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Chapter 1

Introduction

The field of geometric flows is one of the most important areas of geometric
analysis, forming at the nexus of differential equations and geometry. This field
of study is characterized by the deformation of geometric objects such as metrics,
mappings, and submanifolds by geometric attributes such as curvature and consists
of partial differential equations (PDEs) of parabolic type. These flows have wide
applications in many scientific fields. For example, in cell biology, they aid in
understanding dynamic network rewiring during cellular differentiation and cancer
(see [10]); in medical imaging, they used to conformal brain mapping and virtual
colonoscopy (see [115]); in computer graphics, they help model vorticity lines for
efficient smoke and dust animations in games and CGI effects (see [24, [72]); and in
physics, they can model dynamic systems and space-time geometries (see [75], 93]).
In pure mathematics, geometric flows have demonstrated their great potential
by solving various problems related to differential geometry and topology (see
[5, 69, [73], [78]). The field of geometric flows can be seen as a bridge between
analysis and geometry. Moreover, thanks to this intersection, researchers can use
tools and methods from the theory of PDEs, differential geometry, or both to
study challenging problems in this field.

This field’s starting point can come from Mullins’s work in 1956. He proposed
the curve shortening flow to model the motion of idealized grain boundaries in
[75]. However, the field became widely known through Eells-Sampson’s seminal
paper [38] on the harmonic map heat flow in 1964. Specifically, in this paper, they
established harmonic map heat flow and used it to prove the existence of harmonic
maps into targets with nonpositive sectional curvature. From the perspective of
Eells-Sampson’s paper, we can roughly understand that a geometric flow deforms
a geometric object over time via a differential equation, refining the object to make

it more comprehensible or better suited to a specific purpose.
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In the PDEs theory, investigating special solutions, such as radial or stable solu-
tions, plays an important role in establishing qualitative and quantitative proper-
ties for the general solutions of the equation under consideration. These solutions
are either expressible in closed form or, if not feasible, will be systematically clas-
sified. Solitons in geometric flows are a typical example of such special solutions.
They remain invariant in time to a certain degree under a particular flow. A basic
example of these solitons would be a family of round spheres in Euclidean space,
which gradually shrink in size over time and eventually collapse to a single point.
This behavior serves as a solution to the mean curvature flow, a type of geometric
flow that evolves shapes by smoothing them out. On the other hand, as the ge-
ometric flow progresses, it can lead to intricate geometric changes, including the
appearance of singularities, where quantities containing the norm of the curvature
tensor approach to infinity, typically forming in finite time, due in part to the
nonlinearity of geometric flow equations, as well as for geometric and topological
reasons. Solitons of some geometric flows, such as Ricci flows and mean curvature
flows, serve as prototypical singularity models. This is also one of the main moti-
vations to promote further research by mathematicians in this topic and the field

of geometric flows in general.

This dissertation investigates some aspects of geometric flows, with a particular

focus on two main research directions as follows.

e The first aim is to study some geometric and topological properties of gradient

Ricci solitons and translating solitons.

e The second aim is to explore the analytical aspects of some partial differen-
tial equations that originate from geometry within the context of some super

geometric flows.

In the following three subsections of this chapter, we will provide an overview of
the problems studied in the dissertation. The content of this chapter is essentially
adapted from [26], 28], 146], [69] and the introductory sections of the papers that make
up my dissertation [32], 33, 34 35].

1.1 Gradient Ricci soltions and isometry groups

The Ricci flow equation is a geometric evolution equation that deforms the

metric g of a Riemannian manifold over time by adjusting it in a way proportional
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to the Ricci curvature Ric:

dg .
— = -2 . 1.1
T Ric (1.1)

A Ricci flow (or a solution to the above equation) is a one-parameter family of
metrics g, defined on a smooth manifold M and parameterized by ¢ within a
non-degenerate interval I, that satisfies the equation . The Ricci flow was
introduced in 1982 by Hamilton [41] as part of his ambitious program to prove
Poincaré’s conjecture and Thurston’s geometrization conjecture (see also [43]).
Since then, it has been a primary object of study in the field of geometric flows
and a groundbreaking tool for solving complex problems in pure mathematics such
as Poincaré’s conjecture, Thurston’s geometrization conjecture, the Differentiable
sphere theorem [15], [16] and a version of this theorem for the curvature of the
second kind [20], or the generalized Smale conjecture [5, [7]. For an overview of
recent advancements in the theory of Ricci flow, we refer the readers to the survey

paper of R. Bamler [5] and the references therein.

In the paper [41], using the Ricci flow, Hamilton proved that if M is a compact
3-manifold that admits a Riemannian metric with strictly positive Ricci curva-
ture, then M also admits a metric of constant positive curvature. As pointed
out by him, this result strongly links to Poincaré’s conjecture on compact, simply
connected 3-manifolds and Smith’s conjecture concerning the group of covering
transformations [92]. If both conjectures hold, the result would naturally follow
as a corollary. Furthermore, it is essential to realize that the Ricci flow equa-
tion is only weakly parabolic, often leading to finite-time singularities. Hamilton
and many mathematicians have found that proving the Poincaré conjecture using
Ricci flow requires overcoming the challenges posed by singularity models of this
flow. This has prompted the study of singularity models to gain insight into the
underlying topological and geometric features of Ricci flows. Probably the most
important singularity model is the Ricci soliton, which is a self-similar solution
to the Ricci flow equation ([1.1]) and arises as a finite-time singularity model. Re-
call that a Ricci soliton is a Riemannian manifold (M, ¢) that is equipped with a

smooth vector field X satisfying the equation
1
Ric +§/3Xg = \g, (1.2)

where L is the Lie derivative with respect to X and A € R. In particular, if
X = Vf where f : M — R is a smooth function, then we say that a triple

3



(M, g, f) is a gradient Ricci soliton. In this case the equation (1.2]) becomes
Ric + Hess f = g, (1.3)

where Hess is the Hessian of metric g. Depending on the value of A\, a gradient
Ricci soliton is called shrinking if A > 0, steady if A = 0, or expanding if A < 0.

An Einstein manifold N is a Riemannian manifold whose Ricci curvature Ric
of N is proportional to the metric g of N, that is Ric = Ag, where A is a fun-
damental constant. Here A is called the Einstein constant. These manifolds play
a central role in differential geometry and theoretical physics, particularly in gen-
eral relativity, where they model space-times with constant curvature. It is not
hard to see that an Einstein manifold is a basic example of gradient Ricci soliton
where the Hessian operator acting on the potential function f equals zero and
A becomes the Einstein constant. Another basic example is the Gaussian soliton
A|g{”2) , followed by cylinders S¥ x R"~* with the product metric where the

2
sphere has Ricci curvature A. Furthermore, a combination of the two mentioned

(Rna grn,

earlier, as the notation of Petersen and Wylie [81], is referred to as a rank k rigid
gradient Ricci soliton. In particular, it is isometric to an appropriate quotient of
NF x R"* with f = @ defined on the Euclidean factor [80]. Consequently,
a soliton is called non-trivial (or non-rigid) if at least a factor in its de Rham

decomposition is non-Einstein.

