Y )− (traceL)gt(L(X), Y )

− gt (L
′(X), Y ) + f ′gt(L(X), Y ).

where Rict denotes the Ricci curvature of (P, gt) , δL =
∑

i∇eiL (ei) for an or-

thonormal basis and trT = trgt Tt.

Now, we consider a GRS (Mn, g, f) (n ≥ 3) with local Euclidean level sets:

g := dt2 + gt = dt2 +
∑
i

h2
i (t)dx

2
i , (2.18)

where each function hi is smooth. Observe that

2gt◦Lt = ∂tgt = 2
∑
i

h′
i

hi
h2
idx

2
i .

From this, we get

Lt (∂i) =
h′
i

hi
∂i, L2

t (∂i) =

(
h′
i

hi

)2

∂i,

and

L′
i (∂i) =

(
h′′
i

hi
−
(
h′
i

hi

)2
)
∂i.

Consequently,

traceLt =
∑
i

h′
i

hi
, traceL2

t =
∑
i

(
h′
i

hi

)2

,

traceL′
t =

∑
i

(
h′′
i

hi
−
(
h′
i

hi

)2
)
.
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Since the shape operator L satisfies the Riccati equation [40, page 117], the sec-

tional curvature of the 2-plane section spanned by ei =
∂i
hi

and N is given by

K (ei, N) = g ◦
(
−L′ − L2

)
(ei, ei)

= −g (L′ (ei) , ei)− g
(
L2 (ei) , ei

)
= −g

((
h′′
i

hi
−
(
h′
i

hi

)2
)
ei, ei

)
− g

((
h′
i

hi

)2

ei, ei

)
= −h

′′
i

hi
.

Using the Gauss equation [83, Theorem 3.2.4], we see that the sectional curvature

of the 2-plane section spanned by ei and ej is given by

K (ei, ej) = −g (L (ei) , ei) g (L (ej) , ej) = −h
′
i

hi

h′
j

hj
.

The Ricci curvature is then given by

Ric(N,N) =
∑
i

K (ei, N) = −
∑
i

h′′
i

hi
,

and
Ric (ej, ej) = K (ej, N) +

∑
i̸=j

K (ej, ei)

= −
h′′
j

hj
−
(∑

i̸=j

h′
i

hi

)
h′
j

hj
= −

h′′
j

hj
−
(∑

i

h′
i

hi
−
h′
j

hj

)
h′
j

hj

= −
(∑

i

h′
i

hi

)
h′
j

hj
−
(
h′′
j

hj
−
(
h′
j

hj

)2
)
.

From these results, we imply that the scalar curvature is given by

S = Ric(N,N) +
∑
j

Ric (ej, ej)

= −
∑
i

h′′
i

hi
−
(∑

i

h′
i

hi

)(∑
j

h′
j

hj

)
−
∑
j

(
h′′
j

hj
−
(
h′
j

hj

)2
)

= −2
∑
i

h′′
i

hi
− A2 +B,

where

A :=
∑
i

h′
i

hi
, B :=

∑
i

(
h′
i

hi

)2

.

Thus, generically, the Weyl tensor is NOT vanishing.
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Plugging the above results in (2.17), we conclude that

λ = −
∑
i

(
h′′
i

hi
−
(
h′
i

hi

)2
)
−
∑
i

(
h′
i

hi

)2

+ f ′′

=

(
f ′ −

∑
i

h′
i

hi

)
h′
j

hj
−
(
h′′
j

hj
−
(
h′
j

hj

)2
)
.

Let u0 := f ′ and ui :=
h′i
hi
, the above system can be written as follows
A = Σiui
B = Σiu

2
i

u′
j = (u0 − A)uj − λ

u′
0 = B + (u0 − A)A− (n− 1)λ.

(2.19)

This is a system of first-order ODEs, and the Picard-Lindelöf theorem yields local

existence and uniqueness.
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Chapter 3

Liouville type theorems and gradient

estimates for nonlinear heat equations

along ancient k-super Ricci flow via

reduced geometry

Recall that for each real number k, a time-dependent Riemannian manifold

(M, g(x, t))t∈I is called a k-super Ricci flow if it satisfies the following condition

∂g

∂t
+ 2Ric ≥ 2kg. (3.1)

A k-super Ricci flow (M, g(x, t))t∈I is said to be ancient when I = (−∞, 0].

Written based on the paper “Ha Tuan Dung, Nguyen Tien Manh, and Nguyen

Dang Tuyen (2023), Liouville type theorems and gradient estimates for nonlinear

heat equations along ancient K-super Ricci flow via reduced geometry, Journal

of Mathematical Analysis and Applications, Vol. 519 (2), 126836” [32], Chapter 2

delves into the study of Liouville type theorems and gradient estimates for the pos-

itive bounded solutions to the nonlinear parabolic equation concerning Perelman’s

reduced distance

∂

∂t
u(x, t) = ∆u(x, t) + au(x, t) lnu(x, t) (3.2)

along ancient k-super Ricci flow (M, g(x, t))t∈(−∞,0], where a is a real number.

This is the content of Problem 1.2 that was discussed in Chapter 1. As in [56],

we also work on the reverse time parameter τ := −t. On this parameter, the
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ancient K-super Ricci flow (M, g(t))t∈(−∞,0] becomes backward k-super Ricci flow

(M, g(τ))τ∈[0,∞), namely,

Ric ≥ 1

2

∂g

∂τ
+ kg.

Moreover, the equation (3.2) can be translated as follows(
∂

∂τ
+∆

)
u(x, t) = −au(x, t) lnu(x, t). (3.3)

The chapter basically consists of two parts as follows.

In the first part of the chapter, we focus on recalling fundamental results in

reduced geometry, along with several related problems that serve as the foundation

for proving our main findings. Additionally, the chapter’s primary results are

thoroughly presented in this section.

In the next part of the chapter, we aim to formulate and prove Hamilton type

gradient estimates for positive smooth solutions u via the localization technique

of Li-Yau to the nonlinear parabolic equation (3.3). These gradient estimates play

a crucial role in establishing the Liouville type results, which will be presented in

the final part of this section.

3.1 Preliminaries and main results

3.1.1 The reduced distance function of Perelman

In this section, we mainly recall some basic results of reduced geometry and

some related problems, which will be used to prove our result. The main ref-

erences of Section 3.1 are [27, 56, 112]. Throughout this section, we assume

that (M, g(x, τ))τ∈[0,∞) is an n-dimensional, complete time-dependent Rieman-

nian manifold. Besides, we sometimes write u(x, τ) as u, and also write ∂u
∂τ

as ∂τu

or uτ . We begin by providing the definition of reduced distance.

Definition 3.1. The L-length of a curve γ : [τ1, τ2] →M is defined as

L(γ) :=
∫ τ2

τ1

√
τ

(
H +

∣∣∣∣dγdτ
∣∣∣∣2
)
dτ,

where

h :=
1

2
∂τg, H := tr h.
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Definition 3.2. For each (x, τ) ∈M × (0,∞), we define the L-distance L(x, τ)

and the reduced distance ρ(x, τ) from a space-time base point (x0, 0) as follows

L(x, τ) := inf
γ
L(γ), ρ(x, τ) :=

1

2
√
τ
L(x, τ), (3.4)

where we take the infimum over all curves γ : [0, τ ] → M with γ(0) = x0 and

γ(τ) = x. If a curve attains the infimum of (3.4) then it is called minimal

L-geodesic from (x0, 0) to (x, τ).

Remark 3.1. In the static case ∂τg = 0, we have ρ(x, τ) = d(x)2

4τ
, where d(x) is

the Riemannian distance from x0 induced from g.

Definition 3.3. Let (M, g(x, τ))τ∈[0,∞) be a complete, time-dependent Rieman-

nian manifold. If for each τ > 0 there is cτ ≥ 0 depending only on τ such that

h ≥ −cτg on [0, τ ] then (M, g(x, τ))τ∈[0,∞) is admissible.

Remark 3.2. From the results of Ye (see Propositions 2.12, 2.13 in [112]), we

see that the functions L(·, τ) and L(x, ·) are locally Lipschitz in (M, g(τ)) and

(0,∞), respectively when (M, g(x, τ))τ∈[0,∞) is admissible. Moreover, they are dif-

ferentiable almost everywhere. Besides, the admissibility also implies the existence

of minimal L-geodesic (see Proposition 2.8 in [112]).

Note that if H ≥ 0 then by Definition 3.1, we deduce that L is non-negative,

so is ρ(x, τ). From this observation, for (x, τ) ∈M × (0,∞) and H ≥ 0, we can

define

L(x, τ) := 4τρ(x, τ) = d(x, τ)2.

Next, we list here the following helpful lemma whose proof is exactly the same as

in the proof of (7.88), (7.89), and (7.90) in [27].

Lemma 3.1. [27, Lemma 7.44][114, Subsection 2.3] Suppose that ρ is smooth at

(x, τ) ∈M × (0,∞). Then we have

∂τρ = H − ρ

τ
+

1

2τ
3
2

KH, (3.5)

|∇ρ|2 = −H +
ρ

τ
− 1

τ
3
2

KH, (3.6)

∆ρ ≤ −H +
n

2τ
− 1

2τ
3
2

KH − 1

2τ
3
2

KD, (3.7)
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at (x, τ), where

KH :=

∫ τ

0

τ
3
2H(X)dτ, KD :=

∫ τ

0

τ
3
2D(X)dτ.

Remark 3.3. We may conclude that even if ρ is not smooth at (x, τ), the above

inequalities hold in the barrier sense by employing the same barrier function as in

the proof of Lemma 5.3 in [74].

To establish main results, we will use the following Müller quantity D(X) (see

Definition 1.3 in [70]) and trace Harnack quantity H(X) (see Definition 1.5 in

[70]):

D(X) := ∂τH −∆H − 2|h|2 + 4div h(X)

− 2g(∇H,X) + 2Ric(X,X)− 2h(X,X), (3.8)

H(X) := −∂τH − H

τ
− 2g(∇H,X) + 2h(X,X), (3.9)

where X is a (time-dependent) vector field.

Remark 3.4. For the convenience of the proof later, we divide D(X) into two

parts: D(X) = D0(X) + 2R(X), where

D0(X) := −∂τH −∆H − 2|h|2 + 4div h(X)− 2g(∇H,X),

R(X) := Ric(X,X)− h(X,X).

We notice that if (M, g(x, τ))τ∈[0,∞) is a backward k-super Ricci flow then

R(X) = Ric(X,X)− 1

2
∂τg(X,X) ≥ kg(X,X) = k|X|2. (3.10)

The next lemma concerning the L-distance and the function d plays a key role

in the proof of Theorem 3.1.

Lemma 3.2. [56, Lemma 3.5 and 3.6] Let k ≥ 0. We assume that the reduced

distance ρ is smooth at (x, τ) ∈M × (0,∞) and

D(X) ≥ −2k
(
H + |X|2

)
, H(X) ≥ −H

τ
, H ≥ 0,

for all vector fields X. Then at (x, τ) we have the following estimates

(∆ + ∂τ)L ≤ 2n+ 2kL and |∇d|2 ≤ 3.
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In order to state the results, we introduce some notations. For R, T > 0, let

QR,T be

QR,T := {(x, τ) ∈M × (0, T ] | d(x, τ) ≤ R}.

Throughout the next sections, we make use of the following notation

q+ := max{q, 0}, q− := min{q, 0}.

3.1.2 Main results

The main purpose of this chapter is to extend and improve the results of

Kunikawa-Sakurai [56] and Dung-Dung [31]. Our first main result is the following

Hamilton type gradient estimate:

Theorem 3.1. For k ≥ 0, let (M, g(x, τ))τ∈[0,∞) be an n-dimensional, admissible,

complete backward (−k)-super Ricci flow. We assume

D(X) ≥ −2k
(
H + |X|2

)
, H(X) ≥ −H

τ
, H ≥ 0,

for all vector fields X. Let u : M × [0,∞) → (0,∞) be a positive solution to

backward nonlinear heat equation (3.3). For R, T > 0 and B > 0, we suppose

u ≤ B in the cylinder QR,T . Then there exists a positive constant c = c(n)

depending only on n such that

|∇u|
u

≤ c

(√
A

R
+

1√
T

+
√
k +

√
sup
QR,T

{
[a(2 + 2 lnB − lnu)]

+
})√

1 + ln
B

u

(3.11)

in QR
2 ,

T
4
, where A = 1 + lnB − ln

(
infQR,T

u
)
.

Remark 3.5. Theorem 3.1 can be regarded as a generalization along the backward

(−k)-super Ricci flow of Theorem 1.1 in [31].

When a = 0, we can derive the following local space-only gradient estimate for

the backward heat equation under the (−k)-super Ricci flow.

Corollary 3.1. For k ≥ 0, let (M, g(x, τ))τ∈[0,∞) be an n-dimensional, admissi-

ble, complete backward (−k)-super Ricci flow. We assume

D(X) ≥ −2k
(
H + |X|2

)
, H(X) ≥ −H

τ
, H ≥ 0,
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for all vector fields X. Let u :M× [0,∞) → (0,∞) stands for a positive solution

to the backward heat equation (
∂

∂τ
+∆

)
u = 0. (3.12)

For R, T > 0 and B > 0, we suppose u ≤ B in the cylinder QR,T . Then there

exists a positive constant c = c(n) depending only on n such that

|∇u|
u

≤ c

(√
A

R
+

1√
T

+
√
k

)√
1 + ln

B

u
, (3.13)

in QR
2 ,

T
4
, where A = 1 + lnB − ln

(
infQR,T

u
)
.

Remark 3.6. Since (∂τ +∆)u = 0, let v = u+1; then v satisfies (∂τ +∆) v =

0. Thus, without loss of generality, we may assume that u ≥ 1. Then, we get

A = 1 + lnB and the inequality (3.13) becomes

|∇u|
u

≤ c

(√
1 + lnB

R
+

1√
T

+
√
k

)√
1 + ln

B

u
.

Notice that
√
1 + ln B

u
≤ 1 + ln B

u
. Thus, our result can be seen as a significant

improvement to Theorem 2.8 of Kunikawa-Sakurai [56].

As an application of Theorem 3.1, we have the following Liouville theorem for

the backward nonlinear heat equation (3.3).

Theorem 3.2. Let (M, g(x, τ))τ∈[0,∞) be an n-dimensional, admissible, complete

backward super Ricci flow. We assume

D(X) ≥ 0, H(X) ≥ −H
τ
, H ≥ 0 (3.14)

for all vector fields X.

1. When a < 0, let u :M × [0,∞) → (0,∞) be a positive solution to backward

nonlinear heat equation (3.3). If e−2 ≤ u ≤ B for some constant B < 1,

then u does not exist; if e−2 ≤ u ≤ B for some constant B ≥ 1, then u ≡ 1.

2. When a = 0 :

2a. If u : M × [0,∞) → (0,∞) be a positive solution to backward heat
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equation (3.12) such that

u(x, τ) = exp [o (d(x, τ) + τ)] (3.15)

near infinity, then u is constant.

2b. If u : M × [0,∞) → R be a solution to backward heat equation (3.12)

such that

u(x, τ) = o
(
d(x, τ) +

√
τ
)

(3.16)

near infinity, then u is constant.

Remark 3.7. The first part of Theorem 3.2 can be regarded as a generalization

along the backward super Ricci flow of Theorem 1.3 (part ii) in [105] and Corollary

1.3 in [31]. When a = 0, the part 2a of Theorem 3.2 is better than Theorem 2.2 in

[56]. In particular, in the static case of h = 0, the part 2a is reduced to Corollary

1.2 in [31].

3.2 Gradient estimates for (3.3) along the backward

(−k)-supper Ricci flow and Liouville type results

In this section, inspired by the work of Kunikawa-Sakurai [56], we will study

gradient estimates for positive solutions to the nonlinear parabolic equation (3.3)

along the backward (−k)-supper Ricci flow (M, g(τ))τ∈[0,∞). Recall the system

that u and g solve {
(∂τ +∆)u = −au lnu,

Ric ≥ h− kg,
(3.17)

where k ≥ 0 and h := 1
2
∂τg. Suppose that u is a positive solution to the backward

nonlinear heat equation (3.3). We now introduce an auxiliary function

h =

√
1 + ln

B

u
=

√
ln
D

u
≥ 1

on QR,T , where D = Be. Then, we have

u = De−h
2

and lnu = lnD − h2.

This implies

uτ = −2Dhτhe
−h2, ∇u = −2Dh∇he−h2,
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and

∆u = −2Dhe−h
2

[
∆h+ |∇h|2

(
1

h
− 2h

)]
.

As a consequence, from (3.3), we get

−2Dhτhe
−h2 = 2Dhe−h

2

[
∆h+ |∇h|2

(
1

h
− 2h

)]
− aDe−h

2 (
lnD − h2

)
.

which is equivalent to

(∂τ +∆)h = |∇h|2
(
2h− 1

h

)
+
a

2

(
lnD

h
− h

)
. (3.18)

3.2.1 Basic lemmas

Using the equality (3.18), we have the following computational lemma, which

will play a significant part in the proof of Theorem 3.1.

Lemma 3.3. Let (M, g(x, τ))τ∈[0,∞) be an n-dimensional, admissible, complete

backward (−k)-super Ricci flow (k ≥ 0) and u be a positive solution to the back-

ward nonlinear heat equation (3.3). Suppose that u ≤ B for all (x, t) ∈ QR,T

where B > 0. Denote h =
√
1 + ln B

u
and w = |∇h|2. Then on the cylinder

QR,T , we have

(∆ + ∂τ)w ≥ 2

(
2h− 1

h

)
⟨∇w,∇h⟩+ 2

(
2 +

1

h2

)
w2 − (2k + P)w, (3.19)

where P = sup
QR,T

{
[a(2 + 2 lnB − lnu)]

+
}
.

Proof of Lemma 3.3. We first proof the following identity

wτ = − (∂τg) (∇h,∇h) + 2 ⟨∇ (hτ) ,∇h⟩ . (3.20)

We will apply local coordinates to conveniently compute the above equation.

For each x ∈ M , let {e1, e2, . . . , en} be a local orthonormal frame field and

{ξ1, ξ2, . . . , ξn} be its coframe field. Here we adopt the notation that subscripts

in i, j and k, with 1 ≤ i, j, k ≤ n, mean covariant differentiations in the ei, ej and

ek directions respectively. Then, we have

∇h =
n∑

i,j=1

gij∇ihej,
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where [gij] is the inverse of the matrix [gij] and gij = ⟨ei, ej⟩. This implies that

|∇h|2 = ⟨∇h,∇h⟩ =
〈

n∑
i,j=1

gij∇ihej,
n∑

k,l=1

gkl∇khel

〉

=
n∑

i,j,k,l=1

gijgkl∇ih∇kh ⟨ej, el⟩

=
n∑

i,k,l=1

(
n∑
j=1

gijgjl

)
gkl∇ih∇kh

=
n∑

i,k,l=1

δilg
kl∇ih∇kh =

n∑
i,k=1

gki∇ih∇kh.

Thus, we get

wτ = ∂τ
(
|∇h|2

)
= ∂τ

(
n∑

i,j=1

gij∇ih∇jh

)

=
n∑

i,j=1

(
∂τg

ij
)
∇ih∇jh+

n∑
i,j=1

gij∂τ (∇ih)∇jh+
n∑

i,j=1

gij∇ih∂τ (∇jh)

=
n∑

i,j=1

(
∂τg

ij
)
∇ih∇jh+ 2

n∑
i,j=1

gij∇i (∂τh)∇jh

=
n∑

i,j=1

(
∂τg

ij
)
∇ih∇jh+ 2 ⟨∇ (hτ) ,∇h⟩ . (3.21)

Moreover, from the identity
∑n

j=1 g
ijgjl = δil , we obtain

0 = ∂τ
(
δil
)
= ∂τ

(
n∑
j=1

gijgjl

)
=

n∑
j=1

(
∂τg

ij
)
gjl +

n∑
j=1

gij (∂τgjl) .

Consequently,
n∑
j=1

(
∂τg

ij
)
gjl = −

n∑
i=1

gij (∂τgjl) .

From this, we deduce that

−
n∑
l=1

n∑
j=1

gij (∂τgjl) g
lk =

n∑
l=1

n∑
j=1

(
∂τg

ij
)
gjlg

lk

=
n∑
j=1

(
∂τg

ij
)( n∑

l=1

gjlg
lk

)
=

n∑
j=1

(
∂τg

ij
)
δkj .
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This shows that
∂τg

ij = −
n∑
k=1

n∑
l=1

gik (∂τgkl) g
lj.

Then, we find that

n∑
i,j=1

(
∂τg

ij
)
∇ih∇jh = −

n∑
i,j,k,l=1

(∂τgkl) g
ikglj∇ih∇jh. (3.22)

Note that g =
∑n

i,j=1 gijξ
i ⊗ ξj. Thus, we have

(∂τg) (∇h,∇h) =
(

n∑
i,j=1

(∂τgij) ξ
i ⊗ ξj

)
(∇h,∇h)

=

(
n∑

i,j=1

(∂τgij) ξ
i ⊗ ξj

)(
n∑

k,l=1

gkl∇khel,
n∑

p,q=1

gpq∇pheq

)

=
n∑

i,j,k,l,p,q=1

(∂τgij) g
klgpq∇kh∇phξ

i ⊗ ξj (el, eq)

=
n∑

i,j,k,l,p,q=1

(∂τgij) g
klgpq∇kh∇phξ

i (el)⊗ ξj (eq)

=
n∑

i,j,k,l,p,q=1

(∂τgij) g
klgpq∇kh∇phδ

i
lδ
j
q

=
n∑

i,j,k,p=1

(∂τgij) g
kigpj∇kh∇ph =

n∑
i,j,k,l=1

(∂τgkl) g
ikglj∇ih∇jh.

This and (3.22) entail that
n∑

i,j=1

(
∂τg

ij
)
∇ih∇jh = − (∂τg) (∇h,∇h).

From the above identity and (3.21), we obtain the identity (3.20). Plugging (3.18)

into (3.20), we conclude that

wτ = − (∂τg) (∇h,∇h) + 2 ⟨∇ (hτ) ,∇h⟩

= − (∂τg) (∇h,∇h)− 2⟨∇∆h,∇h⟩+ 2|∇h|2
〈
∇
(
2h− 1

h

)
,∇h

〉
+ 2

(
2h− 1

h

)〈
∇
(
|∇h|2

)
,∇h

〉
+ a

〈
∇
(
lnD

h
− h

)
,∇h

〉
.