On the other hand, the study of isometric groups plays a pivotal role in clas-
sifying the geometric structure of smooth manifolds. Dantzig-Waerden’s ground-
breaking paper [30] nearly a century ago on the group of isometries of a connected,
locally compact metric space can be seen as the starting point for a series of
works on this subject. Myers and Steenrod in [76] showed that the isometry group
Iso(M) of a Riemannian manifold M is a Lie transformation group concerning the
compact-open topology. Later, Kobayashi [53] determined the maximal dimension
of Iso(M ) and showed that the Riemannian manifold M is of constant curvature
[53], provided the dimension of Iso(M) is maximal. While (non-gradient) Ricci
solitons have been found in various Lie groups and homogeneous spaces [9, 58], Pe-
tersen and Wylie [82] proved that all homogeneous gradient Ricci solitons are rigid.
Furthermore, they also demonstrated that if the Riemannian metric is reducible,
the soliton structure is also reducible. Their result is based on the existence of

splitting results induced by Killing vector fields.
Inspired by Petersen and Wylie’s work [82], in Chapter , we will study the



isometry group Iso(M) and its Lie algebra of an irreducible non-trivial gradient
Ricci soliton (M, g, f). Recall that a Riemannian manifold is said to be irreducible
if no finite cover of it can be expressed (in the isometric sense) as a direct product

of manifolds of smaller dimensions.

Problem 1.1. Find an upper bound on the dimension of the Lie algebra of Killing
vector fields on an irreducible non-trivial gradient Ricci soliton, and classify the

spaces where this maximal dimension is attained.

1.2 Nonlinear parabolic equations and super geometric

flows

Turning the framework of geometric flow theory, we now present the concept
of super Ricci flow, which was originally introduced by McCann and Topping [70]
from the perspective of optimal transport theory. A smooth manifold (M, g(x,t))r
is called a super Ricci flow if

% > —2Ric. (1.4)
In [70], the authors discovered that the monotonicity property of the Wasser-
stein distance along the heat flow characterizes supersolutions to the Ricci flow
equation. Later, several other characterizations have been investigated via im-
portant geometric inequalities of manifolds, Bakry-Emery gradient estimates, and
also convexity of Entropies (see [45], [64], [66] [96]). Drawing upon these character-
izations, Sturm [96] expanded the concept of super Ricci flow to time-dependent
(non-smooth) metric measure spaces. His work marks the beginning of a new ex-
ploration into super Ricci flow from the intriguing standpoint of metric measure
geometry. Recently, Bamler [6] demonstrated that the space of super Ricci flows,

when pointed in a suitable manner, is compact in a specific topology.

For each k € R, a time-dependent Riemannian manifold (M, g(x,t))wr is

termed a k-super Ricci flow if it satisfies the following condition:

99
ot

which is a natural extension of the concept of super Ricci flow. Moreover, the

+ 2 Ric > 2kg, (1.5)

k-super Ricci flow can be seen as a time-dependent version of the Riemannian
manifold whose Ricci curvature is bounded from below by k. It is evident that

the (0)-super Ricci flow is exactly the super Ricci flow. Besides, when the equal-
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ity in (L.5]) holds, (M, g(x,t))er is called k-Ricci flow. A k-supper Ricci flow
(M, g(z,1))ser is said to be ancient when [ = (—o0, 0]. This concept is an exten-
sion of the ancient Ricci flow, which is well-known for its significant impact on the

study of singularities in Ricci flow analysis.

The reduced distance and reduced volume were first introduced by Perelman
in his groundbreaking paper [7§] as two key tools for analyzing the Ricci flow.
Later, Ye proved several properties of Perelman’s reduced distance and obtained
some estimates for the reduced volume [I12]. Besides, the applications of these
properties in the analysis of the asymptotic limits of k-solutions of the Ricci flow
have been presented by Ye in the follow-up paper [I13]. Recently, in noteworthy
paper [57], Kunikawa and Sakurai obtained Liouville type theorems for harmonic
maps under ancient super Ricci flow with controlled growth, approaching the topic
from Perelman’s reduced geometric perspective. This paper is the continuation of

a work with the same scope for functions in [56].

The next chapter of this thesis is also motivated from a work due to Ma [67]. In
[67], for some constants a, b, the author considered the following nonlinear elliptic

equation
Au+aulnu+bu =0 (1.6)

in a complete noncompact Riemannian manifold. From Ma’s observation in [67],
we know that the above equation is closely related to the equation (1.3)) of the
gradient Ricci soliton (M, g, f). Indeed, taking the trace of the equality (L.3)), we
deduce that

S+ Af=n\

Here S is the scalar curvature of M and n is the dimension of M. According to
Proposition 2.3 in Chapter [2, we get

IV 4S5 —2Xf = Ay,
where A is a constant. Combining the two above equations, we have
V2= Af —2X\f +n)\— Ay = 0.
If we set u = e/, then by a simple computation, it follows that u solves

Au+ 2 ulnu+ (nA — Ag) u=0. (1.7)



Clearly, the above equation is a special case of the equation . Moreover,
the equation ([1.6)) is naturally linked to geometric and functional inequalities on
manifolds, particularly the logarithmic Sobolev inequality [105] and Perelman’s
We-entropy [78]. Replacing u by egu, we see that the equation is equivalent

to the following equation
Au+aulnu = 0. (1.8)

Inspired by the works of Kunikawa, Sakurai, and Ma, in Chapter [3], we will study
gradient estimates for positive bounded solutions to the parabolic counterpart of
equation ({1.8)) along ancient k-super Ricci flow and explore some of its applications.

Specifically, we are interested in the following problem.

Problem 1.2. Establish gradient estimates and Liouville type results for positive
bounded solutions of the nonlinear parabolic equation related to Perelman’s reduced

distance

0
aru(e.t) = Au(e, ) + au(r, t) nu(e, 1) (1.9)

along ancient k-super Ricci flow, where a € R.

A smooth metric measure space, also known as a weighted manifold or a man-
ifold with density, can be viewed as a natural generalization of gradient Ricci
solitons. Since Perelman’s works [78 [79], this space has been the subject of ex-
tensive study by many mathematicians worldwide. Recall that a smooth metric
measure space is a triple (M, g, e /du), where (M, g) is a complete Riemannian
manifold of dimension n > 3 endowed with a weighted measure e~/dyu for some
f € C>®(M) and du is the standard Riemannian volume measure of metric g. On
(M, g,e *du), the weighted Laplacian A/ is defined by

Ap = A=V, V),

which is a natural generalization of the Laplace-Beltrami operator A to the smooth
metric measure space context, and it coincides with the latter precisely when the
potential f is a constant function. For any real number m > 0, the m-Bakry-

Emery curvature is defined by

1
Ric}' := Ric + Hessf — —df ® df.
m
7



When m = 0, it means that f is constant and Ric?}1 becomes the usual Ricci

curvature Ric. When m — 00, we have the (co-)Bakry-Emery Ricci curvature
Ricy := Ric;” = Ric + Hess .