Notice that 〈
∇
(
2h− 1

h

)
,∇h

〉
=

(
2 +

1

h2

)
|∇h|2,
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and

∇
(
lnD

h
− h

)
= − lnD

∇h
h2

−∇h = −
(
lnD

h2
+ 1

)
∇h.

Therefore, we obtain

wτ = − (∂τg) (∇h,∇h)− 2 ⟨∇∆h,∇h⟩+ 2

(
2h− 1

h

)〈
∇
(
|∇h|2

)
,∇h

〉
+ 2

(
2 +

1

h2

)
|∇h|4 − a

(
lnD

h2
+ 1

)
|∇h|2. (3.23)

Using the Bochner-Weitzenböck formula (see [104, Theorem 1.1]), we have

1

2
∆|∇h|2 =

∣∣∇2h
∣∣2 +Ric(∇h,∇h) + ⟨∇∆h,∇h⟩ .

This and (3.23) entail that

wτ = − (∂τg) (∇h,∇h)−∆|∇h|2 + 2Ric(∇h,∇h) + 2
∣∣∇2h

∣∣2
+ 2

(
2h− 1

h

)
⟨∇w,∇h⟩+ 2

(
2 +

1

h2

)
w2 + a

(
lnD

h2
+ 1

)
w

= −∆|∇h|2 + 2
∣∣∇2h

∣∣2 + 2

(
2 +

1

h2

)
w2 − a

(
lnD

h2
+ 1

)
w

+ 2

(
2h− 1

h

)
⟨∇w,∇h⟩+ 2

[
Ric(∇h,∇h)− 1

2
(∂τg) (∇h,∇h)

]
= −∆w + 2

∣∣∇2h
∣∣2 + 2

(
2h− 1

h

)
⟨∇w,∇h⟩+ 2

(
2 +

1

h2

)
w2

− a

(
lnD

h2
+ 1

)
w + 2R(∇h),

or equivalently

∆w + wτ ≥ 2
∣∣∇2h

∣∣2 + 2

(
2h− 1

h

)
⟨∇w,∇h⟩+ 2

(
2 +

1

h2

)
w2

− a

(
lnD

h2
+ 1

)
w + 2R(∇h). (3.24)

Since h ≥ 1, we get

a

(
lnD

h2
+ 1

)
=

a

h2

(
lnD + h2

)
=

a

h2
(2 + 2 lnB − lnu)

≤ 1

h2
max{a(2 + 2 lnB − lnu), 0}

≤ sup
QR,T

{max{a(2 + 2 lnB − lnu), 0}} = P .
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Moreover, we have R(∇h) ≥ −kw. These inequalities, combined with (3.24),

yield that

∆w + wτ ≥ 2

(
2h− 1

h

)
⟨∇w,∇h⟩+ 2

(
2 +

1

h2

)
w2 − (2k + P)w.

The proof is complete.

To prove the main theorems in this section, we recall the following useful space-

time cut-off function in [8, 56, 57, 61].

Lemma 3.4. Given R, T > 0, there exists a smooth cut-off function ψ(r, t) sup-

ported in [0,∞)× [0,∞) satisfying following conditions

(i) 0 ≤ ψ(r, t) ≤ 1 in [0,∞)× [0,∞).

(ii) The equalities ψ(r, t) = 1 and ∂ψ
∂r
(r, t) = 0 hold in

[
0, R

2

]
×
[
0, T

4

]
and

[
0, R

2

]
×

[0,∞), respectively.

(iii) When 0 < ϵ ≤ 1, there is a constant Cϵ such that

−Cϵψ
ϵ

R
≤ ∂ψ

∂r
≤ 0, and

∣∣∣∣∣∂2ψ

∂r2

∣∣∣∣∣ ≤ Cϵψ
ϵ

R2
.

(iv) ψ(r, t) = 0 on [R,∞) × [T
2
,∞) and

|∂τψ|
ψ

1
2

≤ C
T
on [0,∞) × [0, T ] for some

C > 0.

Now, we take a cut-off function ψ : [0,∞) × [0,∞) → [0, 1] satisfying all

conditions in Lemma 3.4. Our main goal is to prove that inequality (3.11) in

Theorem 3.1 holds at every point (x, τ) in QR
2 ,

T
4
. For this purpose, we introduce

a smooth cut-off function ψ : [0,∞)× [0,∞) → [0, 1] by

ψ(x, τ) := ψ(d(x, τ), τ). (3.25)

Using the cut-off function ψ, we have the following lemma.

Lemma 3.5. Let (M, g(x, τ))τ∈[0,∞) be an n-dimensional, admissible, complete

backward (−k)-super Ricci flow (k ≥ 0) and u be a positive solution to the back-

ward nonlinear heat equation (3.3). Suppose that u ≤ B for all (x, t) ∈ QR,T

where B > 0 and

R(X) ≥ −k|X|2, D(X) ≥ −2k
(
H + |X|2

)
, H(X) ≥ −H

τ
, H ≥ 0,
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for all vector fields X. We define h and w as in Lemma 4.1. If

Φ = (∆ + ∂τ) (ψw)−
2⟨∇ψ,∇(ψw)⟩

ψ
− 2

(
2h− 1

h

)
⟨∇(ψw),∇h⟩,

then

ψw2 ≤ c

(
A2

R4
+

1

T 2
+ k2 + P2

)
+

2h2

1 + 2h2
Φ.

at every point in QR,T such that the reduced distance is smooth, where c denotes

a constant depending only on n whose value may change from line to line in the

following.

Proof of Lemma 3.5. By direct computations, we see that

Φ = (∆ + ∂τ) (ψw)−
2⟨∇ψ,∇(ψw)⟩

ψ
− 2

(
2h− 1

h

)
⟨∇(ψw),∇h⟩

= ∆(ψw) + ∂τ(ψw)− 2

(
2h− 1

h

)
⟨ψ∇w + w∇ψ,∇h⟩

− 2⟨∇ψ, ψ∇w + w∇ψ⟩
ψ

= ψ (∆w + wτ) + w (∆ψ + ψτ)− 2
|∇ψ|2

ψ
w − 2ψ

(
2h− 1

h

)
⟨∇w,∇h⟩

− 2w

(
2h− 1

h

)
⟨∇ψ,∇h⟩. (3.26)

Plugging (3.19) into (3.26), we get

Φ ≥ 2

(
2 +

1

h2

)
ψw2 − (2k + P)w − 2

|∇ψ|2

ψ
w

− 2w

(
2h− 1

h

)
⟨∇ψ,∇h⟩w + w (∆ψ + ψτ) ,

or equivalently

4ψw2 ≤ 2h2

1 + 2h2
(2k + P)ψw +

4h (1− 2h2)

1 + 2h2
⟨∇h,∇ψ⟩w

+
4h2

1 + 2h2

|∇ψ|2

ψ
w − 2h2

1 + 2h2
w (∆ψ + ψτ) +

2h2

1 + 2h2
Φ. (3.27)

Since L = d2, we get

−w∆ψ = −w
[
ψr (∆ + ∂τ) d+ ψrr|∇d|2

]
= −w

[
ψr (∆ + ∂τ)

(√
L
)
+ ψrr|∇d|2

]
.
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Observe that

(∆ + ∂τ) (
√
L) = ∇

(
∇L
2
√
L

)
+

1

2
√
L
∂τL

=
∆L

2
√
L
− |∇L|2

4L
√
L
+

1

2
√
L
∂τL

=
∆L

2d
− |∇L|2

4d3
+

1

2d
∂τL =

1

2d
(∆ + ∂τ)L− |∇L|2

4d3
.

Thus, we have

−w∆ψ = −wψr
2d

(∆ + ∂τ)L+ wψr
|∇L|2

4d3
− wψrr|∇d|2.

Note that ψr ≤ 0. Using this fact and the results of Lemma 3.2, we find that

−w∆ψ =
w |ψr|
2d

(∆ + ∂τ)L− w |ψr|
|∇L|2

4d3
− wψrr|∇d|2

≤ w |ψr|
2d

(∆ + ∂τ)L+ w |ψrr| |∇d|2

≤ w |ψr|
2d

(2n+ 2kL) + 3w |ψrr|

≤ 2n

R
w |ψr|+ kRw |ψr|+ 3w |ψrr| .

Combining (3.27) and the above estimate, we obtain

4ψw2 ≤ 2h2

1 + 2h2
(2k + P)ψw +

4h (1− 2h2)

1 + 2h2
⟨∇h,∇ψ⟩w +

4h2

1 + 2h2

|∇ψ|2

ψ
w

+
2h2

1 + 2h2

(
2n

R
w |ψr|+KRw |ψr|+ 3w |ψrr|

)
− 2h2

1 + 2h2
wψτ +

2h2

1 + 2h2
Φ.

Since 0 < 2h2

1+2h2
≤ 1, from the above inequality, we conclude that

4ψw2 ≤ (2k + P)ψw +
4h |1− 2h2|
1 + 2h2

|⟨∇h,∇ψ⟩|w + 2
|∇ψ|2

ψ
w

+

[(
2n

R
+ kR

)
w |ψr|+ 3w |ψrr|

]
+ w |ψτ |+

2h2

1 + 2h2
Φ. (3.28)

Next, we will use the Young’s inequality and Lemma 4.2 to estimate upper bounds
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for each term of the right-hand side (RHS) of (3.28).

For the first term on the RHS of (3.28), we have

(2k + P)ψw =
(
ψ

1
2w
) [
ψ

1
2 (2k + P)

]
≤ 1

2
ψw2 + cψ(2k + P)2 ≤ 1

2
ψw2 + cK2 + cP2. (3.29)

For the second term on the RHS of (3.28), we have

4h |1− 2h2|
1 + 2h2

|⟨∇h,∇ψ⟩|w ≤ 4h
|1− 2h2|
1 + 2h2

|∇ψ||∇h|w

≤ 4h|∇ψ|w 3
2 = 4h|∇ψ|ψ−3

4
(
ψw2

) 3
4

≤ 1

2
ψw2 + ch4 |∇ψ|4

ψ3
≤ 1

2
ψw2 +

cA2

R4
, (3.30)

where A = 1 + lnB − ln
(
infQR,T

u
)
.

For the third term on the RHS of (3.28), we have

2|∇ψ|2

ψ
w = 2

(
|∇ψ|2ψ− 3

2

)(
ψ

1
2w
)

≤ 1

2
ψw2 + c

|∇ψ|4

ψ3
≤ 1

2
ψw2 +

c

R4
. (3.31)

For the fourth term on the RHS of (3.28), we have(
2n

R
+KR

)
w |ψr|+ 3w |ψrr|

=
(
ψ

1
2w
) [(2n

R
+KR

) |ψr|
ψ

1
2

]
+ 3

(
ψ

1
2w
) |ψrr|
ψ

1
2

≤ 1

2
ψw2 + c

(
2n

R
+KR

)2 |ψr|2

ψ
+

1

2
ψw2 + c

|ψrr|2

ψ

≤ ψw2 +
8cn2

R2

|ψr|2

ψ
+ cK2R2 |ψr|

2

ψ
+

c

R4

≤ ψw2 +
c

R4
+ cK2. (3.32)

Finally, we estimate the last term on RHS of (3.28):

w |ψτ | =
(
ψ

1
2w
)( |ψτ |

ψ
1
2

)
≤ 1

2

(
ψ

1
2w
)2

+ c

( |ψτ |
ψ

1
2

)2

≤ 1

2
ψw2 +

c

T 2
. (3.33)
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Substituting (3.29)-(3.33) into (3.28), we deduce that

ψw2 ≤ c

(
A2

R4
+

1

T 2
+ k2 + P2

)
+

2h2

1 + 2h2
Φ.

The proof is complete.

3.2.2 Gradient estimates and some special cases

We will apply Lemma 3.5 and the maximum principle to prove Theorem 3.1 by

adapting arguments of [56].

Proof of Theorem 3.1. Define functions h,w and ψ as in Lemma 3.3 and (3.25),

respectively. For θ > 0, we consider a compact subset QR,T,θ of QR,T by QR,T,θ :=

{(x, τ) ∈ QR,T | τ ∈ [θ, T ]} . Next, we fix a small θ ∈
(
0, T

4

)
. Assume that the

space-time maximum of ψw is reached at some point (x, τ) in QR,T,θ. We will

prove Theorem 3.1 in the following two cases according to the smoothness of the

distance function ρ at (x, τ).

Case 1: ρ is smooth at (x, τ). From Lemma 3.5 and the fact that 0 ≤ ψ ≤ 1,

we get

(ψw)2 ≤ ψw2 ≤ c

(
A2

R4
+

1

T 2
+K2 + P2

)
+

2h2

1 + 2h2
Φ (3.34)

at (x, τ), where Φ is defined as in Lemma 3.5. Note that for backward (−k)-
supper Ricci flow (M, g(τ))τ∈(0,∞), the assumption for R(X) in Lemma 3.5 is

satisfied. Since (x, τ) is a maximum point, we have

∆(ψw) ≤ 0, ∂τ(ψw) ≤ 0, ∇(ψw) = 0

at (x, τ). By the definition of Φ (see Lemma 3.5), we deduce that Φ(x, τ) ≤ 0.

Therefore, the inequality (3.34) implies that

(ψw)
2
(x, τ) ≤ (ψw)

2
(x, τ) ≤ c

(
A2

R4
+

1

T 2
+ k2 + P2

)
for all (x, τ) ∈ QR,T,θ. This shows that

(ψw) (x, τ) ≤ c

(
A

R2
+

1

T
+ k + P

)
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for all (x, τ) ∈ QR,T,θ.

Case 2: ρ is non-smooth at (x, τ). Then there is a sufficiently small δ > 0, a

small open neighborhood U of x in M, and a smooth upper barrier function ρ̂ of

the reduced distance ρ on U × (τ − δ, τ + δ) such that ρ̂ satisfies (3.5), (3.6) and

(3.7) in Lemma 3.1 at (x, τ). Moreover, we define

d̂(x, τ) :=
√
4τ ρ̂(x, τ), ψ̂(x, τ) := ψ(d(x, τ), τ),

where ψ is the function defined in Lemma 3.4. Note that ψ̂ is a smooth lower

barrier of ψ at (x, τ). Besides, (x, τ) is the maximum point of ψ̂w on U × (τ −
δ, τ + δ) ∩QR,T,θ. Therefore, we conclude that

∆(ψ̂w) ≤ 0, ∂τ(ψ̂w) ≤ 0, ∇(ψ̂w) = 0

at (x, τ). We can apply Lemma 3.2 combine with the above conditions of ψ̂w to

get

(ψw)(x, τ) ≤ (ψw)(x, τ)

=
(
ψ̂w
)
(x, τ)

≤
√(

ψ̂w
)2

(x, τ) ≤ c

(
A

R2
+

1

T
+K + P

)
for all (x, τ) ∈ QR,T,θ.

In both cases, since ψ ≡ 1 on QR
2 ,

T
4
, by the definition of w and h, we have the

following estimate

|∇u|
u

≤ c

(√
A

R
+

1√
T

+
√
K +

√
P
)√

1 + ln
B

u
,

on QR
2 ,

T
4 ,θ
. Thus, by letting θ → 0, the proof of Theorem 4.1 is complete.

Remark 3.8. In the static case ∂g
∂τ

= 0, we obtain

h = ∂g
∂τ

= 0, H = tr h = 0, and d(x, t) = d(x).

Moreover, from the definition of D(X) and H(X), we imply that

Ric ≥ −kg, H(X) = −H
τ

= 0,

R(X) = Ric(X,X) ≥ −kg (X,X) = −k|X|2,
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D(X) = 2Ric(X,X) ≥ −2k|X|2 = −2k
(
H + |X|2

)
,

for all vector fields X . Clearly, the conditions in Theorem 3.1 are satisfied in

this case. Thus we can apply Theorem 3.1 to give local gradient estimates for

positive solutions of the equation (3.2) on the static Riemannian manifold with

Ric ≥ −kg.

Corollary 3.2. Let (M, g) be an n-dimensional complete Riemannian manifold

with Ric ≥ −Kg for some constant K ≥ 0 in

B (x0, R) = {x ∈M | d (x, x0) = d (x) ≤ R}

for some fixed point x0 in M, and some fixed radius R > 0. Let u :M× [0,∞) →
(0,∞) stand for a positive solution to the nonlinear heat equation (3.2). For T > 0

and B > 0, we suppose u ≤ B in the cylinder

QR,T := B (x0, R)× (0, T ] ⊂M × (0, T ].

Then there exists a positive constant c = c(n) depending only on n such that

|∇u|
u

≤ c

(√
A

R
+

1√
T

+
√
K +

√
sup
QR,T

{
[a(2 + 2 lnB − lnu)]

+
})√

1 + ln
B

u
,

(3.35)

in QR
2 ,

T
4
, where A = 1 + lnB − ln

(
infQR,T

u
)
.

Remark 3.9. Using the inequality ln(1 + x) ≤ x for all x ≥ 0, we see that√
1 + ln

B

u
≤
√
B

u
.

Then we can rewrite the inequality (3.35) in the case 1 ≤ u ≤ B as

|∇u|√
u

≤ c

(√
1 + lnB

R
+

1√
T

+
√
K +

√
sup
QR,T

{max {a(2 + 2 lnB − lnu), 0}}
)
.

This shows that Corollary 3.2 is better than Theorem 1.3 of Jiang [50] and Theorem

1.1 of Wu [105] in the case a < 0.

Using Theorem 3.1, we can derive for positive solutions to the nonlinear parabolic

equation (3.3) along complete backward Ricci flow with bounded, non-negative

curvature operator.
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Corollary 3.3. For k ≥ 0, let (M, g(x, τ))τ∈[0,∞) be an n-dimensional, complete

backward (−k)-Ricci flow with bounded, non-negative curvature operator. Let u :

M × [0,∞) → (0,∞) be a positive solution to backward nonlinear heat equation

(3.3). For R, T > 0 and B > 0, we suppose u ≤ B in the cylinder QR,T . Then

there exists a positive constant c = c(n) depending only on n such that

|∇u|
u

≤ c

(√
A

R
+

1√
T

+
√
k +

√
sup
QR,T

{
[a(2 + 2 lnB − lnu)]

+
})√

1 + ln
B

u

(3.36)

in QR
2 ,

T
4
, where A = 1 + lnB − ln

(
infQR,T

u
)
.

Proof of Corollary 3.3. By the assumption, we have h = Ric + kg. Consequently,

H = tr h = tr (Ric+kg) = trRic+tr (kg) = S + nk,

for the scalar curvature S. In addition,

R(X) = Ric(X,X)− 1

2
∂τg(X,X) = −kg(X,X) = −k|X|2,

for all vector fields X . Using the contracted second Bianchi identity, we obtain

D0(X) = −∂τS −∆S − 2|Ric |2 − 4kS − 2nk2. (3.37)

By Proposition 4.10 in [2], we have the following evolution formula for S

∂τS = −∆S − 2|Ric |2 − 2kS.

This and (3.37) entail that

D0(X) = −2kS − 2nk2 = −2k (S + nk) = −2kH.

Thus, we have

D(X) = D0(X) + 2R(X) = −2kH − 2k|X|2 = −2k
(
H + |X|2

)
. (3.38)

From (3.9) and h = Ric + kg, we get

H(X) +
H

τ
= −∂τH − 2g(∇H,X) + 2h(X,X)

= −∂τS − 2g(∇S,X) + 2Ric(X,X) + 2k|X|2 ≥ 0, (3.39)
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where we used Corollary 5.3 in [56] and the assumption k ≥ 0. From the non-

negativity of curvature operator, we see that the admissibility of (M, g(x, τ))τ∈[0,∞)

is satisfied and H ≥ 0. Combining this with (3.38) and (3.39), we conclude that

(M, g(x, τ))τ∈[0,∞) satisfies the assumption in Theorem 3.1. We complete the proof

of Corollary 3.3.

3.2.3 Liouville type results

We now apply Theorem 3.1 to prove Theorem 3.2.

Proof of Theorem 3.2. Let (M, g(x, τ))τ∈[0,∞) be backward super Ricci flow satis-

fying (3.14) for all vector fields X . By the assumption of Theorem 3.2, we have

k = 0. Suppose that u : M × [0,∞) → (0,∞) is a positive solution to the

backward nonlinear heat equation (3.3). We fix (x, τ) ∈ QR,R ⊂M × (0,∞). For

every sufficiently large R > 0, we see (x, τ) ∈ QR
2 ,

R
4
.

1. When a ≤ 0 and e−2 ≤ u ≤ B for some constant B, we have A ≤ 3+lnB <

∞ and

a(2 + 2 lnB − lnu) = a (2 + lnB) + a ln
B

u
≤ 0.

This implies that

sup
QR,R

{
[a(2 + 2 lnB − lnu)]

+
}
= 0.

From Theorem 3.1, we have

|∇u|
u

≤ c

(√
3 + lnB

R
+

1√
R

)√
1 + ln

B

u
, (3.40)

in QR,R. Letting R → ∞ in (3.40), we obtain |∇u (x, τ)| = 0. This shows that

u must be constant in x. Substituting u(x, τ) = u(τ) into the equation (3.3), we

get the following ordinary differential equation (ODE)

∂τu = −au lnu.

If a = 0, then we can obtain ∂τu = 0 and u is constant. If a < 0, solving the

above ODE, we deduce that

u(τ) = exp {qe−aτ}

for some q ∈ R. When τ → +∞, we see that: u(τ) = exp {qe−aτ} → +∞
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if q > 0; u(τ) = exp {qe−aτ} → 0 if q < 0. From this and the assumption

e−2 ≤ u(x, τ) ≤ B, we see that u only exists when B ≥ 1. The proof is complete.

2. When a = 0, u : M × [0,∞) → (0,∞) is then a positive solution to

backward heat equation (3.12). Notice that u and v = u+1 has the same growth

at infinity. By Remark 3.6, we may assume that u ≥ 1. Using Theorem 3.1, we

get

|∇u|
u

≤ c

(√
1 + lnB

R
+

1√
R

)√
1 + ln

B

u
, (3.41)

in QR,R. For R > 0, we denote AR = supQR,R
u. The growth condition (3.15)

yields

ln(AR) = o(R), as R → ∞.