It is not difficult to see that Ric? > cinfers Ric; > ¢, but the contrary may not
be accurateaccurate. When Ric; is bounded from below, many geometric prop-
erties of manifolds with the Ricci tensor bounded from below were also possibly
extended to smooth metric measure spaces, but some extra assumptions on f are

required; see [63], [103] for detailed discussion.

Motivated by the above works of Hamilton, McCann-Topping, and Perelman’s
work for the modified Ricci flow (see [66, 78], this flow is often referred to as
the Perelman-Ricci flow), X.-D. Li et al. [64], 65] introduced the concept (k,m)-
super Perelman-Ricci flow on manifolds equipped with time-dependent metrics and
potentials. For k,m € R and m > 0, a time-dependent smooth metric measure
space (M, g(x,t), e_f(x’t)d,u)tel is called (k, m)-super Perelman-Ricci flow if

% + 2 Ric} > —2kg. (1.10)
It is worth noting that this flow is the weighted version of the k-super Ricci flow
(L.5). Moreover, the (k,m)-super Perelman-Ricci flow is equivalent to the so-
called curvature-dimension condition CD(k,m) in the sense of Sturm [95] and
Lott-Villani [59]. When m — oo, i.e., if the metric g(z,t) and the potential
function f(x,t) satisfy the following inequality

0
a_i 1 2Ric; > —2kg, (1.11)
we call (M, g(x,t),e/@dp),_, a (k,o0)-super Perelman-Ricci flow, which can

be viewed as a natural extended of the modified Ricci flow [7§].

One of the most studied topics in geometric analysis during the 20th century is
the Yamabe problem, introduced by Yamabe in his notable posthumous publica-
tion [108]. Let (M, g) be an n-dimensional smooth, compact Riemannian mani-
fold with n > 3. The Yamabe problem can be viewed as a generalization of the
Poincaré-Kobe uniformization theorem, which is a state that determines a constant
scalar curvature metric g that is pointwise conformally related to g. Recall that
the conformal class of g is defined to be [g] = {§ —urzg:u € C*°(M),u > O} :



Then the scalar curvature S; of the conformal metric g can be written as
dn—1) _nw n—2
S;=——""u 2| Au— ——=S5 :
g n—2 < YT - gu)

Here S, is the scalar curvatures of g and A is the Laplace-Beltrami operator asso-

ciated with g. From this observation, we see that the Yamabe problem amounts

to find a positive solution u of the Yamabe equation

n — 2 n — 2 n+2

where S5 is constant. This was resolved through the contributions of N. Trudinger
[100], T. Aubin [4], and R. Schoen [85]. Their proofs utilize results from the
calculus of variations and elliptic theory; for further details, refer to the survey
article by Lee and Parker [60].

The Yamabe flow was initially explored by Hamilton in the unpublished work
[42] as a tool for addressing the Yamabe problem. An n-dimensional manifold
(M, g(z,1))er equipped with a time-dependent metric is referred to as a Yamabe

flow when it satisfies the following equation

— = -9, (1.13)

where S is the scalar curvatures of the metric g. In [25], Chow studied the nor-
malized Yamabe flow and demonstrated that this flow converges to a metric with
constant scalar curvature. By assuming only that the initial metric is locally con-
formally flat, Ye established the convergence of the Yamabe flow [111], thereby
improving upon Chow’s result [25]. The scenario of metrics that are not confor-
mally flat has been studied in a series of papers by Schwetlick and Struwe [87] and
subsequently by Brendle [13, 14].

Inspired by the work presented in Chapter 3] and the advancements made in the
smooth metric spaces discussed earlier, Chapter 4| will investigate the following
problem.

Problem 1.3. Study some analytical aspects of a general type of nonlinear parabolic

equation concerning the weighted Laplacian

<% —a(x,t) — Af> u(z,t) = F(u(zx,t)) (1.14)

9



on a smooth metric measure space with the metric evolving under the (k, co0)-super
Perelman-Ricci flow and the Yamabe flow , where a(x,t) is a function
which is C* in the x-variable and C* in the t-variable, and F(u) is a C* function
of u.

The nonlinear heat equation has garnered significant attention from
mathematicians due to its applications in mathematics, physics, and various other
fields. In the case F'(u) = 0 and f is constant, the equation reduces to
the Schrodinger equation, which is one of the fundamental equations in quan-
tum mechanics. When F(u) = bulnu for b € R and a(x,t) = 0, the equation
is precisely the equation closely related to the Ricci gradient soliton ([1.8]).
When u is a stationay solution (namely u; = 0), f is constant and F'(u) = bu®,
the equation becomes the Yamabe type equation . Furthermore, when
F(u) = bu® +cu”, the equation is closely associated with the Lichnerowicz-
type equations for Einstein-scalar fields, which are a key area of research in Ein-
stein scalar field theory within general relativity [11], [77]. In general, the nonlinear
parabolic equation ((1.14]) is referred to as a weighted reaction-diffusion equation,
which appears in various mathematical models across physics, chemistry, and bi-
ology (see [92]), where au+ F'(u) and A ju are the reaction term and the diffusion

term, respectively.

1.3 Translating solitons of the mean curvature flow

The last part of this thesis shifts the focus to issues related to mean curvature
flows. One of the primary motivations for mean curvature flow comes from geo-
metric applications, akin to the Ricci flow of metrics on Riemannian manifolds.
This flow is a powerful tool for obtaining classification results for hypersurfaces
that meet specific curvature conditions, deriving isoperimetric inequalities, and
producing minimal surfaces. Besides, mean curvature flow is pivotal in describ-
ing the evolution of interfaces in various multiphase physical models (see, e.g.,
[75, 93]), and its origin can be traced back to Mullins’ influential paper [75]. This
relevance stems from its characteristic as a gradient-like flow of the area functional,

making it inherently applicable to problems involving surface energy (see [69]).

We now recall the definition of mean curvature flow. Let X : M™ — R™™ be a
smooth immersion of an n-dimensional smooth manifold in Euclidean space R™ ™.
A smooth one-parameter family X; = X (+,t) of immersions X; : M x [0,T) —

R™*" with corresponding images M; = X;(M) is called the mean curvature flow

10



for a submanifold M in R™™ if it satisfies the following condition

{ 42X (x,t) = H(x,t),

X(2,0) = X(x), (1.15)

for any (x,t) € M x [0,T), where H(z,t) is the mean curvature vector of M; at
X, (z) in R™.

One of the key aspects of studying mean curvature flow is the analysis of sin-
gularities. In various scenarios, the second fundamental form with respect to the
family M, may experience singularities. For instance, if M is compact, the second
fundamental form will blow up in a finite time. Based on the blow-up rate of
the second fundamental form, we categorize the singularities of mean curvature
flow into two types: Type-I singularities and Type-II singularities. The geometry
of the solution near Type-II singularities is more challenging to control, making
the study of Type-II singularities significantly more complex than that of Type-I

singularities.