Applying (3.41) to the function u on QR,R, we have

|∇u|
u

≤ c

(√
1 + lnAR

R
+

1√
R

)√
1 + lnAR

= c

(√
1 + o (R)

R
+

1√
R

)√
1 + ln o (R)

at (x, τ). Letting R → ∞ in the above inequality, we conclude that

|∇u (x, τ)| = 0

and u is constant because (x, τ) is arbitrary. The proof of 2a is complete.

The proof of 2b is similar as in [56, 94], and we omit the details.

Remark 3.10. When (M, g(x, τ))τ∈[0,∞) is a complete backward Ricci flow with

bounded, non-negative curvature operator, we obtain similar Liouville type results

as in Theorem 3.2.
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Chapter 4

Gradient estimates for a general type

of nonlinear parabolic equations

under geometric conditions and

related problems

This chapter is written based on the paper “Ha Tuan Dung (2023), Gradient

estimates for a general type of nonlinear parabolic equations under geometric con-

ditions and related problems, Nonlinear Analysis, Vol. 226, 113135” [34]. In the

present chapter, we establish gradient estimates for the positive bounded solu-

tions to a general type of nonlinear parabolic equation concerning the weighted

Laplacian (
∂

∂t
− a(x, t)−∆f

)
u(x, t) = F (u(x, t)) (4.1)

on a smooth metric measure space with the metric evolving under the (k,∞)-

super Perelman-Ricci flow (1.11) and the Yamabe flow (1.13), where a(x, t) is a

function which is C2 in the x-variable and C1 in the t-variable, and F (u) is a C2

function of u.We derive several outcomes from these estimates, including Harnack

inequalities, general global constancy, and Liouville type theorems. Applications

related to some important geometric partial differential equations are presented

to illustrate the strength of the results. The content of this chapter can be seen

as a continuation of the work done previously in Chapter 3.

In order to state the main results in Chapter 4, we introduce some notations. On
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an n-dimensional smooth metric measure space
(
M, g(x, t), e−f(x,t)dµ

)
t∈[0,T ] with

the metric evolving under the geometric flow, we write dist (x, x0, t) (or r(x, t))

for the Riemannian distance between x ∈ M and x0 with respect to the metric

g(x, t), where x0 ∈M is a fixed point. We introduce the compact set

QR,T := {(x, t) ∈M × [0, T ] | dist (x, x0, t) ≤ R} ,

where R ≥ 2 and T > 0. Besides, we make use of the following notations

q+ := max{q, 0}, q− := min{q, 0},

and

µ = max
(x,t)

{∆fr(x, t) : dist (x, x0, t) = 1, 0 ≤ t ≤ T} , µ+ := max{µ, 0}.

On the static metric measure space (M, g, e−fdµ), let d (x, x0) (or r(x)) denote

the Riemannian distance to x from x0 with respect to g, and B (x0, R) denote the

geodesic ball centered at x0 of radius R ≥ 2. For T > 0, let QR,T be

QR,T := B (x0, R)× [0, T ] ⊂M × [0,∞).

In this case, we also introduce the following quantities

µ := max{x|d(x,x0)=1}∆fr(x), µ+ := max{µ, 0}.

Our first main result states as follows.

Theorem 4.1. Let
(
M, g(x, t), e−f(x,t)dµ

)
t∈[0,T ] be a complete solution to the (k,∞)-

super Perelman-Ricci flow (1.11) on an n-dimensional smooth manifold M and u

be a smooth positive solution to the nonlinear heat equation (4.1) in QR,T . Assume

that 0 < u ≤ B and

Ricf ≥ − (n− 1)K,
∂g

∂t
≥ −2Hg

for some K,H ≥ 0 in QR,T . Then there exists a constant c depending only n such

that

|∇u|
u

≤ c

[√
A

R
+

√
µ+

R
+

1√
t
+

4

√
(k+)

2
+K2 +H2 + P2 + Γa

]√
1 + ln

B

u

(4.2)
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for all (x, t) ∈ QR
2 ,T

with t ̸= 0, where A = 1 + lnB − ln
(
infQR,T

u
)
and

Γa = sup
QR,T

{
(a+)

1
2 + |∇a| 13

}
,

P = sup
QR,T

{[
2F ′(u)− 2F (u)

u
+

1

1 + lnB − lnu

F (u)

u

]+}
.

In the static case ∂g
∂t

≡ 0 and ∂f
∂t

≡ 0, we can set

H = 0 and k = (n− 1)K

in Theorem 4.1. Then, we see that (M, g, e−fdµ) becomes a static smooth metric

measure space whereRicf ≥ − (n− 1)K for some constantK ≥ 0 in the geodesic

ball B (x0, R). From this observation and Theorem 4.1, we have the following

result.

Theorem 4.2. Let (M, g, e−fdµ) be an n-dimensional complete smooth metric

measure space with Ricf ≥ − (n− 1)K for some constant K ≥ 0 in B (x0, R) .

Assume that 0 < u (x, t) ≤ B for some constant B, is a smooth solution to the

nonlinear heat equation (4.1) in QR,T . Then there exists a constant c depending

only n such that

|∇u|
u

≤ c

[√
A

R
+

√
µ+

R
+

1√
t
+
√
K +

√
P + Γa

]√
1 + ln

B

u
. (4.3)

for all (x, t) ∈ QR
2 ,T

with t ̸= 0, where A = 1 + lnB − ln
(
infQR,T

u
)
and

Γa = sup
QR,T

{
(a+)

1
2 + |∇a| 13

}
,

P = sup
QR,T

{[
2F ′(u)− 2F (u)

u
+

1

1 + lnB − lnu

F (u)

u

]+}
.

On the other hand, we can give a local gradient estimate for the positive

bounded solutions to the general type of nonlinear parabolic equation (4.1) under

the Yamabe flow.

Theorem 4.3. Let
(
M, g(x, t), e−f(x,t)dµ

)
t∈[0,T ] be a complete solution to the Yam-

abe flow (1.13) on an n-dimensional smooth manifoldM and u be a smooth positive

solution to the nonlinear heat equation (4.1) in QR,T . Assume that 0 < u ≤ B

and Ricf ≥ − (n− 1)K,S ≤ H for some K,H ≥ 0 in QR,T . Then there exists
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a constant c depending only n such that

|∇u|
u

≤ c

[√
A

R
+

√
µ+

R
+

1√
t
+

4
√
K2 +H2 + P2 + Γa

]√
1 + ln

B

u
(4.4)

for all (x, t) ∈ QR
2 ,T

with t ̸= 0, where A,Γa,P are the same as Theorem 4.1.

Chapter 4 is organized as follows. In Section 4.1, we provide a proof of gradient

estimates under the (k,∞)-super Perelman-Ricci flow and some corollaries. In

Section 4.2, we study gradient estimates of (4.1) under the Yamabe flow and give

a proof of Theorem 4.2. Gradient estimates and Liouville type results for some

important geometric partial differential equations are given in Section 4.3.

4.1 Gradient estimates for (4.1) under the (k,∞)-super

Perelman-Ricci flow

In this section, inspired by the work of Taheri [97], we will study gradient esti-

mates for positive solutions of the general type of nonlinear parabolic equation

(4.1) under the (k,∞)-super Perelman-Ricci flow
(
M, g(x, t), e−f(x,t)dµ

)
t∈[0,T ].

Recall the system that u and g solve ut = ∆fu+ au+ F (u),
∂g

∂t
+ 2Ricf ≥ −2kg,

with k ∈ R. Here, Ricf is the Bakry-Émery curvature. We now introduce an

auxiliary function

h =

√
1 + ln

B

u
=

√
ln
D

u
≥ 1

in QR,T , where D = Be. Then, we have

u = De−h
2

, F (u) = F
(
De−h

2
)

and lnu = lnD − h2.

This implies

ut = −2Dhthe
−h2, ∇u = −2Dh∇he−h2,

and

∆fu = ∆u− ⟨∇f,∇u⟩ = −2Dhe−h
2

[
∆fh+ |∇h|2

(
1

h
− 2h

)]
.
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As a consequence, from (4.1), we get

−2Dhthe
−h2 = −2Dhe−h

2

[
∆fh+ |∇h|2

(
1

h
− 2h

)]
+ aDe−h

2

+ F
(
De−h

2
)
,

which is equivalent to

ht = ∆fh+ |∇h|2
(
1

h
− 2h

)
− a

2h
−
F
(
De−h

2
)

2Dhe−h2
. (4.5)

Using the above equality, we have the following computational lemma, which will

play an important part in the proof of Theorem 4.1.

Lemma 4.1. Under the same assumption as in Theorem 4.1, for all (x, t) in

QR,T , the function w = |∇h|2 satisfies

∆fw − wt ≥ 2

(
2h− 1

h

)
⟨∇w,∇h⟩ − |∇a|w 1

2

− (2k+ + a+ +G)w + 2

(
2 +

1

h2

)
w2, (4.6)

where

G =

[
2F ′(u)− 2F (u)

u
+

1

1 + lnB − lnu

F (u)

u

]+
.

Proof of Lemma 4.1. Using the same arguments as in proving equality (3.20), we

get

wt = −∂g
∂t

(∇h,∇h) + 2 ⟨∇ (ht) ,∇h⟩ . (4.7)

Now we recall the Bochner-Weitzenböck formula, according to which

1

2
∆f |∇h|2 =

∣∣∇2h
∣∣2 +Ricf(∇h,∇h) + ⟨∇∆fh,∇h⟩ .

This and (4.7) entail that

∆fw − wt

= ∆f |∇h|2 +
∂g

∂t
(∇h,∇h)− 2 ⟨∇ (ht) ,∇h⟩

= 2
∣∣∇2h

∣∣2 + [∂g
∂t

(∇h,∇h) + 2Ricf(∇h,∇h)
]
+ 2 ⟨∇ (∆fh− ht) ,∇h⟩ .

Our assumption on the (k,∞)-super Perelman-Ricci flow of M and (4.5) imply
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the inequality

∆fw − wt

≥− 2kw + 2 + 2 ⟨∇ (∆fh− ht) ,∇h⟩
=− 2kw − 2 ⟨∇ (ht) ,∇h⟩

+ 2

〈
∇
(
ht + |∇h|2

(
2h− 1

h

)
+

a

2h
+

(De−h
2

)α−1

2h

)
,∇h

〉

≥− 2kw + 2

(
2h− 1

h

)〈
∇
(
|∇h|2

)
,∇h

〉
+ 2|∇h|2

〈
∇
(
2h− 1

h

)
,∇h

〉
+
〈
∇
(a
h

)
,∇h

〉
+

〈
∇

F
(
De−h

2
)

Dhe−h2

 ,∇h
〉
.

(4.8)

On the other hand, we have〈
∇
(
2h− 1

h

)
,∇h

〉
=

(
2 +

1

h2

)
|∇h|2, (4.9)

〈
∇
(a
h

)
,∇h

〉
=

〈∇a
h

− a∇h
h2

,∇h
〉
=

1

h
⟨∇a,∇h⟩ − a

h2
|∇h|2, (4.10)

and

∇

F
(
De−h

2
)

Dhe−h2


=

∇
(
F
(
De−h

2
))

Dhe−h2
−
F
(
De−h

2
)
∇
(
Dhe−h

2
)

D2h2e−2h2

=
F ′
(
De−h

2
)
∇
(
De−h

2
)

Dhe−h2
−
F
(
De−h

2
)
D
[
h∇

(
e−h

2
)
+ e−h

2∇h
]

D2h2e−2h2

=
−2Dhe−h

2

F ′
(
De−h

2
)
∇h

Dhe−h2
−
D (1− 2h2) e−h

2

F
(
De−h

2
)
∇h

D2h2e−2h2

= −2F ′
(
De−h

2
)
∇h−

(
1

h2
− 2

) F (De−h2)
De−h2

∇h

= −

2F ′
(
De−h

2
)
−

2F
(
De−h

2
)

De−h2
+

1

h2

F
(
De−h

2
)

De−h2

∇h.
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Consequently,〈
∇

F
(
De−h

2
)

Dhe−h2

 ,∇h
〉

= −

2F ′
(
De−h

2
)
−

2F
(
De−h

2
)

De−h2
+

1

h2

F
(
De−h

2
)

De−h2

 |∇h|2. (4.11)

Substituting (4.9)-(4.11) into (4.8), we deduce that

∆fw − wt ≥− 2kw + 2

(
2h− 1

h

)
⟨∇w,∇h⟩+ 2

(
2 +

1

h2

)
w2 +

1

h
⟨∇a,∇h⟩

− a

h2
w −

2F ′
(
De−h

2
)
−

2F
(
De−h

2
)

De−h2
+

1

h2

F
(
De−h

2
)

De−h2

w.
We rewrite this inequality as

∆fw − wt ≥− 2kw + 2

(
2h− 1

h

)
⟨∇w,∇h⟩+ 2

(
2 +

1

h2

)
w2 +

1

h
⟨∇a,∇h⟩

− a

h2
w −

[
2F ′(u)− 2F (u)

u
+

1

h2

F (u)

u

]
w. (4.12)

Since h ≥ 1, from the Cauchy–Schwarz inequality, we get

1

h
⟨∇a,∇h⟩ ≤ 1

h
|⟨∇a,∇h⟩| ≤ |∇a||∇h| = |∇a|w 1

2 . (4.13)

In addition, we remark that

2kw +
a

h2
w ≤ 2max{k, 0}w +

1

h2
max{a, 0}w ≤ (2k+ + a+)w,

and

2F ′(u)− 2F (u)

u
+

1

h2

F (u)

u

= 2F ′(u)− 2F (u)

u
+

1

1 + lnB − lnu

F (u)

u

≤ max

{
2F ′(u)− 2F (u)

u
+

1

1 + lnB − lnu

F (u)

u
, 0

}
=

[
2F ′(u)− 2F (u)

u
+

1

1 + lnB − lnu

F (u)

u

]+
= G. (4.14)
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These inequalities, combined with (4.12), yield that

∆fw−wt ≥ 2

(
2h− 1

h

)
⟨∇w,∇h⟩+|∇a|w 1

2−(2k+ + a+ +G)w+2

(
2 +

1

h2

)
w2.

The proof is complete.

To prove the main theorems in this section, we recall the following useful space-

time cut-off function in [8, 36, ?, 97].

Lemma 4.2. Given τ ∈ [0, T ], there exists a smooth cut-off function ψ(r, t)

supported in [0, R]× [0, T ] satisfying following propositions

(i) 0 ≤ ψ(r, t) ≤ 1 in [0, R]× [0, T ].

(ii) The equalities ψ(r, t) = 1 and ∂ψ
∂r
(r, t) = 0 hold in

[
0, R

2

]
× [τ, T ] and

[
0, R

2

]
×

[0, T ], respectively.

(iii) When 0 < ϵ < 1, there is a constant Cϵ such that

−Cϵψ
ϵ

R
≤ ∂ψ

∂r
≤ 0; and

∣∣∣∣∣∂2ψ

∂r2

∣∣∣∣∣ ≤ Cϵψ
ϵ

R2
.

(iv) ψ(r, 0) = 0 for all r ∈ [0,∞) and
∣∣∣∂ψ
∂t

∣∣∣ ≤ cψ
1
2

τ
on [0,∞) × [0, T ] for some

c > 0.

Now, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. With each fixed time τ ∈ (0, T ], we choose cut-off function

ψ(r, t) satisfying the conditions of Lemma 4.2. Our main goal is to prove that

inequality (4.2) in Theorem 4.1 holds at every point (x, τ) in QR
2 ,T

. Since τ is

arbitrary, the conclusion of Theorem 4.1 will immediately follow. To this purpose,

we introduce a smooth cut-off function ψ :M × [0, T ] → R by

ψ(x, t) := ψ (r(x, t), t) , (4.15)

where x0 ∈M is a fixed point given in the statement of Theorem 4.1 and r(x, t) =

dist(x, x0, t) is the distance function from the fixed point x0 ∈ M at time t. Let

(x1, t1) be a maximum point for the function ψw in the setQR,T . If (ψw) (x1, t1) ≤
0 then (ψw)(x, τ) ≤ 0 for all x ∈ M such that dist (x, x0, τ) ≤ R. Note that

ψ(x, τ) ≡ 1 for all x ∈ M satisfying dist (x, x0, τ) ≤ R
2
. This implies that

w(x, τ) ≤ 0 when d (x, x0, τ) ≤ R
2
. Since τ is arbitrarily chosen, we see that the
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(4.2) holds on QR
2 ,T

in this case. Next, we consider the case (ψw) (x1, t1) > 0.

By the standard argument of Calabi [17], we may assume that (ψw) is smooth at

(x1, t1) . Obviously at (x1, t1) , we have

∆f (ψw) ≤ 0, ∇ (ψw) = 0 and (ψw)t ≥ 0.

Hence, still being at (x1, t1) , we see that

0 ≥ ∆f (ψw)− (ψw)t = ψ (∆fw − wt) + w (∆fψ − ψt) + 2 ⟨∇w,∇ψ⟩ .

Using the fact that 0 = ∇ (ψw) = w∇ψ + ψ∇w, we get

0 ≥ ψ (∆fw − wt) + w∆fψ − wψt − 2
|∇ψ|2

ψ
w

at (x1, t1). The above inequality, combined with (4.6), yield that

0 ≥− (2k+ + a+ +G)ψw − |∇a|ψw 1
2−2

(
2h− 1

h

)
⟨∇ψ,∇h⟩w

+ 2

(
2 +

1

h2

)
ψw2 + w∆fψ − wψt − 2

|∇ψ|2

ψ
w.

or equivalent to

4ψw2 ≤ 2h2

1 + 2h2
(2k+ + a+ +G)ψw+

4h (1− 2h2)

1 + 2h2
⟨∇h,∇ψ⟩w

+
2h2

1 + 2h2
|∇a|ψw 1

2 − 2h2

1 + 2h2
w∆fψ +

2h2

1 + 2h2
w |ψt|+

4h2

1 + 2h2

|∇ψ|2

ψ
w

at (x1, t1). Note that

0 <
2h2

1 + 2h2
≤ 1, 0 <

2

1 + 2h2
≤ 1 and 0 <

2h

1 + 2h2
≤ 1.

Thus, from the above inequality, we have

4ψw2 ≤ (2k+ + a+ +G)ψw + |∇a|ψw 1
2+

4h (1− 2h2)

1 + 2h2
⟨∇h,∇ψ⟩w

− 2h2

1 + 2h2
w∆fψ +

2|∇ψ|2

ψ
w + |ψt|w (4.16)

at (x1, t1). Now, we consider two possible cases.

Case 1. We assume d (x1, x0, t1) ≥ 1. Since Ricf ≥ −(n−1)K and r (x1, t1) ≥ 1
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in QR,T , R ≥ 2, we have the f -Laplace comparison theorem (see Theorem 3.1 in

[103]) that

∆fr (x1, t1) ≤ µ+ (n− 1)K(R− 1) (4.17)

where

µ = max
(x,t)

{∆fr(x, t) : dist (x, x0, t) = 1, 0 ≤ t ≤ T} .

Next, we will estimate upper bounds for each term of the right-hand side (RHS)

of (4.16). For simplicity, we let c denote a constant depending only on n, whose

value may change from line to line.

For the first term on the RHS of (4.16), we have

(2k+ + a+ +G)ψw + |∇a|w 1
2ψ

=
(
ψ

1
2w
) [
ψ

1
2 (2k+ + a+ +G)

]
+
(
ψ

1
4w

1
2

)(
ψ

3
4 |∇a|

)
≤ 1

2
ψw2 + c (2k+ + a+ +G)

2
+

1

2
ψw2 + c

(
ψ

3
4 |∇a|

) 4
3

≤ ψw2 + c (k+)
2
+ c

(
sup
QR,T

G

)2

+ c
[
(a+)

2
+ |∇a| 43

]
.

Using the inequality x4 + y4 ≤ (x+ y)4 for all x, y ≥ 0, we see that

(a+)
2
+ |∇a| 43 ≤

[
(a+)

1
2 + |∇a| 13

]4
≤
[
sup
QR,T

{
(a+)

1
2 + |∇a| 13

}]4
= Γ4

a.

This implies that

(2k+ + a+ +G)ψw + |∇a|w 1
2ψ ≤ ψw2 + c (k+)

2
+ c

(
sup
QR,T

G

)2

+ cΓ4
a. (4.18)

For the second term on the RHS of (4.16), we have

4h (1− 2h2)

1 + 2h2
⟨∇h,∇ψ⟩w ≤ 4h

|1− 2h2|
1 + 2h2

|∇ψ| |∇h|w

≤ 4h |∇ψ|w 3
2 = 4

(
ψw2

) 3
4

(
h |∇ψ|ψ− 3

4

)
≤ 1

2
ψw2 + ch4 |∇ψ|

4

ψ3
≤ 1

2
ψw2 + c

A2

R4
, (4.19)

where A = 1 + lnB − ln
(
infQR,T

u
)
.
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For the third term on the RHS of (4.16), using Lemma 4.2 and (4.17), we have

− 2h2

1 + 2h2
w∆fψ ≤ w [|ψr| (µ+ + (n− 1)K (R− 1)) + |ψrr|]

≤
(
ψ

1
2 w
)( |ψrr|

ψ
1
2

)
+ (µ+ + (n− 1)K (R− 1))

(
ψ

1
2w
)( |ψr|

ψ
1
2

)
≤ 1

2
ψw2 + c

|ψr|2

ψ
+ c

(µ+)
2|ψr|2

ψ
+ c

K2(R− 1)
2|ψr|2

ψ

≤ 1

2
ψw2 +

c

R4
+
c(µ+)

2

R2
+ cK2. (4.20)

For the fourth term on the RHS of (4.16), we have

2|∇ψ|2

ψ
w = 2

(
|∇ψ|2ψ− 3

2

)(
ψ

1
2w
)
≤ 1

2
ψw2 + c

|∇ψ|4

ψ3
≤ 1

2
ψw2 +

c

R4
. (4.21)

Next, we will estimate an upper bound for the operator ∂tψ in QR,T . Fixed t > 0

and let ξ = ξ(s) : [0, a] → M be a minimal geodesic with respect to g(x, t)

connecting x0 = ξ(0) to x = ξ(a). Then, we have

∂tr(x, t) = ∂td (x, x0, t) = ∂t

∫ a

0

|ξ′(s)|g(t) ds

=

∫ a

0

(∂tg) (ξ
′, ξ′)

2 |ξ′|g(t)
ds

≥
∫ a

0

−H |ξ′|g(t) ds ≥ −Hr(x, t) ≥ −HR.

Combining this with propositions (iii) and (iv) of Lemma 4.2 we deduce that

∂tψ = ψt + ψr∂tr ≤ ψt −HRψr ≤


∣∣∣ψt∣∣∣
ψ

1
2

+R
H
∣∣∣ψr∣∣∣
ψ

1
2

ψ 1
2 ≤ c(1 + τH)

ψ
1
2

τ
.

(4.22)

From this and the Cauchy-Schwarz inequality, we get

w |ψt| =
(
w
√
ψ
) |ψt|√

ψ
≤ c(w

√
ψ)(1 + τH)

√
ψ

τ

≤ 1

2
ψw2 + c

(1 + τH)2

τ 2
≤ 1

2
ψw2 + c

(
1

τ 2
+H2

)
.

(4.23)
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Substituting (4.18)-(4.23) into (4.16), we conclude that

ψw2 ≤ c
A2 + 1

R4
+
c (µ+)

2

R2
+

c

τ 2
+ c (k+)

2

+ cK2 + cH2 + c

(
sup
QR,T

G

)2

+ cΓ4
a (4.24)

at (x1, t1) . Note that 0 ≤ ψ ≤ 1 and ψ(x, τ) = 1 when d (x, x0, τ) ≤ R
2
. Thus,

we obtain

w2(x, τ) ≤
(
ψw2

)
(x1, t1)

≤ c
A2 + 1

R4
+
c (µ+)

2

R2
+

c

τ 2
+ c (k+)

2
+ cK2 + cH2 + cP2 + cΓ4

a

for all x ∈ M such that d (x, x0, τ) ≤ R
2
, where P =

(
supQR,T

G
)
. Since τ ∈

(0, T ] is arbitrary and w = |∇h|2, this completes the proof of Theorem 4.1 in this

case.

Case 2. We assume d (x1, x0, t1) ≤ 1. Then, by the definition of ψ, we see that ψ

is a constant in space direction in QR
2 ,T

where R ≥ 2. Thus, from (4.16), we have

4ψw2 ≤ (2k+ + a+ +G)ψw + |∇a|ψw 1
2 + w |ψt| . (4.25)

Substituting (4.18) and (4.23) into (4.25), we obtain

ψw2 ≤ c

τ 2
+ c (k+)

2
+ cH2 + cP2 + cΓ4

a

at (x1, t1) . Note that 0 ≤ ψ ≤ 1 and ψ(x, τ) = 1 when d (x, x0, τ) ≤ R
2
. Thus,

we deduce that

w2(x, τ) ≤
(
ψw2

)
(x1, t1)

≤ c

τ 2
+ c (k+)

2
+ cH2 + cP2 + cΓ4

a

for all x ∈ M such that d (x, x0, τ) ≤ R
2
. From the definition of h(x, t) and the

above inequality, we complete the proof of Theorem 4.1 in this case.

Remark 4.1. When
(
M, g(x, t), e−f(x,t)dµ

)
t∈[0,T ] is a complete solution to the

(k,m)-super Perelman-Ricci flow (m <∞) , we can give another gradient esti-

mate for the positive solutions to the general heat equation (4.1) in QR
2 ,T
. Indeed,

if Ricmf ≥ − (m+ n− 1)K for some constant K ≥ 0 then the generalized Lapla-
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cian comparison theorem [103] implies

∆fr(x, t) ≤ (m+ n− 1)
√
Kcoth

(√
Kr(x, t)

)
≤ 1

r(x, t)
(m+ n− 1)

[
1 +

√
Kr(x, t)

]
= (m+ n− 1)

(
1

r(x, t)
+
√
K

)
. (4.26)

From this and the definition of the function ψ, we see that

∆fψ = ψr∆fr + ψrr|∇r|2

≥ −
C 1

2
ψ

1
2

R
(m+ n− 1)

(
2

R
+
√
K

)
−
C 1

2
ψ

1
2

R2

≥ −
C 1

2
ψ

1
2 (m+ n)

(
2 +R

√
K
)

R2
. (4.27)

for some positive constant C 1
2
in QR,τ , R ≥ 2. Using the above inequality and

repeating arguments in the proof of Theorem 4.1, we get the following result.

Theorem 4.4. Let
(
M, g(x, t), e−f(x,t)dµ

)
t∈[0,T ] be a complete solution to the (k,m)-

super Perelman-Ricci flow (1.10) and u be a smooth positive solution to the non-

linear heat equation (4.1) in QR,T . Assume that 0 < u ≤ B and

Ricmf ≥ − (m+ n− 1)K,
∂g

∂t
≥ −2Hg

for some K,H ≥ 0 in QR,T . Then there exists a constant c depending only n such

that

|∇u|
u

≤ c

[√
A

R
+

1√
t
+

4

√
(k+)

2
+K2 +H2 + P2 + Γa

]√
1 + ln

B

u
(4.28)

for all (x, t) ∈ QR
2 ,T

with t ̸= 0, where A,Γa,P are the same as Theorem 4.1.

Remark 4.2. When k = m = 0, the (k,m)-super Perelman-Ricci flow returns

the super Ricci flow. Furthermore, if we have |Ric(x, t)| ≤ κ for some constant

κ ≥ 0 then
∂

∂t
g(x, t) ≥ −2Ric(x, t) ≥ −2κg(x, t)

in QR,T . From this point of view and Theorem 4.4, we obtain the following local

gradient estimate for the nonlinear heat equation under super Ricci flow.
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Theorem 4.5. Let (M, g(x, t))t∈[0,T ] be a complete solution to the super Ricci flow

(1.4) and u be a smooth positive solution to the nonlinear heat equation(
∂

∂t
− a(x, t)−∆

)
u(x, t) = F (u(x, t)) (4.29)

in the set QR,T , where a(x, t) is a function which is C2 in the x-variable and C1

in the t-variable, and F (u) is a C2 function of u. Assume that |Ric(x, t)| ≤ κ

for some constant κ ≥ 0 for all (x, t) ∈ QR,T . If u (x, t) ≤ B for some constant

B > 0 in QR,T , then there exists a constant c depending only n such that

|∇u|
u

≤ c

[√
A

R
+

1√
t
+
√
κ+

√
P + Γa

]√
1 + ln

B

u
(4.30)

for all (x, t) ∈ QR
2 ,T

with t ̸= 0, where A,Γa,P are the same as Theorem 4.1.

As an application of Theorem 4.1, we can drive a global gradient estimate for

positive bounded solutions to (4.1).

Corollary 4.1. Let
(
M, g(x, t), e−f(x,t)dµ

)
t∈[0,T ] be a complete solution to the

(k,∞)-super Perelman-Ricci flow (1.11) and u : M × [0, T ] → R be a smooth

positive solution to the nonlinear heat equation (4.1). Assume that

Ricf ≥ − (n− 1)K,
∂g

∂t
≥ −2Hg

for some K,H ≥ 0 on M × [0, T ]. If δ ≤ u(x, t) ≤ B for some constants

δ, B > 0, then there exists a constant c depending only n such that

|∇u|
u

≤ c

[
1√
t
+

4

√
(k+)

2
+K2 +H2 + P2 + Γa

]√
1 + ln

B

u

on M × [0, T ] with t ̸= 0, where

Γa = sup
M×[0,T ]

{
(a+)

1
2 + |∇a| 13

}
,

and

P = sup
M×[0,T ]

{[
2F ′(u)− 2F (u)

u
+

1

1 + lnB − lnu

F (u)

u

]+}
.

Proof of Corollary 4.1. Since δ ≤ u(x, t) ≤ B is a smooth solution of the equation
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(4.1), using Theorem 4.1, we get

|∇u|
u

≤ c

[√
A

R
+

√
µ+

R
+

1√
t
+

4

√
(k+)

2
+K2 +H2 + P2 + Γa

]√
1 + ln

B

u
,

(4.31)

where A = 1+ lnB− lnu ≤ 1+ lnB− ln δ <∞. We notice that the inequality

(4.31) holds for every R ≥ 2, and each term of the right-hand side of (4.31) does

not depend on R. Thus, the conclusion immediately follows by taking R → ∞ in

(4.31). The proof is complete.

Another application of Theorem 4.1 is a Harnack-type inequality for positive

solutions of (4.1), which can be used to compare solutions at the same time.

Corollary 4.2. Under the same assumption as in Corollary 4.1, if u : M ×
[0, T ] → R is a smooth solution to the general heat equation (4.1) and δ ≤
u (x, t) ≤ B for some positive constants δ, B, then for any x1, x2 ∈ M and

t ∈ (0, T ] we have

u (x2, t)

Be
≤
[
u (x1, t)

Be

]β2
(4.32)

where

β = exp

{
−cdist (x1, x2, t)

[
1√
t
+

4

√
(k+)

2
+K2 +H2 + P2 + Γa

]}
,

and Γa,P are the same as Corollary 4.1. Here c is a constant depending only on

n.

Proof of Corollary 4.2. Let γ(s) be a geodesic of minimal length with respect to

the metric g = g(x, t) connecting x1 and x2, γ : [0, 1] →M,γ(0) = x2, γ(1) = x1.

We can assume that Γa,P < ∞, otherwise β = 0 and the inequality (4.32) is

trivially true. Next, put h =
√
1 + ln B

u
=
√
ln D

u
, where D = Be. Using the

Cauchy-Schwarz inequality, we obtain

ln
h (x1, t)

h (x2, t)
=

∫ 1

0

d ln(h(γ(s), t))

ds
ds

=

∫ 1

0

⟨∇h(γ(s), t), γ ′(s)⟩
h(γ(s), t)

ds

≤
∫ 1

0

|∇h|
h

|γ ′| ds =
∫ 1

0

|∇u|
2u
(
1 + ln B

u

) |γ ′| ds. (4.33)
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Here, we have used the fact that

|∇h|
h

=

∣∣∣∇√ln D
u

∣∣∣√
ln D

u

=
|∇u|
2u ln D

u

=
|∇u|

2u
(
1 + ln B

u

) .
By the inequality

√
1 + ln B

u
≤ 1 + ln B

u
and Corollary 4.1, we see that

|∇u|
2u
(
1 + ln B

u

) ≤ c

(
1√
t
+

4

√
(k+)

2
+K2 +H2 + P2 + Γa

)
,

where c is a constant depending only on n. This and (4.33) entail that

ln
h (x1, t)

h (x2, t)
≤ c dist (x1, x2, t)

[
1√
t
+

4

√
(k+)

2
+K2 +H2 + P2 + Γa

]
We rewrite this inequality as

h (x1, t)

h (x2, t)
≤ exp

{
cdist (x1, x2, t)

[
1√
t
+

4

√
(k+)

2
+K2 +H2 + P2 + Γa

]}
=

1

β
.

From the above inequality, by some easy calculations, we obtain (4.32).

4.2 Gradient estimates for (4.1) under the Yamabe flow

Let
(
M, g(x, t), e−f(x,t)dµ

)
t∈[0,T ] be a complete solution to the Yamabe flow

(1.13). Our goal in this section is to drive a local Hamilton type gradient es-

timate for any positive bounded solutions of the nonlinear heat equation (4.1)

under the Yamabe flow (1.13). Assume that 0 < u(x, t) ≤ B for some positive

constant B, is a smooth solution to the equation (4.1) in QR,T . Then we see that

u and g solve  ut = ∆fu+ au+ F (u),
∂g

∂t
= −Sg.

(4.34)

Consider the function h =
√
1 + ln B

u
=
√
ln D

u
≥ 1 in QR,T , where D = Be.

From (4.5), we see that

(∆f − ∂t)h = −|∇h|2
(
1

h
− 2h

)
+

a

2h
+
F
(
De−h

2
)

2Dhe−h2
. (4.35)

To prove Theorem 4.3, we need the following useful lemma.
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Lemma 4.3. Under the same assumption as in Theorem 4.3, for all (x, t) in

QR,T , the function w = |∇h|2 satisfies

∆fw − wt ≥ 2

(
2h− 1

h

)
⟨∇w,∇h⟩ − |∇a|w 1

2

− [(n− 1)K +H +G+ a+]w + 2

(
2 +

1

h2

)
w2, (4.36)

where G is the same as Lemma 4.1.

Proof of Lemma 4.3. By the Bochner-Weitzenböck formula and note that Ricf ≥
− (n− 1)K, we get

1

2
∆fw =

1

2
∆f |∇h|2 =

∣∣∇2h
∣∣2 +Ricf(∇h,∇h) + ⟨∇∆fh,∇h⟩

≥ −(n− 1)K|∇h|2 + ⟨∇∆fh,∇h⟩ . (4.37)

From (3.6) and (4.34), we obtain

wt = −∂g
∂t

(∇h,∇h) + 2 ⟨∇ (ht) ,∇h⟩ = S|∇h|2 + 2 ⟨∇ (ht) ,∇h⟩ .

Combining this with (4.37), we imply that

∆fw − wt ≥ −2(n− 1)K|∇h|2 + 2 ⟨∇∆fh,∇h⟩ − S|∇h|2 − 2 ⟨∇ (ht) ,∇h⟩
= − [2(n− 1)K + S]w + 2 ⟨∇ (∆fh− ht) ,∇h⟩ .

This and (4.35) entail that

∆fw − wt

≥ − [2(n− 1)K + S]w + 2

(
2h− 1

h

)〈
∇
(
|∇h|2

)
,∇h

〉
+ 2|∇h|2

〈
∇
(
2h− 1

h

)
,∇h

〉
+
〈
∇
(a
h

)
,∇h

〉
+

〈
∇

F
(
De−h

2
)

Dhe−h2

 ,∇h
〉
.

Substituting (4.9)-(4.11) into the above inequality, we conclude that

∆fw − wt ≥− [2(n− 1)K + S]w + 2

(
2h− 1

h

)
⟨∇w,∇h⟩+ 2

(
2 +

1

h2

)
w2

+
1

h
⟨∇a,∇h⟩ − a

h2
w −

[
2F ′(u)− 2F (u)

u
+

1

h2

F (u)

u

]
w. (4.38)
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As in the proof of Lemma 4.1, we have

a

h2
w ≤ 1

h2
max{a, 0}w ≤ a+w,

1

h
⟨∇a,∇h⟩ ≤ |∇a||∇h| = |∇a|w 1

2 ,

and

2F ′(u)− 2F (u)

u
+

1

h2

F (u)

u

≤ max

{
2F ′(u)− 2F (u)

u
+

1

1 + lnB − lnu

F (u)

u
, 0

}
=

[
2F ′(u)− 2F (u)

u
+

1

1 + lnB − lnu

F (u)

u

]+
= G.

Plugging these above inequalities into (4.38) and note that S ≤ H, we complete

the proof of Lemma 4.3.

In the following, we will use the same arguments as in the proof of Theorem

4.1 to prove Theorem 4.3. Specifically, we will apply Lemma 4.3 and the localized

technique to obtain an upper bound for the function w2 in QR
2 ,T
.

Proof of Theorem 4.3. For the fixed τ ∈ (0, T ], let (x1, t1) be a maximum point

for the function ψw in the set QR,T , where the function ψ is defined as in (4.15).

We may suppose that (ψw) (x1, t1) > 0; otherwise if (ψw) (x1, t1) ≤ 0 then

(ψw)(x, τ) ≤ 0 for all x ∈ M such that dist (x, x0, t) ≤ R; here, we used fact

that (x1, t1) is a maximum point of ψw in QR,T . Note that ψ(x, τ) ≡ 1 for all

x ∈M satisfying dist (x, x0, τ) ≤ R
2
. It shows that

w(x, τ) ≤ 0 when dist (x, x0, τ) ≤
R

2
.

Since τ is arbitrarily chosen, we see that the inequality (4.2) holds on QR
2 ,T
.

Moreover, we have t1 ̸= 0, since (ψw) (x1, t1) > 0. According to the standard

argument of Calabi [17], we may assume that (ψw) is smooth at (x1, t1) . Clearly,

at (x1, t1) , we have

∆f (ψw) ≤ 0,∇ (ψw) = 0 and (ψw)t ≥ 0.

From these results, we see that

0 ≥ ψ (∆fw − wt) + w∆fψ − wψt − 2
|∇ψ|2

ψ
w
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at (x1, t1). The above inequality combined with (4.36) yield that

4ψw2 ≤ 2h2

1 + 2h2
[(n− 1)K +H +G+ a+]ψw

− 4h (1− 2h2)

1 + 2h2
⟨∇h,∇ψ⟩w

+
2h

1 + 2h2
|∇a|ψw 1

2 − 2h2

1 + 2h2
w∆fψ

+
2h2

1 + 2h2
w |ψt|+

4h2

1 + 2h2

|∇ψ|2

ψ
w.

at (x1, t1). Since h ≥ 1, we have

0 <
2h2

1 + 2h2
≤ 1, 0 <

2

1 + 2h2
≤ 1, and 0 <

2h

1 + 2h2
≤ 1.

Using these inequalities, we get

4ψw2 ≤ [(n− 1)K +H +G+ a+]ψw + |∇a|ψw 1
2 + |ψt|w

− 4h (1− 2h2)

1 + 2h2
⟨∇h,∇ψ⟩w − 2h2

1 + 2h2
w∆fψ +

2|∇ψ|2

ψ
w. (4.39)

at (x1, t1). We now consider two possible cases.

Case 1. We assume d (x1, x0, t1) ≥ 1. Since Ricf ≥ −(n−1)K and r (x1, t1) ≥ 1

in QR,T , R ≥ 2, we have the f -Laplace comparison theorem (see Theorem 3.1 in

[103]) that ∆fr (x1, t1) ≤ µ+ (n− 1)K(R− 1) where

µ = max
(x,t)

{∆fr(x, t) : dist (x, x0, t) = 1, 0 ≤ t ≤ T} .

Next, we will estimate upper bounds for each term of the right-hand side of (4.39).

For simplicity, we let c denote a constant depending only on n, whose value may

change from line to line. Performing similar arguments as in the proof of Theorem

4.1, we have the following inequalities

2|∇ψ|2

ψ
w ≤ 1

2
ψw2 +

c

R4
,

−4h (1− 2h2)

1 + 2h2
⟨∇h,∇ψ⟩w ≤ 1

2
ψw2 + c

A2

R4
,

− 2h2

1 + 2h2
w∆fψ ≤ 1

2
ψw2 +

c

R4
+
c (µ+)

2

R2
+ cK2,

(4.40)
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where A = 1 + lnB − ln
(
infQR,T

u
)
. Moreover, we also have

[2(n− 1)K +H +G+ a+]ψw + |∇a|w 1
2ψ

=
(
ψ

1
2w
)
ψ

1
2 [2(n− 1)K +H +G+ a+] +

(
ψ

1
4w

1
2

)(
ψ

3
4 |∇a|

)
≤ 1

2
ψw2 + c [2(n− 1)K +H +G+ a+]

2
+

1

2
ψw2 + c

(
ψ

3
4 |∇a|

) 4
3

≤ ψw2 + cK2 + cH2 + cG2 + c
[
(a+)

2
+ |∇a| 43

]
≤ ψw2 + cK2 + cH2 + cP2 + cΓ4

a, (4.41)

where P =
(
supQR,T

G
)
and Γa = supQR,T

{
(a+)

1
2 + |∇a| 13

}
. Next, fixed t > 0

and let ξ = ξ(s) : [0, a] → M be a minimal geodesic with respect to g(x, t)

connecting x0 = ξ(0) to x = ξ(a). Then, we have

∂tr(x, t) = ∂td (x, x0, t) = ∂t

∫ a

0

|ξ′(s)|g(t) ds

= −1

2

∫ a

0

S |ξ′(s)|g(t) ds

≥ −1

2

∫ a

0

H |ξ′(s)|g(t) ds ≥ −1

2
Hr(x, t) ≥ −1

2
HR.

Combining this with propositions iii and iv of Lemma 4.2, we conclude that

∂tψ = ψt + ψr∂tr ≤ ψt −
1

2
HRψr

≤


∣∣∣ψt∣∣∣
ψ

1
2

+
HR
2

∣∣∣ψr∣∣∣
ψ

1
2

ψ 1
2 ≤ c(1 + τH)

ψ
1
2

τ
.

Using the above inequality and the Cauchy-Schwarz inequality, we get

w |ψt| =
(
w
√
ψ
) |ψt|√

ψ
≤ c

(
w
√
ψ
)
(1 + τH)

√
ψ

τ

≤ 1

2
ψw2 + c

(1 + τH)2

τ 2
≤ 1

2
ψw2 + c

(
1

τ 2
+H2

)
.

(4.42)

Substituting (4.40), (4.41) and (4.42) into (4.39), we conclude that

ψw2 ≤ c
A2 + 1

R4
+
c (µ+)

2

R2
+

c

τ 2
+ cK2 + cH2 + cP2 + cΓ4

a
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at (x1, t1) . Since 0 ≤ ψ ≤ 1 and ψ(x, τ) = 1 when d (x, x0, τ) ≤ R
2
, we get

w2(x, τ) ≤
(
ψw2

)
(x1, t1) ≤ c

A2 + 1

R4
+
c (µ+)

2

R2
+

c

τ 2
+ cK2 + cH2 + cP2 + cΓ4

a

for all x ∈ M such that d (x, x0, τ) ≤ R
2
. Since τ ∈ (0, T ] is arbitrary and

w = |∇h|2, this completes the proof of Theorem 4.3 in this case.

Case 2. We assume d (x1, x0, t1) ≤ 1. Then, by the definition of ψ, we see that ψ

is a constant in space direction in QR
2 ,T

where R ≥ 2. Thus, from (4.39), we have

4ψw2 ≤ [(n− 1)K +H +G+ a+]ψw + |∇a|ψw 1
2 + w |ψt| . (4.43)

Substituting (4.41) and (4.42) into (4.43), we deduce that

ψw2 ≤ c

τ 2
+ cK2 + cH2 + cP2 + cΓ4

a

at (x1, t1) . Note that 0 ≤ ψ ≤ 1 and ψ(x, τ) = 1 when d (x, x0, τ) ≤ R
2
.