A solution to ([1.15]) is said to be a translating soliton (or simply a translator)

if there exists a constant vector V' with unit length in R"* such that
H=V"* (1.16)

where V+ denotes the normal component of V' in R*™™. Translating solitons are
significant in the theory of mean curvature flow because they arise as blow-up
solutions at type II singularities. On the other hand, every translating soliton
is a special solution that moves only in a constant direction V' without deform-
ing its shape under the mean curvature flow, specifically, the solution is given by
M; = M + tV. There are few examples of translating solitons even in the hyper-
surface case. The primary examples are those translating solitons that are also
minimal hypersurfaces. Indeed, by we know that V' must be tangential to
the translator. Consequently, these solitons could have the form of M x L, where
L is a line parallel to V' and M is a minimal hypersurface in L. We can find

more translating solitons, for examples in [48], 51] and the references therein.

Through examples of translating solitons, we can derive interesting results and
establish a framework for their classification. Recently, in [106], Xin studied var-
ious geometric aspects of translating solitons, including volume growth, the gen-
eralized maximum principle, Gauss maps, and certain functions related to the

Gauss map. In addition, he provided integral estimates for the squared norm of

11



the second fundamental form. Using these results, Xin demonstrated a rigidity
theorem for translators in the FEuclidean space in higher codimensions. Some of
Xin’s results were subsequently extended by Wang, Xu, and Zhao by using inte-
gral curvature pinching conditions of the trace-free second fundamental form (see
[101]).

Utilizing the approach direction from the theory of weighted minimal hypersur-
faces, in the papers [48, 49], Impera and Rimoldi studied the topological structure
at infinity of translating solitons of the mean curvature flow. In particular, they
established weighted Sobolev inequalities and utilized these results to demonstrate
that an f-stable translator can have at most one end. Additionally, they explored
the relationship between the space of L?-weighted harmonic 1-forms, cohomology
with compact support, and the index of the translator in terms of the generalized
Morse index of a stable operator. Building on the Sobolev inequalities established
by Impera and Rimoldi, Kunikawa and Sato [55] noted that any complete f-stable
translating soliton does not allow for any codimension one cycle. Consequently,

any two-dimensional complete f-stable translator must have genus zero.

Inspired by the research results on translating solitons mentioned above, in
Chapter [5] of this thesis, we are interested in the following problem.

Problem 1.4. Study of the rigidity properties and connectedness at infinity of
complete translating solitons in the Fuclidean space via the second fundamental

form.
1.4 Structure of the present work

As mentioned earlier, the dissertation is divided into five chapters. In addition
to Chapter [I], the remaining four chapters will be described below. It also includes
a section listing the author’s related papers, a Conclusions section, and a list of

references. Below is a brief overview of the contents of each chapter, from Chapter

to Chapter [
In Chapter [2 of this dissertation, we investigate the isometry group Iso(M)

and its Lie algebra of an irreducible non-trivial gradient Ricci soliton (M, g, f).
This chapter aims to study Problem [I.1], which is based on the paper to appear in
Forum Mathematicum, https://doi.org/10.1515/forum-2024-0325.

Chapter [3] of this dissertation is devoted to studying the nonlinear parabolic
equation ([1.9) related to Perelman’s reduced distance, along ancient k-super Ricci
flow. This chapter aims to study Problem [I.2] which is based on the paper [32]
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published in the Journal of Mathematical Analysis and Applications.
In Chapter |4 of this dissertation, we focus instead on studying the general type

of nonlinear parabolic equation ((1.14)) on a smooth metric measure space with
the metric evolving under the (k, co)-super Perelman-Ricci flow (1.11]) and the

Yamabe flow (L.13). Chapter [i] aims to study Problem [1.3} based on the paper
[34] published in Nonlinear Analysis.

Chapter 5| of this dissertation focuses on studying some aspects of complete
translating solitons in the Euclidean space. Chapter 5] aims to study Problem [1.4]
which is based on the paper [35] published in Manuscripta Mathematica.

The results of this dissertation were presented at

- The weekly seminar of Geometric Analysis group (June 28, 2023, Vietnam

Institute for Advanced Studies in Mathematics, Hanoi);

- The monthly seminar of the Department of Geometry, (December 12, 2023,

Hanoi National University of Education, Hanoi);

- The 10th Vietnam Mathematical Congress, Committee on Partial Differential
Equations (August 11, 2023, the University of Da Nang-University of Science
and Education, Da Nang);

- The Workshop “Some selected topics in Geometric Analysis and applications”

(February 1, 2024, Hanoi University of Civil Engineering, Hanoi).
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Chapter 2

On isometry groups of gradient Ricci

solitons

This chapter is written based on the paper “Ha Tuan Dung, Hung Tran (2025),
On isometry groups of gradient Ricci solitons, to appear in Forum Mathematicum,
https://doi.org/10.1515/forum-2024-0325" [35] and focuses on examining Prob-
lem discussed in Chapter [I We specifically investigate the isometry group and
its Lie algebra of an irreducible, non-trivial gradient Ricci soliton (M, g, f). Our
goal is to determine the maximum dimension of the isometry group and study the
structure of this manifold when the maximal dimension is attained. Towards that

end, we recall the Lie algebra of the isometry group of (M, g, f):
iso(M, g) := {X is a smooth tangent vector field on M, Lyg = 0}.

Closely related to the Lie algebra iso(M, g) is the Lie algebra of Killing vector
fields preserving f:

is0;(M, g, f) == {X is a smooth tangent vector field on M, Lxg =0= Lxf}.

Throughout this chapter, for convenience in presentation, we will abbreviate the

term gradient Ricci soliton as GRS.

In order to achieve the main goal, we first give a result estimating the dimension

of iso;(M, g, f) and classify the spaces where this maximal dimension is achieved.

Theorem 2.1. Let (M", g, f), withn > 3, be a GRS. If f is non-constant then
iso;(M, g, f) is of dimension at most % (n—1)n and equality happens iff each

connected component of a reqular level set of f is a space of constant curvature.

Let (N""! gn) denote the space form model. If gy is non-flat, the equality

happens iff the metric is locally a warped product. That s, there is an open dense
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subset such that around each of its points, there is a neighborhood diffeomorphic
to a product I x N and the metric g is given by g = dt* + F*(t)gn. Here, I is an

open interval, and F : I — R is a smooth function.

Furthermore, it is possible to relax the assumption on preserving f. A Rieman-
nian manifold is locally irreducible if it is not a local Riemannian product metric

around each point.

Theorem 2.2. Let (M", g, f), with n > 3, be a locally irreducible non-trivial
GRS. Then iso(M, g) is of dimension at most 5 (n — 1)n. In addition, equality
happens iff it is smoothly constructed, as in the case of equality of Theorem [2.1].

The above theorems are essentially local. That is, there is no mention of the
completeness of the metric. Indeed, the soliton structure is so rigid that it is

difficult to complete the above metrics.