Therefore,

w2(x, τ) ≤
(
ψw2M

)
(x1, t1) ≤

c

τ 2
+ cK2 + cH2 + cP2 + cΓ4

a.

for all x ∈ M such that d (x, x0, τ) ≤ R
2
. From the definition of h(x, t) and the

above inequality, we complete the proof of Theorem 4.3 in this case.

Applying the same technique as in Corollary 4.2, we get the following Harnack-

type inequality.

Corollary 4.3. Let
(
M, g(x, t), e−f(x,t)dµ

)
t∈[0,T ] be a complete solution to the

Yamabe flow (1.13) and u : M × [0, T ] → R be a smooth positive solution to

the semilinear heat equation (4.1). Assume that Ricf ≥ − (n− 1)K and R ≤ H
for some K,H ≥ 0 on M × [0, T ]. If δ ≤ u (x, t) ≤ B for some δ, B > 0 then

for any x1, x2 ∈M and t ∈ (0, T ] we have

u (x2, t)

Be
≤
[
u (x1, t)

Be

]Σ2

where

Σ = exp

{
−cdist (x1, x2, t)

[
1√
t
+

4
√
K2 +H2 + P2 + Γa

]}
,

Γa,P are the same as Corollary 4.1, and c is a constant depending only on n.
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4.3 Liouville type theorems and gradient estimates for

some important geometric partial differential equa-

tions

4.3.1 On the nonlinear elliptic equations related to gradient Ricci

solitons

Let (M, g, e−fdµ) be an n-dimensional complete smooth metric measure space.

In this subsection, we will study gradient estimates and related problems for pos-

itive smooth solutions of the following nonlinear elliptic equation

∆fu(x) + a(x)u(x) + bu(x) lnu(x) = 0 (4.44)

and its parabolic counterpart

ut(x, t) = ∆fu(x, t) + a(x, t)u(x, t) + bu(x, t) lnu(x, t), (4.45)

on (M, g, e−fdµ). Here, b ∈ R, a(x) is a C1 function of x in (4.44), and a(x, t) is

a function which is C2 in the x-variable and C1 in the t-variable in (4.45).

Assume that the Bakry-Émery Ricci Ricf is bounded below, we now apply

Theorem 4.2 to derive a local gradient estimate for the equation (4.45) on the

static smooth metric measure space (M, g, e−fdµ). For F (u) = bu lnu, we have

2F ′(u)− 2F (u)

u
+

1

h2

F (u)

u
= 2(b lnu+b)−2b lnu+

1

h2
b lnu =

b

h2

(
2h2 + lnu

)
,

where h =
√
1 + ln B

u
≥ 1. Thus, we obtain

P ≤ sup
QR,T

{[b(2 + 2 lnB − lnu)]+} = P0.

From this and Theorem 4.2, we get the following gradient estimate result for

positive solutions of the equation (4.45).

Theorem 4.6. Let (M, g, e−fdµ) be an n-dimensional complete smooth metric

measure space with Ricf ≥ − (n− 1)K for some constant K ≥ 0 in B (x0, R) .

Assume that 0 < u (x, t) ≤ B for some constant B, is a smooth solution to

the nonlinear parabolic equation (4.45) in QR,T . Then there exists a constant c
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depending only n such that

|∇u|
u

≤ c

[√
A

R
+

√
µ+

R
+

1√
t
+
√
K +

√
P0 + Γa

]√
1 + ln

B

u
(4.46)

in QR
2 ,T

with t ̸= 0, where A = 1 + lnB − ln
(
infQR,T

u
)
and

P0 = supQR,T
{[b(2 + 2 lnB − lnu)]+} , Γa = supQR,T

{
(a+)

1
2 + |∇a| 13

}
.

When b = 0, the equation (4.45) becomes the weighted Schrödinger equation

on (M, g, e−fdµ). Using Theorem 4.6, we can derive the following result.

Corollary 4.4. Under the same assumption as in Theorem 4.6, if 0 < u (x, t) ≤
B for some constant B > 0 is a smooth solution to the weighted Schrödinger

equation ut = ∆fu+ au in QR,T , then there exists a constant c depending only n

such that

|∇u|
u

≤ c

[√
A

R
+

√
µ+

R
+

1√
t
+
√
K + sup

QR,T

{
(a+)

1
2 + |∇a| 13

}]√
1 + ln

B

u

in QR
2 ,T

with t ̸= 0, where A is the same as Theorem 4.6.

Remark 4.3. We notice that
√
1 + ln B

u
≤ 1 + ln B

u
and

sup
QR,T

{
(a+)

1
2 + |∇a| 13

}
≤ sup

QR,T

{
(a+)

1
2

}
+ sup

QR,T

{
|∇a| 13

}
.

From the above inequalities, we see that Corollary 4.4 is better than Theorem 1.1

in [116]. Moreover, our result can be regarded as an extension and improvement

of Ruan [84].

On the other hand, if a(x, t) ≡ 0 then the equation (4.45) becomes the following

general f -heat equation

ut = ∆fu+ bu lnu. (4.47)

From Theorem 4.6, we obtain the following gradient estimate result.

Corollary 4.5. Under the same assumption as in Theorem 4.6, if 0 < u (x, t) ≤
B for some constant B > 0 is a smooth solution to the equation (4.47) in QR,T ,

then there exists a constant c depending only n such that

|∇u|
u

≤ c

[√
A

R
+

√
µ+

R
+

1√
t
+
√
K +

√
sup
QR,T

{[b(2 + 2 lnB − lnu)]+}

]√
1 + ln

B

u
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in QR
2 ,T

with t ̸= 0, where A is the same as Theorem 4.6.

Remark 4.4. By the inequality ln(1 + x) ≤ x for all x ≥ 0, we see that√
1 + ln

B

u
≤
√
B

u
.

Then, we can rewrite the inequality in Corollary 4.5 in the case 1 ≤ u ≤ B as

|∇u|√
u

≤ cB

[√
1 + lnB

R
+

√
µ+

R
+

1√
t
+
√
K +

√
sup
QR,T

{[b(2 + 2 lnB − lnu)]+}
]
.

This shows that Corollary 4.5 is better than Theorem 1.3 of Jiang [50] and Theorem

1.1 of Wu [105] in the case a < 0.

An immediate application of Theorem 4.6 is the following Liouville type result

for posstive solutions of the equation (4.44).

Theorem 4.7. Let (M, g, e−fdµ) be an n-dimensional complete smooth metric

measure space with Ricf ≥ 0. Suppose u is a positive and bounded solution to the

equation (4.44), where a, b ∈ R.

(i) If a ≤ 0, b < 0 and u ≥ e−2 then u ≡ e−
b
a .

(ii) If a ≤ 0, b ≥ 0 and e−2−2ε ≤ u ≤ e−2−ε for any ε > 0 then u does not exist.

Proof of Theorem 4.7. Suppose that u is a positive solution of (4.44) with u ≤ B

for some constant B > 0. Since u does not depend on t, u is also a solution of the

prabolic equation (4.45) in the case a, b ∈ R. Furthermore, since a ≤ 0, we have

Γa = supQR,T

{
(a+)

1
2 + |∇a| 13

}
= 0. Letting t → +∞ in (4.46) and note that

K = Γa = 0, we get

|∇u|
u

≤ c

[√
A

R
+

√
µ+

R
+
√
sup
QR,T

{[b(2 + 2 lnB − lnu)]+}
]√

1 + ln
B

u
.

(4.48)

(i) Since b < 0 and u ≥ e−2, we deduce that A ≤ 3 + lnB and

b(2 + 2 lnB − lnu) = b

(
2 + lnu+ 2 ln

B

u

)
≤ 0.

This shows that supQR,T
{[b(2 + 2 lnB − lnu)]+} = 0. Then, letting R → +∞

in (4.48), we imply that |∇u| = 0. Therefore, u is a constant. Using △fu+ au+
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bu lnu = 0, we get u ≡ e−
b
a .

(ii) Since b ≥ 0 and e−2−2ε ≤ u ≤ e−2−ε for any ε > 0, we obtain A ≤ 3 +

2 lnB + 2ε, and

b(2 + 2 lnB − lnu) ≤ b[2 + 2(−2− ε)− (−2− 2ε)] = 0.

This implies that supQR,T
{[b(2 + 2 lnB − lnu)]+} = 0. Then, letting R → +∞

in (4.46), we get |∇u| = 0. Thus, u is a constant. Using △fu+ au+ bu lnu = 0,

we deduce that u ≡ e−
b
a ≥ 1, but u ≤ e−2−ε < 1. So, u does not exist. We

complete the proof of Theorem 4.7.

Remark 4.5. By Theorem 4.7, we see that if e−2 ≤ u ≤ B is a positive solution

of the nonlinear elliptic equation ∆fu + bu lnu = 0 where b ≤ 0 on the smooth

metric measure space (M, g, e−fdµ) with Ricf ≥ 0 then u ≡ 1. Our Liouville

type result is similar to Corollary 1.1 of Jiang [50] and Theorem 1.3 of Wu [105]

in the case of b ≤ 0.

On the other hand, from Corollary 4.5, we can give a local parabolic gradient

estimate for positive smooth solutions to the following nonlinear parabolic equation

ut(x, t) = ∆u(x, t) + a(x, t)u(x, t) + bu(x, t) lnu(x, t), (4.49)

on Riemaniann manifolds along super Ricci flow (1.4). This is a version of the

equation (4.45) when f is a constant.

Theorem 4.8. Under the same assumption as in Theorem 4.5, if u (x, t) ≤ B

for some constant B > 0, is a smooth solution to the nonlinear parabolic equation

(4.45) in QR,T , then there exists a constant c depending only n such that

|∇u|
u

≤ c

[√
A

R
+

1√
t
+
√
κ+

√
sup
QR,T

{[b(2 + 2 lnB − lnu)]+}+ Γa

]√
1 + ln

B

u

(4.50)

in QR
2 ,T

with t ̸= 0, where A,Γa are the same as Theorem 4.5.

Remark 4.6. Since 1 + ln B
u
≥ 1, we get

max{b(2 + 2 lnB − lnu), 0} = max

{
b

(
1 + ln

B

u

)
+ b lnB, 0

}
≤
(
1 + ln

B

u

)
max{b, 0}+max{b lnB, 0}.
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Besides, we have

sup
QR,T

{
(a+)

1
2 + |∇a| 13

}
≤ sup

QR,T

{
(a+)

1
2

}
+ sup

QR,T

{
|∇a| 13

}
. (4.51)

The above two inequalities show that our theorem is better than Theorem 1.1 of

Wang in [102].

When b = 0, from Theorem 4.8, we obtain the following result.

Corollary 4.6. Under the same assumption as in Theorem 4.5, if 0 < u (x, t) ≤
B for some constant B > 0 is a smooth solution to the Schrödinger equation

ut = ∆u+ au in QR,T , then there exists a constant c depending only n such that

|∇u|
u

≤ c

[√
A

R
+

1√
t
+
√
κ+ sup

QR,T

{
(a+)

1
2 + |∇a| 13

}]√
1 + ln

B

u
(4.52)

in QR
2 ,T

with t ̸= 0, where A is the same as Theorem 4.5.

Remark 4.7. By the inequality (4.51), we see that the estimate (4.52) is stronger

than Corollary 1.3 of Wang [102]. Our result can be considered as a generalization

along the super Ricci flow of the results of Ruan [84] and Zhu [116].

In particular, when b = 0 and a(x, t) ≡ 0, by Theorem 4.8, we can derive the

following local space-only gradient estimate for the linear heat equation under the

super Ricci flow.

Corollary 4.7. Under the same assumption as in Theorem 4.5, if 0 < u (x, t) ≤
B for some constant B > 0 is a smooth solution to the linear heat equation

ut = ∆u in QR,T , then there exists a constant c depending only n such that

|∇u|
u

≤ c

(√
A

R
+

1√
t
+
√
κ

)√
1 + ln

B

u
(4.53)

in QR
2 ,T

with t ̸= 0, where A is the same as Theorem 4.5.

Remark 4.8. Since ut = ∆u, let v = u + 1; then v satisfies vt = ∆v. Thus,

without loss of generality, we may assume that u ≥ 1. Then, we get A = 1+ lnB

and the inequality (4.53) becomes

|∇u|
u

≤ c

(√
1 + lnB

R
+

1√
t
+
√
κ

)√
1 + ln

B

u
.
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Since
√
1 + ln B

u
≤ 1 + ln B

u
, our results can be seen as an improvement and

extension of Theorem 1.1 of Bailesteanu-Cao-Pulemotov [8].

Applying Theorem 4.8, we obtain the new local gradient estimate for the equa-

tion (4.45) under Yamabe flow.

Corollary 4.8. Under the same assumption as in Theorem 4.3, if 0 < u (x, t) ≤
B for some constant B > 0 is a smooth solution to the equation (4.45) in QR,T ,

then there exists a constant c depending only n such that

|∇u|
u

≤ c

[√
A

R
+

√
µ+

R
+

1√
t
+

4
√
K2 +H2 +

√
P0 + Γa

]√
1 + ln

B

u

in QR
2 ,T

with t ̸= 0, where A,Γa are the same as Theorem 4.3 and

P0 = sup
QR,T

{[b(2 + 2 lnB − lnu)]+} .

Next, we will derive a series of gradient estimates and Liouville type results for

positive solutions of the following parabolic partial differential equation

ut(x, t) = ∆fu(x, t) + a(x, t)u(x, t) + bu(x, t)(lnu(x, t))α (4.54)

on smooth metric measure spaces (M, g, e−fdµ), where α, b ∈ R. This equation

can be seen as a generalized version of (4.45). We first obtain the following result.

Theorem 4.9. Under the same assumption as in Theorem 4.6, if 1 ≤ u (x, t) ≤ B

for some constant B, is a smooth solution to the nonlinear parabolic equation (4.54)

in QR,T then there exists a constant c depending only n such that

|∇u|
u

≤ c

[√
1 + lnB

R
+

√
µ+

R
+

1√
t
+
√
K +

√
P1 + Γa

]√
1 + ln

B

u
, (4.55)

in QR
2 ,T

with t ̸= 0, where Γa = supQR,T

{
(a+)

1
2 + |∇a| 13

}
and

P1 = sup
QR,T

[
b

(
2α +

lnu

1 + lnB − lnu

)]+
sup
QR,T

{
(lnu)α−1

}
.

Proof of Theorem 4.9. We will apply the Theorem 4.2 to the function F (u) =
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bu(lnu)α to prove Theorem 4.9. Observe that

2F ′(u)− 2F (u)

u
+

1

h2

F (u)

u
= 2αb(lnu)α−1 +

1

h2
b(lnu)α

= b

(
2α +

1

h2
lnu

)
(lnu)α−1,

where h =
√
1 + ln B

u
≥ 1. From this, we get

P ≤ sup
QR,T

[
b

(
2α +

lnu

1 + lnB − lnu

)]+
sup
QR,T

{
(lnu)α−1

}
= P1.

The proof is complete.

Remark 4.9. For h =
√
1 + ln B

u
≥ 1, we see that

[
b

(
2α +

lnu

1 + lnB − lnu

)]+
= max

{
b

(
2α +

lnu

h2

)
, 0

}
≤ max{2αb, 0}+ 1

h2
max{b lnu, 0}

≤ max{2αb, 0}+ lnBmax{b lnu, 0}.

Moreover, we have√
1 + ln

B

u
≤ 1 + ln

B

u
,

√
1 + ln

B

u
≤
√
B

u
.

Therefore, Theorem 4.10 is stronger than Theorem 1.3, Theorem 1.4 of Yang-

Zhang [109] and Theorem 1.1 of Dung-Linh-Thu [37].

An interesting application of Theorem 4.9 is the following Liouville type result

for positive solutions of nonlinear elliptic equations of the form (4.56) under the

assumption Ricf ≥ 0.

Corollary 4.9. Let (M, g, e−fdµ) be an n-dimensional complete smooth metric

measure space with Ricf ≥ 0. Assume that 1 ≤ u (x, t) ≤ B for some positive

constant B, is a smooth solution to the following nonlinear elliptic equation

∆fu+ bu(lnu)α = 0, (4.56)

where α, b ∈ R.

(i) If b < 0, α > 0 then u ≡ 1.
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(ii) If b > 0, α < 0 and 1 ≤ u ≤ e−2α then u ≡ 1.

Proof of Corollary 4.9. Suppose that u is a positive solution of (4.56) with 1 ≤
u ≤ B for some constant B > 0. Since u does not depend on t, u is also a

solution of the prabolic equation (4.54). Letting t→ +∞ in (4.55) and note that

K = Γa = 0, we get

|∇u|
u

≤ c

[√
1 + lnB

R
+

√
µ+

R
+
√
P1

]√
1 + ln

B

u
, (4.57)

(i) Since b < 0, α > 0 and u ≥ 1, we obtain P1 = 0. Then, letting R → +∞ in

(4.57), we have |∇u| = 0. Thus, u is a constant. From (4.56), we get u ≡ 1.

(ii) Since α < 0, 1 ≤ u ≤ e−2α and h =
√
1 + ln B

u
≥ 1, we deduce that

2α+
lnu

1 + lnB − lnu
= 2α+lnu+

(
1

h2
− 1

)
lnu ≤ 2α+ln e−2α+

1− h2

h2
lnu≤ 0.

From this and note that b > 0, we obtain P1 = 0. Then, letting R → +∞ in

(4.57), we get |∇u| = 0. This shows that u is a constant. Using (4.56), we imply

that u ≡ 1.

Remark 4.10. Our Liouville type result can be seen as an extension and improve-

ment of Corollary 3.5 in [1], Theorem 1.2 in [37], and Theorem 5.2 in [?].

Besides, from Theorem 4.5, we obtain a local gradient estimate for the following

nonlinear parabolic equation

ut(x, t) = ∆u(x, t) + a(x, t)u(x, t) + bu(x, t)(lnu(x, t))α (4.58)

on Riemannian manifolds along super Ricci flow (1.4).

Corollary 4.10. Under the same assumption as in Theorem 4.5, if 1 ≤ u (x, t) ≤
B for some constant B > 0 is a smooth solution to the nonlinear heat equation

(4.58) in QR,T , then there exists a constant c depending only n such that

|∇u|
u

≤ c

(√
1 + lnB

R
+

1√
t
+
√
κ+

√
P1 + Γa

)√
1 + ln

B

u
(4.59)
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in QR
2 ,T

with t ̸= 0, where Γa = supQR,T

{
(a+)

1
2 + |∇a| 13

}
, and

P1 = sup
QR,T

[
b

(
2α +

lnu

1 + lnB − lnu

)]+
sup
QR,T

{
(lnu)α−1

}
. (4.60)

Remark 4.11. Our result is stronger than Theorem 1.1, Theorem 1.2 of Yang-

Zhang [110]. Moreover, Corollary 4.10 can be considered as a generalization along

the super Ricci flow of the results of Dung-Linh-Thu [37].

Applying Theorem 4.3, we obtain the following local gradient estimate for the

equation (4.45) under Yamabe flow.

Corollary 4.11. Under the same assumption as in Theorem 4.3, if 1 ≤ u (x, t) ≤
B for some constant B > 0 is a smooth solution to the equation (4.58) in QR,T ,

then there exists a constant c depending only n such that

|∇u|
u

≤ c

[√
1 + lnB

R
+

√
µ+

R
+

1√
t
+

4
√
K2 +H2 +

√
P1 + Γa

]√
1 + ln

B

u

in QR
2 ,T

with t ̸= 0, where A,Γa,P1 are the same as Corollary 4.14.

4.3.2 On the Einstein-scalar field Lichnerowicz type equations

The purpose of this subsection was to derive Liouville type results and gradient

estimates for positive, smooth solutions of the following nonlinear elliptic equation

on smooth metric measure spaces (M, g, e−fdµ) of dimension n ≥ 3,

∆fu(x) + a(x)u(x) + buα(x) + cuβ(x) = 0 (4.61)

and its parabolic counterpart

ut(x, t) = ∆fu(x, t) + a(x, t)u(x, t) + buα(x, t) + cuβ(x, t) (4.62)

Here, α, β, b, c ∈ R, a(x) is a C1 function of x in (4.61), and a(x, t) is a function

which is C2 in the x-variable and C1 in the t-variable in (4.62).

Assume that the Bakry-Émery Ricci Ricf is bounded below, we now apply

Theorem 4.2 to derive a local gradient estimate for the equation (4.62) on the

static smooth metric measure space (M, g, e−fdµ). For F (u) = buα + cuβ, we
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have

2F ′(u)− 2F (u)

u
+

1

h2

F (u)

u

= 2[(α− 1)b]uα−1 +
1

h2
buα−1 + [(2β − 1)c]uβ−1 +

(
1

h2
− 1

)
cuβ−1, (4.63)

where h =
√
1 + ln B

u
≥ 1. Note that 0 < 1

h2
≤ 1 and 1

h2
− 1 ≤ 0. Thus, we get

2(α− 1)buα−1 +
1

h2
buα−1

≤ 2[(α− 1)b]+uα−1 + b+uα−1 ≤ {2[(α− 1)b]+ + b+} sup
QR,T

{
uα−1

}
, (4.64)

and

(2β − 1)cuβ−1 +

(
1

h2
− 1

)
cuβ−1

≤ [(2β − 1)c]+uβ−1 +
c−

h2
uβ−1 − c−uβ−1 ≤ {[(2β − 1)c]+ − c−} sup

QR,T

{
uβ−1

}
.

Plugging this and (4.64) into (4.63) , we imply that

P ≤ {2[(α− 1)b]+ + b+} sup
QR,T

{
uα−1

}
+ {[(2β − 1)c]+ − c−} sup

QR,T

{
uβ−1

}
= P2.

From this and Theorem 4.3, we obtain the following gradient estimate result for

positive solutions of the equation (4.62).

Theorem 4.10. Under the same assumption as in Theorem 4.2, if 0 < u (x, t) ≤
B for some constant B, is a smooth solution to the nonlinear parabolic equation

(4.62) in QR,T , then there exists a constant c depending only n such that

|∇u|
u

≤ c

[√
A

R
+

√
µ+

R
+

1√
t
+
√
K + P2 + Γa

]√
1 + ln

B

u
(4.65)

in QR
2 ,T

with t ̸= 0, where

A = 1 + lnB − ln

(
inf
QR,T

u

)
, Γa = supQR,T

{
(a+)

1
2 + |∇a| 13

}
,

and

P2 =
√
2[(α− 1)b]+ + b+ sup

QR,T

{
u

α−1
2

}
+
√
[(2β − 1)c]+ − c− sup

QR,T

{
u

β−1
2

}
.
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As an application of Theorem 4.10, we can get a Liouville type result for positive

solutions of the Einstein-scalar field Lichnerowicz type equation (4.61).

Corollary 4.12. Let (M, g, e−fdµ) be an n-dimensional complete smooth metric

measure space with Ricf ≥ 0. Assume that δ ≤ u (x, t) ≤ B for some positive

constants δ and B, is a smooth solution to the equation (4.61). If a, b, c, α, β are

constants satisfying a ≤ 0, b ≤ 0, c ≥ 0, α ≥ 1 and β ≤ 1
2
, then u is constant.

Proof of Corollary 4.12. Suppose that u is a positive solution of (4.44) with δ ≤
u ≤ B for some constants δ, B > 0. Since u does not depend on t, u is also a

solution of the prabolic equation (4.62) in the case a, b, c, α, β ∈ R. Furthermore,

since a ≤ 0, we have Γa = 0. From the assumption b ≤ 0, c ≥ 0, α ≥ 1 and

β ≤ 1
2
, we see that

2[(α− 1)b]+ + b+ = 0, [(2β − 1)c]+ − c− = 0.

This shows that P2 = 0. Letting t → +∞ in (4.65) and note that K = Γa =

P2 = 0, we get

|∇u|
u

≤ c

[√
A

R
+

√
µ+

R

]√
1 + ln

B

u
. (4.66)

Since δ ≤ u ≤ D, we deduce that A = 1+lnB− ln
(
infQR,T

u
)
≤ 1+lnB− ln δ.

Then, letting R → +∞ in (4.66), we obtain |∇u|
u

≤ 0. Thus, u is a constant. We

finish the proof.

Remark 4.12. It is worth noting that Corollary 4.12 is an improvement of Dung-

Khanh-Ngo’s result (see [36], Corollary 2.5).

An immediate application of Corollary 4.8 is the following Liouville type result

for positive solutions of Yamabe-type equations of the form (4.67) below.

Corollary 4.13. Let (M, g, e−fdµ) be an n-dimensional complete smooth metric

measure space with Ricf ≥ 0. Suppose that α, a, b are real numbers. Assume that

δ ≤ u (x, t) ≤ B for some positive constants δ and B, is a smooth solution to the

following equation

∆fu+ au+ buα = 0. (4.67)

(i) If α ≥ 1, a < 0, b < 0, then u does not exist.

(ii) If α ≤ 1
2
, a < 0, b > 0, then u = α−1

√
−a
b
.
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Using Theorem 4.5, we can derive a local parabolic gradient estimate for positive

smooth solutions to the following nonlinear parabolic equation

ut(x, t) = ∆u(x, t) + a(x, t)u(x, t) + buα(x, t) + cuβ(x, t), (4.68)

on Riemaniann manifolds along super Ricci flow (1.4).

Corollary 4.14. Under the same assumption as in Theorem 4.5, if u (x, t) ≤ B

for some constant B > 0 in QR,T , then there exists a constant c depending only

n such that

|∇u|
u

≤ c

[√
A

R
+

1√
t
+
√
κ+ P2 + Γa

]√
1 + ln

B

u
(4.69)

in QR
2 ,T

with t ̸= 0, where

A = 1 + lnB − ln
(
infQR,T

u
)
, Γa = supQR,T

{
(a+)

1
2 + |∇a| 13

}
,

and

P2 =
√
2[(α− 1)b]+ + b+ sup

QR,T

{
u

α−1
2

}
+
√
[(2β − 1)c]+ − c− sup

QR,T

{
u

β−1
2

}
.

Moreover, applying Theorem 4.8, we obtain the following local gradient estimate

for the equation (4.68) under Yamabe flow.

Corollary 4.15. Under the same assumption as in Theorem 4.3, if 0 < u (x, t) ≤
B for some constant B > 0 is a smooth solution to the equation (4.68) in QR,T ,

then there exists a constant c depending only n such that

|∇u|
u

≤ c

[√
A

R
+

√
µ+

R
+

1√
t
+

4
√
K2 +H2 + P2 + Γa

]√
1 + ln

B

u
(4.70)

in QR
2 ,T

with t ̸= 0, where A,P2,Γa are the same as Corollary 4.14.

Inspired by the recent work due to Dung-Khanh-Ngo [36], in the last of this

subsection, we will study the gradient estimate for solutions of the following general

f -heat equation

ut = ∆fu+ au+ bu lnu+ Auα +Buβ (4.71)

on complete smooth metric measure spaces (M, g, e−fdµ) of dimension n ≥ 3,

where a, b, A,B, α, and β be constants with A ≤ 0, B ≥ 0, α ≥ 1, β ≤ 1
2
. We
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first obtain the following result.

Theorem 4.11. Let (M, g, e−fdµ) be an n-dimensional complete smooth metric

measure space with Ricf ≥ − (n− 1)K for some constant K ≥ 0 in B (x0, R) .

Assume that u ∈ (0, 1] is a smooth solution to the nonlinear heat equation (4.71)

in QR,T . Then there exists a constant c depending only n such that

|∇u|
u

≤ c


√
1− ln

(
infQR,T

u
)

R
+

√
µ+

R
+

1√
t
+
√
K +

√
Λ

√1− lnu,

for all (x, t) ∈ QR
2 ,T

with t ̸= 0, where Λ = max{b+max{a+ b, 0}, 0}.

Proof of Theorem 4.11. We will apply the Theorem 4.2 to the function

F (u) = au+ bu lnu+ Auα +Buβ

to prove Theorem 4.11. Observe that

2F ′(u)− 2F (u)

u
+

1

h2

F (u)

u

= 2b+
1

h2
(a+ b lnu) + 2[(α− 1)A]uα−1 +

1

h2
Auα−1

+ [(2β − 1)B]uβ−1 +

(
1

h2
− 1

)
Buβ−1,

where h =
√
1− lnu ≥ 1. We notice that

2b+
1

h2
(a+ b lnu) = b+

a+ b

h2
≤ b+max{a+ b, 0}

≤ max{b+max{a+ b, 0}, 0}.

Since A ≤ 0, B ≥ 0, α ≥ 1, β ≤ 1
2
, we obtain

2[(α− 1)A]uα−1 +
1

h2
Auα−1 + [(2β − 1)B]uβ−1 +

(
1

h2
− 1

)
Buβ−1 ≤ 0.

From the above results, we imply that

P ≤ max{b+max{a+ b, 0}, 0} = Λ.

The proof is complete.

When f is constant, using Theorem 4.5, we can give a local gradient estimate
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for the positive bounded solutions to the equation (4.71) under the super Ricci

flow.

Theorem 4.12. Let (M, g(x, t))t∈[0,T ] be a complete solution to the super Ricci

flow (1.4) and u be a smooth positive solution to the nonlinear heat equation

ut = ∆u+ au+ bu lnu+ Auα +Buβ (4.72)

in the set QR,T , where a, b, A,B, α, and β be constants with A ≤ 0, B ≥ 0, α ≥
1, β ≤ 1

2
. Assume that |Ric(x, t)| ≤ κ for some constant κ ≥ 0 for all (x, t) ∈

QR,T . If u ∈ (0, 1], then there exists a constant c depending only n such that

|∇u|
u

≤ c


√
1− ln

(
infQR,T

u
)

R
+

1√
t
+
√
κ+

√
Λ

√1− lnu (4.73)

for all (x, t) ∈ QR
2 ,T

with t ̸= 0, where Λ = max{b+max{a+ b, 0}, 0}.

Remark 4.13. In the case b ≤ 0, Theorem 4.11 is better than Theorem 1.1 in [36].

Besides, Theorem 4.12 can be seen as an extension and improvement Theorem 1.2

in [36].
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Chapter 5

Rigidity and vanishing theorems for

complete translating solitons

This chapter is written on the basis of the paper “Ha Tuan Dung, Nguyen Thac

Dung, and Tran Quang Huy (2023), Rigidity and vanishing theorems for complete

translating solitons,Manuscripta Mathematica Vol. 172, pp. 331-352” [34]. In this

chapter, we will investigate several rigidity theorems and study the connectedness

at infinity of complete translators in Euclidean spaces. This content was mentioned

in Problem 1.4 in Chapter 1. Recall that a submanifold X : Mn → Rm+n of the

Euclidean space is said to be a translating soliton (abbreviated by translator) for

the mean curvature flow if its mean curvature vector field H satisfies the equation

H = V ⊥, (5.1)

for some fixed unit length constant vector V in Rn+m, where V ⊥ is the normal

projection of V to the normal bundle of Rn+m.

Assume that the Lq-norm of the trace-free second fundamental form is finite,

for some q ∈ R and using a Sobolev inequality, we first show that a translator in

the Euclidean space Rn+m must be a linear subspace.

Theorem 5.1. Let X : Mn≥3 → Rm+n be a smooth complete translating soliton

in the Euclidean space Rm+n. If the trace-free second fundamental form Φ of M

satisfies (∫
M

|Φ|ndµ
) 1

n

< K(n, a) and

∫
M

|Φ|2ae⟨V,X⟩dµ <∞,

where

1 ≤ a <
n+

√
n2 − 2n

2
,
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K(n, a) =

√√√√√√ (n− 2)
2 (
a− 1

2

)
D2(n)

[
(n−2)2(a− 1

2)
2n(na−n

2−a2)
+ (n− 1)

2

]
ιa2

, ι =

2 if m = 1

4 if m ≥ 2
,

and D(n) is the Sobolev constant defined in Lemma 5.2, then M is a linear sub-

space.

The proof of this theorem relies on a Sobolev inequality on immersed subman-

ifolds, which was first verified in [47, Theorem 2.1] and [71, Theorem 2.1]. When

a = n
2
, Theorem 5.1 recovers Theorem 1 in [101]. As noted in [101], the curvature

condition in Theorem 5.1 is weaker than that in Theorem 7.1 in [106]. If transla-

tors are located in a halfspace, in [48, Lemma 4.2], [49, Lemma A.1], Impera and

Rimoldi proved a weighted Sobolev inequality by using the bijective correspon-

dence found by Smoczyk [91] between translators and minimal hypersurfaces in a

suitable warped product. Applying Sobolev inequality, we are able to obtain the

following theorem.

Theorem 5.2. Let X : Mn≥3 → Rn+1 be a smooth complete translating soliton

in the Euclidean space Rn+1 contained in the halfspace

ΠV,a =
{
y ∈ Rn+1 : ⟨y, V ⟩ ≥ a

}
,

for some a ∈ R. If the second fundamental form A of M satisfies(∫
M

|A|nϱdµ
) 1

n

<

√
(n2 − 2n+ 2)(n− 2)2

n3S(n)2(n− 1)2
,

where S(n) is the Sobolev constant given in Lemma 4.2 in [48] and ρ = e⟨V,X⟩,

then M is a hyperplane.

Compared with the results in [101, Theorem 1], [106, Theorem 7.1], this result

drops the assumption on the smallness of the Ln-norm of |A|, instead of this,

we require the weighed Ln-norm of |A| to be small. In fact, in [106], the author

supposed that the weighted Ln-norm of |A| is finite and the Ln-norm is small.

Hence, when the weighted Ln-norm of |A| is small, this theorem can be considered

as a refinement of Theorem 7.1 in [106]. Moreover, using the weighted Sobolev

inequality, we obtain a vanishing theorem as follows.

Theorem 5.3. Let X : Mn≥3 → Rn+1 be a smooth complete translating soliton
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in the Euclidean space Rn+1 contained in the halfspace

ΠV,a =
{
y ∈ Rn+1 : ⟨y, V ⟩ ≥ a

}
,

for some a ∈ R. Assume that for any p ≥ 2,(∫
M

|A|ne−fdµ
) 1

n

<

√
(p− 1)(n− 1)

pS(n)
,

where f = −⟨X, V ⟩ and S(n) is the Sobolev constant as in Lemma 5.4. Then

there are no nontrivial Lpf f -harmonic 1-forms on M.

Recall that a 1-form ω is called by Lpf f -harmonic if it satisfies

△fω = 0,

∫
M

|ω|pe−fdµ <∞.

Chapter 5 has three sections. Section 5.1 is used to derive some rigidity theorems.

Then we prove a vanishing result for weighted harmonic forms in Section 5.2.

Finally, we study translators in the Euclidean space with a Sobolev inequality in

Section 5.3 and give another rigidity theorem.

5.1 Rigidity theorems

Let X : M → Rn+m be an n-dimensional translating soliton. H,A,Φ denote

the mean curvature vector, the second fundamental form, and the trace-free second

fundamental form ofM , respectively. Suppose that V is the unit vector such that

V ⊥ = H . Let f = −⟨V,X⟩, we define

∆f = ∆+ ⟨V,∇(·)⟩ = e−⟨V,X⟩ div
(
e⟨V,X⟩∇(·)

)
= ef div(e−f∇(·)).

The trace-free second fundamental form is given by Φ = A − 1
n
g ⊗H . It is well

known that

|Φ|2 = |A|2 − 1

n
|H|2 and |∇Φ|2 = |∇A|2 − 1

n
∇|H|2.

In order to prove our theorems, we need the following Simons type identity, which

has been obtained by Xin [101, Lemma 3] (see also [106, Proposition 2.1]).

Lemma 5.1. [101, Lemma 3] On a translating soliton Mn in Rn+m, we have

∆f |Φ|2 ≥ 2|∇|Φ||2 − ι|Φ|4 − 2

n
|H|2|Φ|2, (5.2)
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where

ι =

{
2, if m = 1,

4, if m ≥ 2.

Moreover, when m = 1, we have

∆f |Φ|2 = 2|∇Φ|2 − 2|A|2|Φ|2. (5.3)

We now recall that the following Sobolev inequality for submanifolds in the

Euclidean is beneficial in deriving our rigidity theorems (see [107, Lemma 2.5]).

Lemma 5.2 (Sobolev inequality). Let Mn (n ≥ 3) be a complete submanifold

in the Euclidean space Rn+m. Let f be a nonnegative C∞ function with compact

support. Then for all s ∈ R+, we have

∥f∥22n
n−2

≤ D2(n)

[
4(n− 1)2(1 + s)

(n− 2)2
∥∇f∥22 +

(
1 +

1

s

)
1

n2
∥|H|f∥22

]
,

where D(n) = 2n(1 + n)
n+1
n (n− 1)−1σ

− 1
n

n , and σn denotes the volume of the unit

ball in Rn.

For convenience in proving Theorem 5.1, we denote ϱ = e⟨V,X⟩ and dµ might be

omitted in the integrations. We can follow the proof of Theorem 1 in [101], but

instead of using the function f defined in Lemma 5 of [101], we use the function

φ = |Φ|aϱ 1
2η, where a ≥ 1 is a constant to be determined later and η is a smooth

function with compact support on M . For the convenience of the reader, in order

to help him/her check the influence of the constant a in every step, we give all the

details of the computations.

Lemma 5.3. Assume that |Φ| ≠ 0 on M . If η is a smooth function with compact

support on M , then∫
M

|∇φ|2 =
∫
M

|∇ (|Φ|aη)|2 ϱ− 1

2

∫
M

|Φ|2aη2ϱ+ 1

4

∫
M

|Φ|2a
∣∣V ⊤∣∣2 η2ϱ. (5.4)

Proof of Lemma 5.4. Integrating by parts, we deduce that∫
M

|∇φ|2 =
∫
M

|∇ (|Φ|aη)|2 ϱ+ 1

2

∫
M

〈
∇
(
|Φ|2aη2

)
,∇ϱ

〉
+

∫
M

|Φ|2aη2
∣∣∣∇ϱ 1

2

∣∣∣2
=

∫
M

|∇ (|Φ|aη)|2 ϱ− 1

2

∫
M

|Φ|2aη2∆ϱ+
∫
M

|Φ|2aη2
∣∣∣∇ϱ 1

2

∣∣∣2 .
Since Mn is a translating soliton, we have

89



∇ϱ = ∇e⟨V,X⟩ = ϱV ⊤, ∇ϱ 1
2 =

1

2
ϱ−

1
2∇ϱ = 1

2
ϱ

1
2V ⊤,

and

∆ϱ =
∑
i

∇iϱ ⟨V, ei⟩+
∑
i

ϱ ⟨V,∇iei⟩ = ϱ
(∣∣V ⊤∣∣2 + ∣∣V ⊥∣∣2) = ϱ.

Using this, we conclude that∫
M

|∇φ|2 =
∫
M

|∇ (|Φ|aη)|2 ϱ− 1

2

∫
M

|Φ|2aη2ϱ+ 1

4

∫
M

|Φ|2a
∣∣V ⊤∣∣2 η2ϱ.

The proof is complete.

Now, combining the Sobolev inequality in Lemma 5.2 and (5.4), we get(∫
M

|φ| 2n
n−2

)n−2
n

≤ D2(n) ·
{
4(n− 1)2(1 + s)

(n− 2)2

∫
M

|∇φ|2 +
(
1 +

1

s

)
· 1

n2

∫
M

|H|2φ2

}
= D2(n) ·

{
4(n− 1)2(1 + s)

(n− 2)2

(∫
M

|∇ (|Φ|aη)|2 ϱ− 1

2

∫
M

|Φ|2aη2ϱ

+
1

4

∫
M

|Φ|2a
∣∣V ⊤∣∣2 η2ϱ)+

(
1 +

1

s

)
· 1

n2

∫
M

|Φ|2a|H|2η2ϱ
}
.

Note that

|V ⊤|2 + |V ⊥|2 = |V ⊤|2 + |H|2 = 1.

Thus, we obtain(∫
M

|φ| 2n
n−2

)n−2
n

≤ D2(n) ·
{
4(n− 1)2(1 + s)

(n− 2)2

(∫
M

|∇ (|Φ|aη)|2 ϱ− 1

4

∫
M

|Φ|2a
∣∣V ⊤∣∣2 η2ϱ

−1

2

∫
M

|Φ|2a|H|2η2ϱ
)
+

(
1 +

1

s

)
· 1

n2

∫
M

|Φ|2a|H|2η2ϱ
}

= D2(n) ·
{
4(n− 1)2(1 + s)

(n− 2)2

(∫
M

a2|∇|Φ||2|Φ|2a−2η2ϱ

+

∫
M

2a|Φ|2a−1η∇|Φ| · ∇ηϱ+
∫
M

|Φ|2a|∇η|2ϱ− 1

4

∫
M

|Φ|2a
∣∣V ⊤∣∣2 η2ϱ

−1

2

∫
M

|Φ|2a|H|2η2ϱ
)
+

(
1 +

1

s

)
· 1

n2

∫
M

|Φ|2a|H|2η2ϱ
}
.

(5.5)
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By the Cauchy inequality, for δ > 0 we have(∫
M

|φ| 2n
n−2

)n−2
n

≤ 4D2(n)(n− 1)2(1 + s)

(n− 2)2

{
(1 + δ)a2

∫
M

|∇|Φ∥2|Φ|2a−2η2ϱ

+

(
1 +

1

δ

)∫
M

|Φ|2a|∇η|2ϱ− 1

4

∫
M

|Φ|2a
∣∣V ⊤∣∣2 η2ϱ− 1

2

∫
M

|Φ|2a|H|2η2ϱ
}

+D2(n)

(
1 +

1

s

)
· 1

n2

∫
M

|Φ|2a|H|2η2ϱ. (5.6)

In order to estimate the term
∫
M |∇|Φ||2|Φ|2a−2η2ϱ, we multiply |Φ|2a−2η2 on both

sides of (5.2) and integrating by parts with respect to the measure ϱdµ onM gives

0 ≥ 2

∫
M

|∇|Φ||2|Φ|2a−2η2ϱ− ι

∫
M

|Φ|2a+2η2ϱ− 2

n

∫
M

|Φ|2a|H|2η2ϱ

−
∫
M

|Φ|2a−2η2∆f |Φ|2ϱ.
(5.7)

Since η has compact support on M , by the Stokes theorem, we obtain

−
∫
M

|Φ|2a−2η2∆f |Φ|2ϱ

= −
∫
M

|Φ|2a−2η2 div
(
ϱ ∇|Φ|2

)
= 2

∫
M

ϱ|Φ|⟨∇|Φ|,∇
(
|Φ|2a−2η2

)
⟩

= 4(a− 1)

∫
M

|∇|Φ∥2|Φ|2a−2η2ϱ+ 4

∫
M

⟨∇|Φ|,∇η⟩|Φ|2a−1ηϱ.

(5.8)

Combining (5.7) and (5.8), we get

0 ≥ 4

(
a− 1

2

)∫
M

|∇|Φ||2|Φ|2a−2η2ϱ− ι

∫
M

|Φ|2a+2η2ϱ− 2

n

∫
M

|Φ|2a|H|2η2ϱ

+ 4

∫
M

⟨∇|Φ|,∇η⟩|Φ|2a−1ηϱ.

By the Cauchy inequality, for 0 < ε < a− 1
2
, we have

ι

∫
M

|Φ|2a+2η2ϱ+
2

n

∫
M

|Φ|2a|H|2η2ϱ+ 1

ε

∫
M

|Φ|2a|∇η|2ϱ

≥ 4

(
a− 1

2
− ε

)∫
M

|∇|Φ||2|Φ|2a−2η2ϱ.
(5.9)
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Substituting (5.9) into (5.6), we get(∫
M

|φ| 2n
n−2

)n−2
n

≤ 4D2(n)(n− 1)2(1 + s)

(n− 2)2

{
a2(1 + δ)

4
(
a− 1

2
− ε
) (ι ∫

M

|Φ|2a+2η2ϱ

+
2

n

∫
M

|Φ|2a|H|2η2ϱ+ 1

ε

∫
M

|Φ|2a|∇η|2ϱ
)

+

(
1 +

1

δ

)∫
M

|Φ|2a|∇η|2ϱ− 1

2

∫
M

|Φ|2a|H|2η2ϱ
}

+D2(n)

(
1 +

1

s

)
· 1

n2

∫
M

|Φ|2a|H|2η2ϱ. (5.10)

We want to get rid of the term
∫
M |Φ|2a|H|2η2ϱ by choosing δ > 0 appropriately.