Theorem 2.3. Let (M", g, f), with n > 3, be an irreducible non-trivial complete
GRS. Then iso(M, g) is of dimension at most 3 (n —1)n. For X\ > 0, equality

happens iff A = 0 and it is isometric to a Bryant soliton.

Chapter [2] is organized as follows. In Section [2.T] we recall basic notations and
collect preliminary materials that we will use in the rest of this chapter. The main
results will be proved in Section 2.2 Finally the Appendix considers the case that
each level set of a GRS is Euclidean.

2.1 Preliminaries

This section is to recall auxiliary results on Killing vector fields, group actions
on manifolds, and gradient Ricci solitons. The main references are [2], 26, 52 (53,
82, [83].

2.1.1 Killing vector fields and group actions on manifolds

In this subsection, we briefly review basic properties of Killing vector fields
and their relationship to the isometry group. Besides, we also recall some basic
concepts related to group actions on manifolds. The standard texts are [2}, 52} 83].

We begin by providing the definition of Riemannian isometries.

Definition 2.1. Let (M, gyr) and (N, gn) be Riemannian manifolds. An isometry
15



from M to N is a diffeomorphism ¢ : M — N such that

¢* (gn) = g

In other words, ¢ is an isometry if for all p € M and tangent vectors X,,Y, €
T,M,
gul, (Xp, Yp) = gnly,) ((d9), (X5) 5 (de), (V7)) -

In this sense, we say that ¢ preserves the metric structure. In addition, M and

N are called isometric.

The set of all isometries of a Riemannian manifold (M, g) onto itself forms a
group (indeed a Lie group), which is denoted by Iso(M) and called the isometry
group of M.

Definition 2.2. A vector field X on a Riemannian manifold (M, g) is called a
Killing vector field if the Lie derivative with respect to X of the metric g vanishes,
’[;.6., £Xg = 0.

The following proposition shows the relationship between Killing vector fields

and isometries. For a proof, we refer the reader to [83, Proposition 8.1.1].

Proposition 2.1. A vector field X on a Riemannian manifold (M, g) is a Killing

vector if and only if the local flows generated by X act by isometries.

Because of Proposition 2.1}, Killing vector fields are also commonly known as in-
finitesimal isometries, a terminology that arises from the idea of integrating vector

fields to obtain isometries. Furthermore, they enjoy strong analytic properties.

Proposition 2.2. [83, Proposition 8.1.4] Let X be a Killing vector field on a
Riemannian manifold (M, g). If there exists a point p € M such that X, = 0 and
(VX), =0, then X is identical 0.

Remark 2.1. The set of all Killing vector fields on a Riemannian manifold (M, g)
is a Lie algebra, and denoted by iso(M, g). Furthermore, by Theorem 8.1.6 in
[83], if the Levi-Civita connection induced by the Riemannian metric g on M is
complete, then so is each Killing vector field. In that case, iso(M, g) is the Lie
algebra of Iso(M).

Next, we recall a result estimating the dimension of the Lie algebra iso(M, g)
and Iso(M, g), which will play an important role in our proof of Theorem .
Lemma 2.1. [83, Theorem 8.1.6] [52, Theorem 1, Note 10] Let (M, g) be a con-

nected Riemannian manifold of dimension n. Then the Lie algebra iso(M, g) is
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of dimension at most sn(n + 1). If dimiso(M,g) = sn(n + 1), then M is a

space of constant curvature. Furthermore, if dimIso(M) = in(n + 1), then M

is wsometric to one of the following:
(i) an n-dimensional Euclidean space R™,
(ii) an n-dimensional sphere S",
(iii) an n-dimensional real projective space,
(iv) an n-dimensional, simply connected hyperbolic space.

In the rest of this subsection, we recall some basic notions about group actions
on manifolds following the book by Alexandrino and Bettiol [2].

Definition 2.3. Let G be a Lie group and M a smooth manifold. A smooth map
[:G XM — M is called a (left) action of G on M, or a (left) G-action on M,

if
(i) l(e,x) = x, for all x € M, where e is the identity element of G;

(ii) 1 (g1,1 (82, 7)) = 1 (8182, ), for all g1,8, € G and x € M.

We often write g -  or just gz in place of the more pedantic notation I(g, ).

A right action 7 : M X G — M can be defined analogously and we write x - g or
xg.

Definition 2.4. An action is said to be proper if the associated map G X M +»
M x M, given by

GxM>(gx)— (g -z,2) e M x M (2.1)

is proper, i.e., if the preimage of any compact subset of M x M under (2.1)) is a
compact subset of G x M.

From Proposition 3.62 and Theorem 3.65 in [2], we see that actions by closed
subgroups of isometries are proper, and conversely every proper action can be

made isometric with respect to a certain Riemannian metric.

Definition 2.5. A Riemannian manifold (M, g) is said to be homogeneous if its
isometry group acts transitively, i.e., for each pair of points x,y € M there is a

g € Iso(M) such that g - x = y. e



2.1.2 Some basis results on gradient Ricci solitons

In this subsection, we shall recall some basic facts and collect preliminaries about
GRS. Then, the Let (M, g, f) be a GRS of dimension n > 3. Then the smooth
potential function f : M — R satisfies the following equation

Ric+ Hess f = Ag, (2.2)

where A € R, Ric is the Ricci curvature of M and Hess f denotes the Hessian
of f. The quantities Ric, f, and the scalar curvature S of M are related by the

following equations [39, Proposition 2.1].

Proposition 2.3. For any gradient Ricci soliton (M, g, f), we have

A;S + 2| Ric |* = 2\S, (2.3)

S+I|VfP=2 f=C (2.4)
for some constant C. Here Ay denotes the f-Laplacian, Ay := A - —(V f V).

In [82], Proposition 2.1], Petersen and Wylie proved the following result about
a Killing field on a GRS.

Proposition 2.4. If X is a Killing field on a gradient Ricci soliton (M, g, f),
then V(X f) is parallel. Moreover, if A # 0 and V(X f) = 0, then also X f = 0.

Remark 2.2. We emphasize that to prove the above result, Petersen and Wylie
used the condition that scalar curvature is bounded. However, such an assumption
can be omitted since, for A # 0, the scalar curvature of a GRS is always bounded
from either below or above [3, Theorem 8.6]). This is enough for the argument to
go through.

Consequently, Petersen and Wylie [82] gave the following splitting result.

Lemma 2.2. [82, Corollary 2.2] If X is a Killing field on a GRS (M, g, f,) then
either V(X f) = 0 or M locally splits a line isometrically. The latter means that
around each point p, there is a meighborhood U = V X I, where V is an open
neighborhood of a submanifold and T,V L (V(X[)), and I is an open interval.

The Riemannian metric in U is the direct product of the induced metrics on each

factor, and (V. g\v, f) is a GRS.