Put

δ = δ(n, ε, a) =
(2(n− 1)2n2s− (n− 2)2)

(
a− 1

2
− ε
)

2(n− 1)2a2ns
− 1.

We would require δ > 0, this occurs only if s satisfies

s >
(n− 2)2

(
a− 1

2
− ε
)

2(n− 1)2n
(
na− n

2
− a2 − nϵ

) (5.11)

for some ε ∈
(
0, a− 1

2
− a2

n

)
defined later and also, we need 1 ≤ a < n+

√
n2−2n
2

.

Consequently, we have

κ−1

(∫
M

|φ| 2n
n−2

)n−2
n

≤ a2(1 + s)(1 + δ)

4
(
a− 1

2
− ε
) (

ι

∫
M

|Φ|2a+2η2ϱ+
1

ε

∫
M

|Φ|2a|∇η|2ϱ
)

+ (1 + s)

(
1 +

1

δ

)∫
M

|Φ|2a|∇η|2ϱ

=
(1 + s)ι [2sn2(n− 1)2 − (n− 2)2]

8sn(n− 1)2

∫
M

|Φ|2a+2η2ϱ

+ C(s, ε, n, a)

∫
M

|Φ|2a|∇η|2ϱ,

where C(s, ε, n, a) is an explicit positive constant depending on s, ε, n, a and

κ = 4D2(n)(n−1)2

(n−2)2
. By Hölder inequality we have

∫
M

|Φ|2a+2η2ϱ ≤
(∫

M

(|Φ|2·n2
) 2

n

·
(∫

M

(
|Φ|2aη2ϱ

) n
n−2

)n−2
n

=

(∫
M

|Φ|2·n2
) 2

n

·
(∫

M

|φ|
2n
n−2

)n−2
n

.

(5.12)
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Applying this to (5.12), we get

κ−1

(∫
M

|φ| 2n
n−2

)n−2
n

≤ (1 + s)ι [2sn2(n− 1)2 − (n− 2)2]

8sn(n− 1)2

(∫
M

|Φ|2a
) 2

n

·
(∫

M

|φ| 2n
n−2

)n−2
n

+ C(s, ε, n, a)

∫
M

|Φ|2a|∇η|2ϱ.

(5.13)

Put

K(n, s) =

√
8sn(n− 1)2

(1 + s)ι [2sn2(n− 1)2 − (n− 2)2]κ
.

By condition (5.11) we can choose

s =
(n− 2)2

(
a− 1

2

)
2(n− 1)2n

(
na− n

2
− a2 − nε

) .
Hence, substituting s into K(n, s), we have

K(n, a, ε) = K(n, s(a, ε)) =

√√√√√√ (n− 2)
2 (
a− 1

2

)
D2(n)

[
(n−2)2(a− 1

2)
2n(na−n

2−a2−nε)
+ (n− 1)

2

]
ι(nε+ a2)

.

(5.14)

Set

K(n, a) = sup
ε∈(0, (n−a−1)(a−1)

n )
K(n, a, ε) =

√√√√√√ (n− 2)
2 (
a− 1

2

)
D2(n)

[
(n−2)2(a− 1

2)
2n(na−n

2−a2)
+ (n− 1)

2

]
ιa2

.

We now can give a proof of Theorem 5.1.

Proof of Theorem 5.1. Since we made the assumption
(∫

M |Φ|ndµ
) 1

n < K(n, a),

there exists a positive constant Ǩ such that(∫
M

|Φ|ndµ
) 1

n

< Ǩ < K(n, a). (5.15)

Thus, there exists ε = ε0 > 0 such that

Ǩ < K (n, a, ε0) < K(n, a).
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Using this and combining (5.13), (5.15), there exists 0 < ϵ < 1 such that

κ−1

(∫
M

|f | 2n
n−2

)n−2
n

≤ κ−1 ·K (n, a, ε0)
−2 · Ǩ2

(∫
M

|f | 2n
n−2

)n−2
n

+ C̄ (n, a, ε0)

∫
M

|Φ|2a|∇η|2ϱ

≤ 1− ϵ

κ

(∫
M

|f | 2n
n−2

)n−2
n

+ C̄ (n, a, ε0)

∫
M

|Φ|2a|∇η|2ϱ (5.16)

or equivalently

ϵ

κ

(∫
M

|f | 2n
n−2

)n−2
n

≤ C̄ (n, a, ε0)

∫
M

|Φ|2a|∇η|2ϱ. (5.17)

Let η(X) = ηr(X) = ϕ
(

|X|
r

)
for any r > 0, where ϕ is a non-negative smooth

function on [0,+∞) satisfying

ϕ(x) =

{
1, if x ∈ [0, 1),

0, if x ∈ [2,+∞),
(5.18)

and |ϕ′| ≤ C for some absolute constant. Since
∫
M |Φ|qϱ and C̄(n, a, ε0) are

bounded the right-hand side of (5.17) approaches zero as r → ∞, which implies

the left-hand side to be equal to zero i.e. |Φ| ≡ 0.

Finally, using the assertion that |Φ| = 0, it was confirmed in [101, Theorem

1] that M is a linear subspace. In the rest of the proof, we give a detail of

argument, which is inspired by Impera and Rimoldi in [48, Theorem A]. We argue

as follows. Since |Φ| = 0, it turns out that |A|2 = 1
n
H2. Moreover, we note that

|∇Φ|2 = |∇|Φ||2 = 0. This implies

0 = |∇Φ|2 = |∇A|2 − 1

n
|∇H|2.

Therefore, we get∣∣∣∇|A|2
∣∣∣ = 1

n

∣∣∇H2
∣∣ = 2

n
|H| |∇H| = 2

n

(√
n |A|

) (√
n |∇A|

)
= 2 |A| |∇A| .

As a consequence, |∇A| = |∇|A||. Therefore, we can apply the argument in the

proof of Theorem A in [48] to conclude that M is a linear subspace. The proof is

complete.
Observe that [1, n − 1] ⊂

[
1, n+

√
n2−2n
2

)
, the weighted L2a norm of |Φ| in our
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theorem is wider than those in [101]. Moreover, when a = n
2
, our theorem recovers

the following rigidity property, which was obtained by Wang, Xu, and Zhao in

[101].

Theorem 5.4. [101, Theorem 1] Let X : Mn≥3 → Rm+n be a smooth complete

translating soliton in the Euclidean space Rm+n. If the trace-free second funda-

mental form Φ of M satisfies(∫
M

|Φ|ndµ
) 1

n

< K(n) and

∫
M

|Φ|ne⟨V,X⟩dµ <∞,

where K(n) is defined as above, then M is a linear subspace.

It is worth mentioning that the above condition is weaker than that in the

rigidity theorem of Xin [106, Theorem 7.1]. To derive another rigidity result, we

can use the following version of the Sobolev inequality.

Lemma 5.4. [48, Lemma 4.2] Let X : Mn≥3 → Rn+1 be a translator contained

in the halfspace ΠV,a = {p ∈ Rn+1 : ⟨p, V ⟩ ≥ a} for some a ∈ R. Let u be a

non-negative compactly supported C∞ function on M . Then,[∫
M

u
2n
n−2ϱdµ

]n−2
n

≤
(
2(n− 1)S(n)

n− 2

)2 ∫
M

|∇u|2ϱdµ, (5.19)

where ρ = e⟨V,X⟩ and S(n) is the Sobolev constant given in Lemma 4.2 in [48].

Repeating the same computation as above, we can give a verification of Theorem

5.2 as follows.

Proof of Theorem 5.2. Applying the Sobolev inequalities (5.19) to u = |Φ|n2 η and

using the Cauchy inequality, we have[∫
M

(
|Φ|n2 η

) 2n
n−2

ϱdµ

]n−2
n

≤
(
2S(n)(n− 1)

n− 1

)2 ∫
M

∣∣∣∇(|Φ|n2 η)∣∣∣2 ϱdµ
=

(
2S(n)(n− 1)

n− 2

)2(∫
M

n2

4
|∇|Φ||2|Φ|n−2η2ϱdµ

+

∫
M

n|Φ|n−1η⟨∇|Φ|,∇η⟩ϱdµ+

∫
M

|Φ|n|∇η|2ϱdµ
)

≤
(
2S(n)(n− 1)

n− 2

)2(
(1 + δ)

∫
M

n2

4
|∇|Φ||2|Φ|n−2η2ϱdµ

+

(
1 +

1

δ

)∫
M

|Φ|n|∇η|2ϱdµ
)
.
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Applying (5.9) and notice that ι = 2, we have, for 0 < ε < n
2
− 1

2
,

κ−1
2

[∫
M

(
|Φ|n2 η

) 2(n)
n−2

ϱdµ

]n−2
n

≤
{

n2

4
(1 + δ)

4
(
n
2
− 1

2
− ε
) (2 ∫

M

|Φ|n+2η2ϱdµ

+
2

n

∫
M

|Φ|n|H|2η2ϱdµ+
1

ε

∫
M

|Φ|n|∇η|2ϱdµ
)

+

(
1 +

1

δ

)∫
M

|Φ|n|∇η|2ϱdµ
}
,

(5.20)

where κ2 =
(

2S(n)(n−1)

n−2

)2
. By the fact that

|A|2 = |Φ|2 + 1

n
|H|2,

we can rewrite (5.20) as

κ−1
2

[∫
M

(
|Φ|n2 η

) 2n
n−2

ϱdµ

]n−2
n

≤
n2

4
(1 + δ)

2
(
n
2
− 1

2
− ε
) ∫

M

|Φ|n|A|2η2ϱdµ

+ Ĉ(n, δ, ε)

∫
M

|Φ|n|∇η|2ϱdµ,

where Ĉ(n, δ, ε) is explicit positive constant depending on n, δ, ε. Applying Hölder

inequality, we have

κ−1
2

[∫
M

(
|Φ|n2 η

) 2n
n−2

ϱdµ

]n−2
n

≤ n2(1 + δ)

8
(
n
2
− 1

2
− ε
) (∫

M

(|A|2ϱ 2
n )

n
2dµ

) 2
n

·
(∫

M

(
|Φ|n2 ηϱn−2

2n

) 2n
n−2

dµ

)n−2
n

+ Ĉ(n, δ, ε)

∫
M

|Φ|n|∇η|2ϱdµ,

≤ n2(1 + δ)

8
(
n
2
− 1

2
− ε
) (∫

M

|A|nϱdµ
) 2

n

·
(∫

M

(
|Φ|n2 η

) 2n
n−2

ϱdµ

)n−2
n

+ Ĉ(n, δ, ε)

∫
M

|A|n|∇η|2ϱdµ,

here we used |Φ| ≤ |A| in the last inequality. Put

K2(n, ε, δ) =

√
8
(
n
2
− 1

2
− ε
)

n2(1 + δ)κ2

,
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and

K2(n) = sup
δ>0, 0<ε<a−n−1

n

K2(n, ε, δ) =

√
(n− 2)2

S(n)2(n− 1)n2
.

By the assumption (∫
M

|A|nϱdµ
) 1

n

< K2(n)

and using the same argument as Theorem 5.1, we complete the proof.

Now, as mentioned in [48], an application of the maximum principle and the

weighted version of a result in [29] give that translator with mean curvature that

does not change sign are either f -stable (generalizing, in particular, Theorem

1.2.5 in [88], and Theorem 2.5 in [89]) or they split as the product of a line

parallel to the translating direction and a minimal hypersurface in the orthogonal

complement of the line. Note that, in this latter case, by Fubini theorem, the

condition |A| ∈ Lp(Mf) for some p > 0 is met if and only if |A| ≡ 0 (i.e. M is a

translator hyperplane), here Mf = (M, g, e−fdµ) . Moreover, to adapt the ideas

in [86] for minimal surface, Ma and Miquel proved in [68, Lemma 9] a refined Kato

inequality on translating solitons as follows.

Lemma 5.5. [68, Lemma 9] LetMn be a hypersurface immersed in Rn+1 satisfying

|∇A| ≤ n+ 1

2n
|∇H|,

then we have

|∇Φ|2 ≥ n+ 1

n
|∇|Φ||2.

Note that on the translating soliton M , we have ∇H = ⟨∇ν, v⟩ = A(·, v), so
the condition becomes

|∇A| ≤ n+ 1

2n
|A(·, v)|.

Now, under these assumptions, we obtain the following result, which can be con-

sidered as an improvement of Theorem 6 in [68].

Theorem 5.5. Let X :Mn≥2 → Rn+1 be a translator with mean curvature which

does not change sign. Suppose that |∇A| ≤ n+1
2n

|∇H| and the traceless second fun-

damental form of the immersion satisfies |Φ| ∈ Lp (Mf) for p ∈
(
2− 2√

n
, 2 + 2√

n

)
.

Then M is a hyperplane.

Proof of Theorem 5.5. Since the curvature does not change sign, we may assume

thatM is f -stable. Otherwise, |A| ≡ 0, soM is a hyperplane. From the definition
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of the f -Laplacian operator and the equation (5.3), we have

|Φ|∆f |Φ| = |∇Φ|2 − |∇ |Φ||2 − |A|2|Φ|2.

By the Kato-type inequality in Lemma 5.5, this implies

|Φ|∆f |Φ| ≥
1

n
|∇ |Φ||2 − |A|2|Φ|2. (5.21)

Now, let η be a smooth compactly supported function on M. For any a > 1,

multiplying |Φ|a−1
η2 both sides of the (5.21) and integrating by parts with respect

to the measure e−fdµ on M yield∫
M

η2 |Φ|a∆f |Φ| e−fdµ

≥ 1

n

∫
M

η2 |Φ|a−1|∇ |Φ||2e−fdµ−
∫
M

|A|2η2|Φ|a+1e−fdµ. (5.22)

Since η has compact support on M, by the Stokes theorem, it shows that∫
M

η2|Φ|a∆f |Φ| e−fdµ

= −
∫
M

〈
∇
(
η2|Φ|a

)
,∇ |Φ|

〉
e−fdµ

= −
∫
M

〈
2η|Φ|a∇η + aη2|Φ|a−1∇ |Φ| ,∇ |Φ|

〉
e−fdµ

= −2

∫
M

|Φ|a ⟨∇η,∇ |Φ|⟩ ηe−fdµ− a

∫
M

η2|Φ|a−1|∇ |Φ||2e−fdµ.

Substituting the above identity into (5.22), we obtain

− 2

∫
M

|Φ|a ⟨∇η,∇ |Φ|⟩ ηe−fdµ− a

∫
M

η2|Φ|a−1|∇ |Φ||2e−fdµ

≥ 1

n

∫
M

η2 |Φ|a−1|∇ |Φ||2e−fdµ−
∫
M

|A|2η2|Φ|a+1e−fdµ,

or equivalently(
a+

1

n

)∫
M

η2|Φ|a−1|∇ |Φ||2e−fdµ

≤ 2

∫
M

|Φ|a ⟨∇η,∇ |Φ|⟩ ηe−fdµ +

∫
M

|A|2η2|Φ|a+1e−fdµ. (5.23)

On the other hand, since M satisfies the stability inequality, we have∫
M

|A|2ψ2e−fdµ ≤
∫
M

|∇ψ|2e−fdµ.
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Replacing ψ by η|Φ|a+1
2 in the above inequality gives∫

M

|A|2η2|Φ|a+1e−fdµ

≤
∫
M

∣∣∣∇(η|Φ|a+1
2

)∣∣∣2e−fdµ
=

∫
M

|Φ|a+1|∇η|2e−fdµ+ (a+ 1)

∫
M

|Φ|a ⟨∇η,∇|Φ|⟩ ηe−fdµ

+
(a+ 1)

2

4

∫
M

|Φ|a−1|∇|∇Φ||2η2e−fdµ. (5.24)

Combining (5.23) and (5.24), we have(
a+

1

n

)∫
M

η2|Φ|a−1|∇ |Φ||2e−fdµ

≤ 2

∫
M

|Φ|a ⟨∇η,∇|Φ|⟩ ηe−fdµ+

∫
M

|Φ|a+1|∇η|2e−fdµ

+ (a+ 1)

∫
M

|Φ|a ⟨∇η,∇|Φ|⟩ ηe−fdµ

+
(a+ 1)

2

4

∫
M

|Φ|a−1|∇|∇Φ||2η2e−fdµ.

Hence,[
a+

1

n
− (a+ 1)

2

4

] ∫
M

η2|Φ|a−1|∇ |Φ||2e−fdµ

≤
∫
M

|Φ|a+1|∇η|2e−fdµ+ (a+ 3)

∫
M

|Φ|a ⟨∇η,∇|Φ|⟩ ηe−fdµ. (5.25)

From the Cauchy-Schwarz inequality and the inequality xy ≤ εx2 + 1
4ε
y2 for all

ε > 0, we see that

(a+ 3)|Φ|a ⟨∇η,∇|Φ|⟩ η ≤ |a+ 3|
(
|Φ|a−1

2 |∇|Φ|| |η|
)(

|Φ|a+1
2 |∇η|

)
≤ ε|Φ|a−1|∇|Φ||2η2 + (a+ 3)

2

4ε
|Φ|a+1|∇η|2. (5.26)

Substituting (5.26) into (5.25), we get[
a+

1

n
− (a+ 1)

2

4
− ε

] ∫
M

|Φ|a−1|∇ |Φ||2η2e−fdµ

≤
[
1 +

(a+ 3)
2

4ε

] ∫
M

|Φ|a+1|∇η|2e−fdµ. (5.27)
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Now let p = a+ 1. Then, the above inequality becomes[
p− 1− p2

4
+

1

n
− ε

] ∫
M

|Φ|p−2|∇ |Φ||2η2e−fdµ

≤
[
1 +

(p+ 2)
2

4ε

] ∫
M

|Φ|p|∇η|2e−fdµ. (5.28)

Next, we choose the number p to be p− 1− p2

4
+ 1

n
> 0, or equivalently

2− 2√
n
< p < 2 +

2√
n
= 2

(
1 +

√
1

n

)
.

Hence, for 2 − 2√
n
< p < 2 + 2√

n
, we can choose ε > 0 small such that there is a

constant C > 0 depending on n, p such that∫
M

|Φ|p−2|∇ |Φ||2η2e−fdµ ≤ C

∫
M

|Φ|p|∇η|2e−fdµ.

Let o ∈M be a fixed point and let BR(o) be the geodesic ball centered at o with

radius R. We choose η to be a smooth function on M such that 0 ≤ η ≤ 1.

Moreover, η satisfies:

(i) η = 1 on BR
2
(o) and η = 0 outside B2R(o);

(ii) |∇η| ≤ 2
R
.

Plugging η into the above inequality then letting R tend to infinity, we conclude

that |∇|Φ|| = 0, since |Φ| ∈ Lp(Mf). Therefore, |Φ| is constant. Note that

a translating solition is of Euclidean volume growth ([106]), this implies Φ = 0

because |Φ| ∈ Lp(Mf). Now, we apply the argument as in the proof of Theorem

5.1 to conclude that M is a hyperplane.

As a consequence of this theorem, for p = 2, we obtain the following corollary,

which can be considered as an improvement of Theorem 6 by Ma and Miquel in

[68].

Corollary 5.1. Let X :Mn≥2 → Rn+1 be a translator with mean curvature which

does not change sign and

|∇A| ≤ n+ 1

2n
|∇H|.

Suppose that the traceless second fundamental form of the immersion satisfies

|Φ| ∈ L2 (Mf). Then M is a hyperplane.
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5.2 Vanishing result for weighted harmonic forms

In this section, we give a proof of Theorem 5.3.

Proof the Theorem 5.3. Let ω be Lpf harmonic 1-form on M. We denote the dual

vector field of ω by ω♯ and ∥A∥n,f =
(∫

M |A|ne−fdµ
) 1

n . Applying the extended

Bochner formula for a Lpf harmonic 1-form, we get

∆f |ω|2 = 2|∇ω|2 + 2 ⟨∆fω, ω⟩+ 2Ricf
(
ω♯, ω♯

)
= 2|∇ω|2 + 2Ricf

(
ω♯, ω♯

)
. (5.29)

Note that ∆f |ω|2 = 2 |ω|∆f |ω|+2|∇ |ω||2 and the Bakry-Emery Ricci tensor of

M satisfies

Ricf
(
ω♯, ω♯

)
= −

〈
A2ω♯, ω♯

〉
.

This implies

|ω|∆f |ω| = |∇ω|2 − |∇ |ω||2 −
〈
A2ω♯, ω♯

〉
.

Consequently, by Kato’s inequality, we have

|ω|∆f |ω| ≥ −
〈
A2ω♯, ω♯

〉
≥ −

∣∣A2ω♯
∣∣ ∣∣ω♯∣∣ ≥ − |A|2 |ω|2.

Now, let η be a smooth compactly supported function onM. By multiplying both

sides of the above inequality by η2|ω|p−2 and then integrating the obtained result,

we arrive at ∫
M

η2|ω|p−1
∆f |ω| e−fdµ ≥ −

∫
M

|A|2 |ω|pη2e−fdµ. (5.30)

Since η has compact support on M, by the Stokes theorem, we see that∫
M

η2|ω|p−1
∆f |ω| e−fdµ

= −
∫
M

〈
∇
(
η2|ω|p−1

)
,∇ |ω|

〉
e−fdµ

= −2

∫
M

|ω|p−1 ⟨∇η,∇ |ω|⟩ ηe−fdµ− (p− 1)

∫
M

η2|ω|p−2|∇ |ω||2e−fdµ.

This inequality and (5.30) implies

(p− 1)

∫
M

η2|ω|p−2|∇ |ω||2e−fdµ

≤ −2

∫
M

|ω|p−1 ⟨∇η,∇ |ω|⟩ ηe−fdµ+

∫
M

|A|2|ω|pη2e−fdµ. (5.31)
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By Hölder’s inequality and the weighted Sobolev inequality, we have∫
M

|A|2|ω|pη2e−fdµ

≤
(∫

M

|A|n
) 2

n
(∫

M

(
η|ω|

p
2

) 2n
n−2

)n−2
n

≤
(
2C(n)

n− 1

)2

∥A∥2n,f
∫
M

∣∣∣∇(η|ω|p2)∣∣∣2 e−fdµ
=Dn∥A∥2n,f

∫
M

(
|ω|p|∇η|2 + p|ω|p−1⟨∇|ω|,∇η⟩η

+
p2

4
|ω|p−2η2|∇|ω||2

)
e−fdµ (5.32)

where Dn =
(

2C(n)

n−1

)2
. Using the Cauchy-Schwarz inequality and the inequality

xy ≤ εx2 + y2

4ε
for any ε > 0, we see that

p|ω|p−1⟨∇|ω|,∇η⟩ ≤ p|ω|p−1|⟨∇|ω|,∇η
〉
||η|

≤ p|ω|p−1|∇|ω|||∇η||η|

=
|∇η|2|ω|p

ε
+
εp2

4
|ω|p−2η2|∇|ω||2.