For (M, g, f) a shrinking gradient Ricci soliton, upon scaling the metric g by a
18



constant, we can assume that A\ = % Then the equation (2.2)) takes the form

1
Ric+V?f = 59 (2.5)

By adding a constant to f if necessary and the equation ([2.4)), we may normalize
the soliton such that

S+ |VfP=f (2.6)

Moreover, according to a result by Chen [22, Corollary 2.5] (see also [3, Theorem
8.6]), we have S > 0 for any shrinking gradient Ricci soliton. This and entail
that f > 0. On the other hand, from Haslhofer-Miiller’s works [44, Lemma 2.1]
(see also [18, Theorem 1.1]), we know that the potential function f has quadratic
growth at infinity. Using these results, we obtain the following proposition.

Proposition 2.5. Let (M, g, f) be an n-dimensional complete noncompact shrink-
ing gradient Ricci soliton with and . Then, each reqular level set of f

18 a compact set.
Proof. For each regular value ¢ € f (M), we consider the level set M. of f. Since

f is a smooth function and {c} is a closed set, M. = f~'(c) is also a closed set.
By Lemma 2.1 in [44], there exists a point p € M where f attains its infimum

and f satisfies the following quadratic growth estimate

L) —50),]" < J@) < 7 (rla) + V)

2
)

where r(z) is a distance function from p to x, and a, = max{a,0} for a € R.
This and the fact that f > 0 imply that M, is a bounded set and, therefore, M,
is a compact set. []

2.2 Dimension bound and Rigidity

This section is devoted to the proof of our main results. Let (M, g, f) be a GRS
of dimension n > 3. Recall

is0(M, g) := {X is a smooth tangent vector field on M, Lxg = 0}.

We also define

i5Of(]\47 g, f)
:= {X is a smooth tangent vector field on M, Lxg=0= Lxf}. (2.7)

19



Then, we see that iso (M, g, f) C iso (M, g) is a vector subspace. Towards our
goal, we will establish the following lemma concerning iso (M, g).

Lemma 2.3. If X € is0(M, g) and g(X,V f) = X f is constant then
(X, Vf]=0.
Proof. We observe that

g(LxV[Y)=g9(VxV[f—-VgXY)
= (Hess f)(X,Y)+ g (Vy X, V[f)— (Lxg) (Y,V[)
= (Hess f/)(X,Y) —g(X,VyVf)+Y (Lxf) — (Lxg) (Y,V[)
=Y (Lxf) = (Lxg) (Y, V) (2.8)

for any Y € T'M. Since X is a Killing vector field, (Lxg) (Y,Vf) = 0. Since
Lxf = Xfisaconstant, Y (Lxf) = 0. Combining these results yields

X,V f] = LxVf=0.

The proof is complete. []

We now give the proof of Theorem [2.1]

Proof of Theorem[2.1. Let M. be a level set of f with the induced metric g, :=
gira., where ¢ € f (M) is a regular value. By the level set theorem [99], (M., g.
is a smooth submanifold of co-dimension one. Consider X € iso;(M, g, f) and
let ;° denote the local flow generated by the vector field X. Then, we have

d b

X =— .
dt t:OSDt

Since Lxg = 0 and Lx f = 0, we deduce that (¢X) g = g and

W) f=fe fopf=F1, (2.9)

where (¢;¥)" is the pull-back of ¢X. By Proposition 2.1 we see that ¢X : M — M
generates local isometries and ¢ (M,) C M,. From this, we notice that ¢;*

induces a map @; = @[, : M, — M,. We consider the vector field

d d
Mc):%

X=Xl = 3

P -

t=0

(¢

t=0
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Since @f is an isometry on M., we conclude that
X € is0 (McagC) - {X € TM. | Lxg.= O}-

Thus, the map
7 iﬁOf(M,g, f) — 150 (Mm gc)

X—nX)=X=X

M.

is well-defined. Moreover, 7 is a linear map. Next, we will prove that 7 is injective.
Suppose that X|,, =0, where X € iso;(M, g, f). Since Lxg = 0 and Lx f = 0,
Lemma [2.3] yields

(X, Vf]=LxVf=0. (2.10)

Let p € M.and Y € T'M be an arbitrary vector field. Then, we have Y = Z+4 W,
where Z € TM, and W € T+M,. Since Vf is a normal vector field of T'M,,
W =nV f, where 1 is a smooth function. Therefore, we get

(VyX) (VzrwX)], = (V2X)|, + n (Ve X)), = n (Ve X)), (2.11)

=

The last equality follows from X| y. = 0. Furthermore, using (2.10]), we compute

(Vy;X) (—[X,Vf]+VxV/) (VxV )], =0. (2.12)

|p: ’p:

Since Y € T'M is an arbitrary vector field, we conclude that (V.X)| = 0. Since
X, = 0, by Proposition [2.1, we deduce that X = 0. This shows that the map 7
is injective. From Lemma [2.1] and note that dim M, = n — 1, we obtain

dimiso;(M, g, f) < dimiso (M, g.) < =(n — 1)n. (2.13)

DO | —

Next, we will consider the case dimiso;(M, g, f) = 5(n — 1)n. By Lemma/2.1

U

each regular connected component of f with the induced metric must be of con-
stant curvature. Consequently, each is homogeneous and complete [52, Theorem
IV.4.5]. Thus, the Lie algebra iso;(M, g, f) indeed generates a global group of
isometries on (M, g), and the action is transitive on each regular level set. There-
fore, S is constant on each regular level set and, by Proposition , so is |V f]
and % is closed and locally exact. Define ¢t by dt = % then the metric can be
written locally as

g = dt2+gt7
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where g; is a family of metrics on the differentiable manifold corresponding to a

regular connected component. Let L denote the shape operator and

0
V::a—gt'f:29toL.

Furthermore, by the constancy of |V f| on each regular connected component,
singular values for f : M — R are isolated. By continuity, nearby connected

components must be obtained from the same model space (N gy).
Since g; is homogeneous, so is v, and it suffices to consider its value at a point.

We recall the evolution of the Ricci tensor, Ric; := Ric(gy), [26, page 109], for

normal coordinates,

9
ot

ALVij = Al/ij + 2 Rmkijl Vi — RlCik Vi, — Rlek Vik,

1
Ric;; = ~3 (ALVU + V,V, trace(v)) — V;(dv); — Vj(5v),-),

Rm (V)ij =2 Rmkiﬂ Vi — RlCZk Vi — RiCjk Vi -
As v is homogeneous, all spacial derivatives vanish.
Claim. If gy is non-flat then v is a multiple of gy.

Proof of the claim. Since g; is isomorphic to a space form, Ric is a multiple of
the metric. Thus, Ric, when considered as a linear map on the tangent space, is a
multiple of the identity for each t. Thus, so is its derivative. If Rm(gy) # 0 then
f/{r\n(l/) is a linear combination of a non-trivial multiple of v and a multiple of the

identity. The result then follows.

Thus, if Rm(gy) # 0 there is a local diffeomorphism ¢ : N x I — U, an open
neighborhood in M, such that

¢*(9) = ¢*(dt* + g;) = dt* + F*(t)7" g.

The result then follows. ]

Remark 2.3. The case that gy is flat means each level set is an Euclidean space.

Their analysis will be carried out in the Appendix.
Next, we will apply Theorem to prove Theorem [2.2]

Proof of Theorem[2.9. Since M is locally irreducible, by Lemma , V(Xf)=0
for any Killing vector field X € iso(M, g). We then consider two possible cases.
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Case 1: A # 0. By Prop. 2.4, Xf = 0. That is, each Killing vector field
automatically preserves f. Thus, iso(M,g) = iso;(M, g, f) and the result then
follows from Theorem 2.1

Case 2: A = 0. If the scalar curvature S of (M, g, f) is a constant, then from
([2.3), we obtain Ric = 0, and hence (M, g, f) is Ricci-flat, which is a contradiction
to our non-triviality assumption. Thus, S is non-constant, and one observes that

it is invariant under isometries. Hence

is0g(M, g, f) : = {X is a smooth tangent vector field on M, Lxg =0 = LxS}
= iso(M, g).

Repeating the argument as in the proof of Theorem we have, for M, a regular
level set of S,

1
dimiso(M, g) = dimisog(M, g, f) < dimiso (M., g.) < E(n — n.

If the equality happens then, by Lemma [2.1| each regular connected component
of S with the induced metric must be of constant curvature. Furthermore, |V S|

is also invariant by the isometric action, and the rest is verbatim as in the proof
of Theorem 2.1 O

Proof of Theorem [2-3. First, by Theorem [2.2, dimiso(M,g) < 3(n — 1)n and

equality happens only if each connected component of a regular level set of f is a

space form (N"7!, gy). We now suppose that dimiso(M, g) = $(n — 1)n. Con-
sequently, each regular level set is homogeneous and complete, and consequently,
is0(M, g) is the Lie algebra of the isometry group on each regular connected com-

ponent. We will divide the rest of the proof into cases.

Case 1: A > 0. By Proposition each regular connected component is com-
pact. Then, by Lemma , the model space (N, gy) must be spherical (round
sphere or the real projective space). Then, from Theorem , the Riemannian
metric is a local warped product g = dt* + F?(t)gn. By [12, Theorem 1], the Weyl
tensor is vanishing, and (M, g) is locally conformally flat. The classification of a
GRS with such property for A > 0 is well-known. By [54, Theorem 1], (M, g, f)
must be either the Gaussian shrinking gradient Ricci soliton on R", the round
cylinder shrinker on S"! x R, or the round sphere shrinker on S". They are all
rigid.

Case 2: A = 0. If the metric gy is flat, that is (M™, g, f) (n > 3) is a steady
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gradient Ricci solition with local Euclidean level sets:

g:=dt* + g, = dt* + Z hi(t)dx?,

where each function h; is smooth, then from the system (2.19)) in Appendix, we

get
{ u
R

where ug := f', u; := 7* and
1

h h\

Note that A" = (ug — A) A. We rewrite the system (2.14)) as by the first equation

of the above system, we obtain

:B+(UO_A)A,

oL~

(2.14)

o~

/
Uy

S~

U
U4 - U;
for all §,4. This implies that there is a smooth function h such that - = %/ for all

uj
J. Then, we have

h/ h? B
Thus u; = a;h for some constant a;. From this and (2.14), one finds that

n =1h
[ (2.15)

where
l:uo—ah,a:Zai,b:Za?.

One can notice that

A _did b,
dh  dtdh 1
This implies that
/ [dl = / bhdh.
Consequently;,
bh* =1 +C
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for some constant C. This and ([2.15]) lead to

l'=0F+C. (2.16)

Now, we consider three possible cases.
Case 1: C' = 0. Then the equation (2.16)) becomes I’ = [*. Using this, we find

that
& 1 1

W=—rre M= i\/5<t+01)’

d
an ) .

_ £+ :
t+C \/E(t+01)

uo(t) = U(t) + ah(t) =

for some constant (.
Case 2: C' > 0. Then we set C' = D? for some constant D and the equation
([2.16) becomes " = I + D?. Thus, we have

D
[(t)=Dtan (Dt + D), h(t)==* :
() ( % () Vbcos (Dt + D)
and
wp(t) = I(£) + ah(t) = Dtan (Dt + D) + ab
" Y Vb cos (Dt + Dy)’

for some constant D).
Case 3: C' < 0. Then we set C' = —D? for some constant D and the equation
([2.16) becomes ' = [* — D?. From this, we get

D (€2Dt -+ Dl) h " + 4D1D2€2Dt

l(t) - e2Dt _ D, ) ( ) - \/E(GZDt _ Dl)a

and

D (e*”" + D) n 4aD,D*e*P
e2Dt _ l)1 \/Z_) (egpt . Dl)

for some constant D; > 0. Then we see that the function uy blows up as t ap-

wo(t) = U(t) + ah(t) =

proaches a finite time. Thus, the metric g is incomplete.

This result shows that the metric gy is non-flat. Then by Theorem and
[12, Theorem 1], (M, g) is locally conformally flat. According to [19, Theorem 2],

(M, g, f) is either the Gaussian soliton or isometric to the Bryant soliton. O
Finally, we observe that there is a gap in the dimension.
Corollary 2.1. Let (M™, g, f), withn # 5, be an irreducible non-trivial GRS and
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let d := dimiso(M,g). Ifd < 3(n—1)n thend < 5(n —1)(n —2) + 1.

Proof of Corollary[2.1. The proof is by contradiction. Suppose that d > %(n —
1)(n — 2) + 1. The group of isometries on (M, g) generates a Lie algebra of
complete Killing vector fields, which is a sub-algebra of iso(M,g). From the
proofs of Theorem and , there is an injective map from iso(M, g) to that of
a co-dimension one regular submanifold (M., g.). Furthermore, the completeness
of a vector field is preserved under the map. Thus, for each regular connected

component,

dim(Tso( M., g.)) > %(n -2+ 1.

By [53, Theorem 3.2], dim(Iso(M., g.)) = 3n(n — 1) and each (M, g.) is a space

form which is homogeneous and complete. Thus, by continuity, we go back to the

case of Theorem [2.2/and d = in(n — 1), a contradiction. O

2.3 Appendix

In this Appendix, we consider the case of each level set of a GRS is Euclidean,
which was mentioned in the proof of Theorem [2.1, We first adapt the gradient
Ricci soliton equation to the cohomogeneity one setting, essentially using the
methodology and notation of [30].

Let G be a Lie group acting isometrically on a Riemannian manifold (M, g).
The action is of cohomogeneity one if the orbit space M /G is one-dimensional. In
this case, we choose a unit speed geodesic () that intersects all principal orbits

perpendicularly. Then, it is possible to define a G-equivariant diffeomorphism
®: [ x P+~ M, given by

O(t,hEK) = h - 4(1).