This together with (5.32) implies∫
M

|A|2|ω|pη2e−fdµ ≤ Dn∥A∥2n,f
[(

1 +
1

ε

)∫
M

|ω|p|∇η|2e−fdµ

+
(1 + ε)p2

4

∫
M

|ω|p−2η2|∇|ω∥2e−fdµ
]

=

(
1 +

1

ε

)
Dn∥A∥2n,f

∫
M

|ω|p|∇η|2e−fdµ

+
(1 + ε)p2

4
Dn∥A∥2n,f

∫
M

|ω|p−2η2|∇|ω∥2e−fdµ (5.33)

On the other hand, for any ε > 0, we have

− 2

∫
M

|ω|p−1 ⟨∇η,∇ |ω|⟩ ηe−fdµ

≤ 2

∫
M

|ω|p−1 |⟨∇η,∇ |ω|⟩| |η| e−fdµ

≤ 1

ε

∫
M

|∇η|2|ω|pe−fdµ+ ε

∫
M

|ω|p−2|∇ |ω||2η2e−fdµ. (5.34)

102



Combining (5.31), (5.33), and (5.34), we get[
p− 1− p2

4
Dn ∥A∥2n,f −

εp2

4
Dn ∥A∥2n+1,f + ε

] ∫
M

η2|ω|p−2|∇ |ω||2e−fdµ

≤
[(

1 +
1

ε

)
Dn ∥A∥2n,f +

1

ε

] ∫
M

|ω|p|∇η|2e−fdµ.

For a sufficiently small ε > 0, the above inequality implies that there is a constant

C > 0 such that∫
M

|ω|p−2|∇ |ω||2e−fη2dµ ≤ C

∫
M

|ω|p|∇η|2e−fdµ, (5.35)

provided that p− 1− p2

4
Dn ∥A∥2n,f > 0, or equivalently

∥A∥2n,f <
4 (p− 1)

p2Dn

=
(p− 1) (n− 1)

2

p2C2 (n)
.

Let o ∈M be a fixed point and let BR(o) be the geodesic ball centered at o with

radius R. We choose η to be a smooth function on M such that 0 ≤ η ≤ 1.

Moreover, η satisfies:

(i) η = 1 on BR
2
(o) and η = 0 outside BR(o);

(ii) |∇η| ≤ 2
R
.

Applying this test function η to (5.35), we get∫
BR(o)

|ω|p−2|∇ |ω||2e−fdµ ≤ 4C

R2

∫
BR(o)

|ω|pe−fdµ. (5.36)

Letting R tend to ∞ in the above inequality and noting that ω ∈ Lfp , we con-

clude that ∇ |ω| = 0, which shows that |ω| is a constant. Moreover, since∫
M |ω|pe−fdµ < ∞ and the weighted volume of M is infinite, we finally get

ω = 0. The proof is complete.

Now, we note that if a Sobolev inequality holds true on M every end of M is

non-f -parabolic, for example see [48]. Therefore, we have the following corollary.

Corollary 5.2. Let X : Mn≥3 → Rn+1 be a smooth complete translating soliton

in the Euclidean space Rn+1 contained in the halfspace

ΠV,a =
{
y ∈ Rn+1 : ⟨y, V ⟩ ≥ a

}
,
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for some a ∈ R. Furthermore, assume that(∫
M

|A|ne−fdµ
) 1

n

≤ n− 1

2S(n)
,

where S(n) is the constant as in Lemma 5.4. Then there are no nontrivial L2
f

harmonic 1-forms on M . In particular, M has only one end.

Proof of Corollary 5.2. Since every end of M is non-f -parabolic, we can argue by

contradiction to assume that M has at least two ends. Then by Li-Tam [62],

there exists a non-constant f -harmonic function u such that ω := du satisfying

|ω| ∈ L2
f . An application of Theorem 5.3 implies that ω = 0 or u is constant.

This is a contradiction. The proof is complete.

5.3 Translators with a Sobolev inequality

Suppose that M satisfies the following Sobolev inequality[∫
M

u
2(n+1)
n−1 ϱdµ

]n−1
n+1

≤
(
2C(n)n

n− 1

)2 ∫
M

|∇u|2ϱdµ (5.37)

for any u that is a non-negative compactly supported C1 function onM and C(n)

is the Sobolev constant. In fact, the above inequality was proved in [48]. However,

the authors pointed out in [49] that there is a gap in their proof of this inequality.

Here, we assume that this inequality holds true. The Sobolev inequality (5.37) was

used by Kunikawa and Saito in [55] to study the injectivity of the natural map

between the first de Rham cohomology group with compact support, the reduced

L2
f cohomology, and the space of L2

f f -harmonic 1-forms. They proved that if M

supports the Sobolev inequality (5.37) and admits a codimension one cycle which

does not disconnect M then the space of L2
f f -harmonic 1-forms is non-trivial.

Now, we apply the above Sobolev inequality above to u = |Φ|aη. Then we have[∫
M

(|Φ|aη)
2(n+1)
n−1 ϱdµ

]n−1
n+1

≤
(
2C(n)n

n− 1

)2 ∫
M

|∇ (|Φ|aη)|2 ϱdµ

=

(
2C(n)n

n− 1

)2(∫
M

a2|∇|Φ||2|Φ|2a−2η2ϱdµ

+

∫
M

2a|Φ|2a−1η⟨∇|Φ|,∇η⟩ϱdµ+

∫
M

|Φ|2a|∇η|2ϱdµ
)
.

(5.38)
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By the Cauchy inequality, we obtain[∫
M

(|Φ|aη)
2(n+1)
n−1 ϱdµ

]n−1
n+1

≤
(
2C(n)n

n− 1

)2(∫
M

a2|∇|Φ||2|Φ|2a−2η2ϱdµ

+

∫
M

2a|Φ|2a−1η⟨∇|Φ|,∇η⟩ϱdµ+

∫
M

|Φ|2a|∇η|2ϱdµ
)

≤
(
2C(n)n

n− 1

)2(
(1 + δ)

∫
M

a2|∇|Φ||2|Φ|2a−2η2ϱdµ

+

(
1 +

1

δ

)∫
M

|Φ|2a|∇η|2ϱdµ
)
.

(5.39)

Apply (5.9) and keep in mind that right now ι = 2. For 0 < ε < a− 1
2
, we have

κ−1
1

[∫
M

(|Φ|aη)
2(n+1)
n−1 ϱdµ

]n−1
n+1

≤
{

a2(1 + δ)

4
(
a− 1

2
− ε
) (2 ∫

M

|Φ|2a+2η2ϱdµ

+
2

n

∫
M

|Φ|2a|H|2η2ϱdµ+
1

ε

∫
M

|Φ|2a|∇η|2ϱdµ
)

+

(
1 +

1

δ

)∫
M

|Φ|2a|∇η|2ϱdµ
}
,

(5.40)

where κ1 =
(

2C(n)n

n−1

)2
.

Using the fact that |A|2 = |Φ|2 + 1
n
|H|2, we can rewrite (5.40) as

κ−1
1

[∫
M

(|Φ|aη)
2(n+1)
n−1 ϱdµ

]n−1
n+1

≤ a2(1 + δ)

2
(
a− 1

2
− ε
) ∫

M

|Φ|2a|A|2η2ϱdµ

+ C̃(n, a, δ, ε)

∫
M

|Φ|2a|∇η|2ϱdµ,
(5.41)

where C̃(n, a, δ, ε) is an explicit positive constant depending on n, a, δ, ε.

By the Hölder’s inequality, we have that∫
M

|Φ|2a|A|2η2ϱdµ ≤
(∫

M

|A|2·n+1
2 ϱdµ

) 2
n+1

·
(∫

M

(
|Φ|2aη2

)n+1
n−1 ϱdµ

)n−1
n+1

=

(∫
M

|A|n+1ϱdµ

) 2
n+1

·
(∫

M

(|Φ|aη)
2(n+1)
n−1 ϱdµ

)n−1
n+1

.

(5.42)

Our goal is to decrease the number of conditions in theorem 5.1, only one condition

instead of two as in Theorem 5.1, so we should choose a = n+1
2
. For that reason,
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combining (5.41) and (5.42), we have

κ−1
1

[∫
M

(
|Φ|n+1

2 η
) 2(n+1)

n−1

ϱdµ

]n−1
n+1

≤ (n+ 1)2(1 + δ)

8
(
n+1
2

− 1
2
− ε
) (∫

M

|A|n+1

) 2
n+1

·
(∫

M

(
|Φ|n+1

2 ηϱdµ
) 2(n+1)

n−1

ϱdµ

)n−1
n+1

+ C̃(n, δ, ε)

∫
M

|Φ|n+1|∇η|2ϱdµ.

Put

K1(n, ε, δ) =

√
8
(
n+1
2

− 1
2
− ε
)

(n+ 1)2(1 + δ)κ1

,

and

K1(n) = sup
δ>0, 0<ε<a− 1

2

K1(n, ε, δ) =

√
(n− 1)2

C(n)2(n+ 1)2n2
.

Applying the argument as in the proof of Theorem 5.1, we have the following

result.

Theorem 5.6. Let X :Mn≥3 → Rn+1 be a smooth complete translating soliton in

the Euclidean space Rn+1 with Sobolev inequality (5.37). If the second fundamental

form A of M satisfies (∫
M

|A|n+1ϱdµ

) 1
n+1

< K1(n),

where K1(n) is defined as above, then M is a hyperplane.
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Conclusions

The main results of the dissertation include:

1) An upper bound on the dimension of the Lie algebra of Killing vector fields

on an irreducible, non-trivial gradient Ricci soliton, as well as some results

on the geometric structure of this class of gradient Ricci solitons when this

maximal dimension is attained;

2) Liouville-type theorems and gradient estimates for the positive bounded so-

lutions to the nonlinear parabolic equation related to gradient Ricci solitons

concerning Perelman’s reduced distance along ancient k-super Ricci flow;

3) Some analytical aspects of a general type of nonlinear parabolic equation con-

cerning the weighted Laplacian on a smooth metric measure space, with the

metric evolving under the (k,∞)-super Perelman-Ricci flow and the Yamabe

flow, such as gradient estimates, Harnack inequalities, general global con-

stancy, and Liouville type theorems;

4) Rigidity and vanishing results for complete translating solitons in Euclidean

spaces.

In the near future, we will focus on researching two key problems that will

continue the work done in this dissertation.

1) The main approach to studying Problem 1.1 in this dissertation is to use the

level set of the potential function of gradient Ricci solitons. However, in the

case of Einstein manifolds (that is, Ric = λg), this approach is not feasible

due to the absence of the potential function. We aim to estimate the upper

bound on the dimension of the group of isometries of an Einstein manifold

and classify the spaces where this maximum dimension is attained. We also

intend to study the group of isometries of quasi-Einstein m-manifolds.

Besides, we are also particularly interested in classifying Kähler gradient Ricci

solitons with geometric transformation groups in real dimension four.
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2) Let (Mn, g) be an n-dimensional complete Riemannian manifold. For any

smooth vector field V on M , the m-Bakry-Émery Ricci tensor is defined by

RicmV := Ric+
1

2
LV g −

1

m
V ∗ ⊗ V ∗

for some number m > 0. Here LV denotes the Lie derivative in the direction

of V , and V ∗ is the metric dual of V . When m = 0, we regard V ≡ 0

and RicmV becomes the usual Ricci tensor Ric. When m = ∞, we have (∞)-

Bakry-Émery Ricci curvature

RicV := Ric∞V = Ric+
1

2
LV g.

We aim to formulate and prove gradient estimates and Hessian estimates for

positive smooth solutions u to the following non-linear parabolic equation(
∂

∂t
−∆V

)
F (u(x, t)) = G(u(x, t)).

Here, ∆V is the so-called V -Laplacian, which acts on functions u ∈ C2(M) by

∆V u = ∆u− ⟨V,∇u⟩. From these estimates, we will derive various analyti-

cal aspects, such as Harnack inequalities, results on parabolic frequency, and

Liouville and global constancy-type results. It should be emphasized that, un-

der the assumption regarding RicV , most of the previous gradient estimates

require that the smooth vector field V be bounded, that is, |V | ≤ a for some

real constant a ≥ 0. We hope that this condition can be eliminated in the

estimation results.
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[72] I. J. Minarčík (2023), Properties and applications of geometric flows, PhD

thesis, Czech Technical University in Prague.

[73] J. Morgan, G. Tian (2007), Ricci flow and the Poincaré conjecture, Clay

Math. Monogr., 3. Amer. Math. Soc. Providence, RI; Clay Mathematics In-

stitute, Cambridge, MA.

[74] R. Müller (2010), “Monotone volume formulas for geometric flows”, J. Reine

Angew. Math. Vol. 643, pp. 39-57.

[75] W. M. Mullins (1956), “Two-dimensional motion of idealized grain bound-

aries”, J. Appl. Phys. Vol. 27, pp. 900-904.

[76] S. Myers, N. Steenrod (1939), “The group of isometries of a Riemannian

manifold”, Ann. of Math. Vol. 40 (2), pp. 400-416.

115



[77] Q. A. Ngô (2016), “Einstein constraint equations on Riemannian manifolds”.

In: Geometric Analysis Around Scalar Curvatures, Vol. 31, pp. 119-210. Lec-

ture Notes Series, Institute for Mathematical Sciences, National University

of Singapore, World Scientific.

[78] G. Perelman (2002), “The entropy formula for the Ricci flow and its geometric

applications”, https://arxiv.org/abs/math/0211159.

[79] G. Perelman (2003), “Finite extinction time for the solutions to the Ricci

flow on certain three-manifolds”, https://arxiv.org/abs/math/0307245.

[80] G. Perelman (2003), “Ricci flow with surgery on three-manifolds”, https:

//arxiv.org/abs/math/0303109.

[81] P. Petersen, W. Wylie (2009), “Rigidity of gradient Ricci solitons”, Pacific J.

Math. Vol. 241 (2), pp. 329-345.

[82] P. Petersen, W. Wylie (2009), “On gradient Ricci solitons with symmetry”,

Proc. Amer. Math. Soc. Vol. 137 (6), pp. 2085-2092.

[83] P. Petersen (2016), Riemannian geometry, Springer, Cham, xviii+499 pp.

[84] Q. H. Ruan (2007), “Elliptic-type gradient estimates for Schrödinger equa-

tions on noncompact manifolds”, Bull. London Math. Soc. Vol. 39, pp. 982-

988.

[85] R. Schoen (1984), “Conformal deformations of a Riemannian metric to con-

stant scalar curvature”, J. Differ. Geom. Vol. 20, pp. 479-495.

[86] R. Schoen, L. Simon, and S. T. Yau (1975), “Curvature estimates for minimal

hypersurfaces”, Acta Math. Vol. 134 (3-4), pp. 275-288.

[87] H. Schwetlick, M. Struwe (2003), “Convergence of the Yamabe flow for large

energies”, J. Reine Angew. Math. Vol. 562, 59-100.

[88] L. Shahriyari (2013), Translating graphs by mean curvature flow , ProQuest

LLC, Ann Arbor, MI. Thesis (Ph.D.)-The Johns Hopkins University.

[89] L. Shahriyari (2014), “Translating graphs by mean curvature flow,” Geom.

Dedicata Vol. 175 (1), pp. 57-64.

[90] P. A. Smith (1939), “Transformations of finite period II”, Ann. Math. Vol.

40 (2), pp. 690-711.

116

https://arxiv.org/abs/math/0211159
https://arxiv.org/abs/math/0307245
https://arxiv.org/abs/math/0303109
https://arxiv.org/abs/math/0303109


[91] K. Smoczyk (2001), “A relation between mean curvature flow solitons and

minimal submanifolds”, Math. Nachr. Vol. 229, pp. 175-186.

[92] J. Smoller (1983), Shock Waves and Reaction-Diffusion Equations, Springer-

Verlag.

[93] P. E. Souganidis (1997), Front propagation: theory and applications, Vis-

cosity solutions and applications (Montecatini Terme, 1995), Lect. Notes in

Math., Vol. 1660, Springer-Verlag, Berlin, pp. 186-242.

[94] P. Souplet, Q.S. Zhang (2006), “Sharp gradient estimate and Yau’s Liouville

theorem for the heat equation on noncompact manifolds”, Bull. Lond. Math.

Soc. Vol. 38, pp. 1045-1053.

[95] K.-T. Sturm (2006), “On the geometry of metric measure spaces. I”, Acta

Math. Vol. 196 (1), pp. 65-131.

[96] K.-T. Sturm (2018), “Super-Ricci flows for metric measure spaces”, J. Funct.

Anal. Vol. 275 (12), pp. 3504-3569.

[97] A. Taheri (2023), “Gradient estimates for a weighted Γ-nonlinear parabolic

equation coupled with a super Perelman-Ricci flow and implications”, Poten-

tial Anal. Vol. 59, pp. 311-335.

[98] H. Tran (2023), “Kähler gradient Ricci solitons with large symmetry”, https:

//arxiv.org/abs/2306.05787.

[99] L. W. Tu (2011), An Introduction to Manifolds, 2nd edition, Universitext,

Springer, New York.

[100] N. S. Trudinger (1968), “Remarks concerning the conformal deformation of

Riemannian structures on compact manifolds”, Ann. Sc. Norm. Super Pisa

Vol. 22, pp. 265-274.

[101] H. J. Wang, H. W. Xu, and E. T. Zhao (2016), “A global pinching theorem

for complete translating solitons of mean curvature flow”, Pure Appl. Math.

Q. Vol. 12 (4), pp. 603-619.

[102] W. Wang (2022), “Upper bounds of Hessian matrix and gradient estimates

of positive solutions to the nonlinear parabolic equation along Ricci flow”,

Nonlinear Anal. Vol. 214, 112548.

[103] G. F. Wei, W. Wylie (2009), “Comparison geometry for the Bakry-Émery

Ricci tensor”, J. Differ. Geom. Vol. 83, pp. 377-405.

117

https://arxiv.org/abs/2306.05787
https://arxiv.org/abs/2306.05787


[104] G. F. Wei (2023), Lecture Notes , Viasm Summer School in Differential Ge-

ometry, https://web.math.ucsb.edu/%7Ewei/paper/VIASM.pdf.

[105] J.-Y. Wu (2017), “Elliptic gradient estimates for a nonlinear heat equation

and applications”, Nonlinear Anal. Vol. 151, pp. 1-17.

[106] Y. L. Xin (2015), “Translating solitons of the mean curvature flow”, Calc.

Var. Partial Differ. Equations Vol. 54, pp. 1995-2016.

[107] H. W. Xu, J. R. Gu (2007), “A general gap theorem for submanifolds with

parallel mean curvature in Rn+m”, Comm. Anal. Geom. Vol. 15, pp. 175-194.

[108] H. Yamabe (1960), “On a deformation of Riemannian structures on compact

manifolds”, Osaka Math. J. Vol. 12, pp. 21-37.

[109] F. Yang, L. Zhang (2019), “Gradient estimates for a nonlinear parabolic

equation on smooth metric measure spaces”, Nonlinear Anal. Vol. 187, pp.

49-70.

[110] F. Yang, L. Zhang (2019), “Local elliptic gradient estimates for a nonlinear

parabolic equation under the Ricci flow”, J. Math. Anal. Appl. Vol. 477, pp.

1182-1194.

[111] R. Ye (1994), “Global existence and convergence of Yamabe flow”, J. Differ.

Geom. Vol. 39, pp. 35-50.

[112] R. Ye (2008), “On the l-function and the reduced volume of Perelman I”,

Trans. Amer. Math. Soc. Vol. 360 (1), pp. 507–531.

[113] R. Ye (2008), “On the l-function and the reduced volume of Perelman II”,

Trans. Amer. Math. Soc. Vol. 360 (1), pp. 533–544.

[114] T. Yokota (2009), “Perelman’s reduced volume and a gap theorem for the

Ricci flow”, Comm. Anal. Geom. Vol. 17 (2), pp. 227-263.

[115] W. Zeng, X.D. Gu (2013), Ricci Flow for Shape Analysis and Surface Regis-

tration: Theories, Algorithms and Applications, Springer Science & Business

Media.

[116] X. Zhu (2016), “Gradient estimates and Liouville theorems for linear and

nonlinear parabolic equations on Riemannian manifolds, Acta Math. Sci.

Ser. B (Engl. Ed.) Vol. 36 (2), pp. 4577-4617.

118

https://web.math.ucsb.edu/%7Ewei/paper/VIASM.pdf

	
	 Introduction
	Gradient Ricci soltions and isometry groups
	Nonlinear parabolic equations and super geometric flows
	Translating solitons of the mean curvature flow
	Structure of the present work

	 On isometry groups of gradient Ricci solitons
	Preliminaries
	Killing vector fields and group actions on manifolds
	Some basis results on gradient Ricci solitons

	Dimension bound and Rigidity
	Appendix

	 Liouville type theorems and gradient estimates for nonlinear heat equations along ancient k-super Ricci flow via reduced geometry
	Preliminaries and main results
	The reduced distance function of Perelman
	Main results

	Gradient estimates for (3.3) along the backward (-k)-supper Ricci flow and Liouville type results
	Basic lemmas
	Gradient estimates and some special cases 
	Liouville type results


	 Gradient estimates for a general type of nonlinear parabolic equations under geometric conditions and related problems
	Gradient estimates for (4.1) under the (k, )-super Perelman-Ricci flow
	Gradient estimates for (4.1) under the Yamabe flow
	Liouville type theorems and gradient estimates for some important geometric partial differential equations
	On the nonlinear elliptic equations related to gradient Ricci solitons
	On the Einstein-scalar field Lichnerowicz type equations


	 Rigidity and vanishing theorems for complete translating solitons
	Rigidity theorems
	Vanishing result for weighted harmonic forms
	Translators with a Sobolev inequality

	
	
	