Here, My C M is an open dense subset, [ is an open interval; P = G/K where
K is the istropy group along (t). Then, the pullback metric is of the form

CID*(g) = dt* + g

where ¢; is a one-parameter family of G-invariant metrics on P. We let L denote
the shape operator L(X) = Vx N, where N = ®, (0;) is a unit normal vector field.
We will consider L; = Ligxp) to be a one-parameter family of endomorphisms on
TP via identification T(®(t x P)) = TP. Following [30], we have 0,9 = 2g; o Ly,
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that is for X, Y € TP,
(09) (X,Y) = 2g; (L+(X),Y) .

From Gauss, Codazzi, and Riccati equations, we find that the Ricci curvature of
(My, g) is totally determined by the geometry of the shape operator and how it
evolves. Moreover, if the function f is invariant by the group action, then the
gradient Ricci soliton equation is reduced to

0=—(L)—VtrL,

A = —trace (L') — trace (L) + f”, (2.17)
Mg (X,Y) = Ric,(X,Y) — (trace L)g:,(L(X),Y)
— g9 (L'(X),Y) + f'g(L(X),Y).

where Ric; denotes the Ricci curvature of (P, g;),0L = Y. V.. L (e;) for an or-
thonormal basis and tr’I" = tr,, T;.

Now, we consider a GRS (M", g, f) (n > 3) with local Euclidean level sets:
g=dt’ + g = dt* + ) hi(t)da;, (2.18)
where each function h; is smooth. Observe that
h'
2g;0Ly = 0,9, = 2 zZ: ih?dm?

From this, we get

and

Consequently,

B R 2
trace L, = Z EZ’ trace Lf = Z (h—l> )

1 ¢ )

AN
trace L] = Z (# — (ﬁ) ) :
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Since the shape operator L satisfies the Riccati equation [40, page 117], the sec-

tional curvature of the 2-plane section spanned by e; = % and N is given by

K (62', N) =go (—L/ — L2> (ei, 62')
=—g (L' (&), &) — g (L* (&) ,e:)
hy (h;)2 (h;)2 hy
- 7 €i, € | — ] €€ | =~/
T\~ “) I\, h,
Using the Gauss equation [83, Theorem 3.2.4], we see that the sectional curvature

of the 2-plane section spanned by e; and ¢e; is given by

nn,
K (e e5) = —g(L(e;),e) g(L(e;), €)= _E#'
i1t
The Ricci curvature is then given by
Ric(N, N) ZK e, N) = Z—
and
Ric (¢, e;) = K (e, N) + ) K (e, e
i7#]
() (e

3 AN (h;.)z
B —~ hi ) hj h; h; '
From these results, we imply that the scalar curvature is given by

S =Ric(N,N) + > Ric(e;,e;)

J
h// h/ h// h/_ 2
-2 - (23) (55) -2 6-6)
7 j ]
= -2 i _ A+ B
2
where
/ A
A= —, B = — .
LS
Thus, generically, the Weyl tensor is NOT vanishing.
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Plugging the above results in (2.17), we conclude that
AN A
() 2
h/ h// h. 2
_ _J
(2 )

Let uy := [ and u; := h—’ the above system can be written as follows
B =g (2.19)
w; = (ug — A)uj — A '

uy= B+ (ug—A)A—(n—1)\

This is a system of first-order ODEs, and the Picard-Lindelof theorem yields local
existence and uniqueness.
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Chapter 3

Liouville type theorems and gradient
estimates for nonlinear heat equations
along ancient k-super Ricci flow via

reduced geometry

Recall that for each real number £, a time-dependent Riemannian manifold
(M, g(z,1))ses is called a k-super Ricci flow if it satisfies the following condition
%9 + 2 Ric > 2kg. (3.1)

ot
A k-super Ricci flow (M, g(x,t))er is said to be ancient when I = (—o0,0].
Written based on the paper “Ha Tuan Dung, Nguyen Tien Manh, and Nguyen
Dang Tuyen (2023), Liouville type theorems and gradient estimates for nonlinear
heat equations along ancient K-super Ricci flow via reduced geometry, Journal
of Mathematical Analysis and Applications, Vol. 519 (2), 126836” [32], Chapter
delves into the study of Liouville type theorems and gradient estimates for the pos-
itive bounded solutions to the nonlinear parabolic equation concerning Perelman’s

reduced distance

0
gy W@ t) = Au(z, t) + au(, t) Inu(z, 1) (3.2)

along ancient k-super Ricci flow (M, g(x,1))ie(—000), Where a is a real number.
This is the content of Problem [1.2) that was discussed in Chapter [I] As in [56],

we also work on the reverse time parameter 7 := —t. On this parameter, the

30



ancient K-super Ricci flow (M, g(t)):e(—c0,0) becomes backward k-super Ricci flow
(M7 g(T) )76[0700)7 namel}’?

10g
Ric > ——2 + kg.
1C_287+ J

Moreover, the equation (3.2) can be translated as follows

(({% + A) u(x,t) = —au(z,t) Inu(x,t). (3.3)

The chapter basically consists of two parts as follows.

In the first part of the chapter, we focus on recalling fundamental results in
reduced geometry, along with several related problems that serve as the foundation
for proving our main findings. Additionally, the chapter’s primary results are

thoroughly presented in this section.

In the next part of the chapter, we aim to formulate and prove Hamilton type
gradient estimates for positive smooth solutions w via the localization technique
of Li-Yau to the nonlinear parabolic equation . These gradient estimates play
a crucial role in establishing the Liouville type results, which will be presented in

the final part of this section.

3.1 Preliminaries and main results

3.1.1 The reduced distance function of Perelman

In this section, we mainly recall some basic results of reduced geometry and
some related problems, which will be used to prove our result. The main ref-
erences of Section are [27, 56, 112]. Throughout this section, we assume
that (M, g(x,T))refo,0) 18 an n-dimensional, complete time-dependent Rieman-
nian manifold. Besides, we sometimes write u(x, 7) as u, and also write % as 0;u

or u,. We begin by providing the definition of reduced distance.

Definition 3.1. The L-length of a curve 7y : |11, To| — M is defined as

T 2
L'(W)::/ \/7_'<H—|— &y )dT,
. dr
where |
h = 5&9, H :=trh.



Definition 3.2. For each (x,7) € M x (0,00), we define the L-distance L(x,T)

and the reduced distance p(x,T) from a space-time base point (xy,0) as follows

1
L(Q’,’,T) = 13f£(7)7 p(SE’,T) = ﬁL(x?T)a (34)
where we take the infimum over all curves v : [0,7] — M with v(0) = xy and
v(1) = x. If a curve attains the infimum of (3.4) then it is called minimal

L-geodesic from (x0,0) to (x, 7).

Remark 3.1. In the static case 0,9 = 0, we have p(x,7) = d(ﬁ)i where d(x) is

the Riemannian distance from x, induced from g.

Definition 3.3. Let (M, g(x,T))rcp,) be a complete, time-dependent Rieman-
niwan manifold. If for each 7 > 0 there is ¢™ > 0 depending only on T such that
h > —c"g on [0, 7] then (M, g(x,T))rep,00) s admissible.

Remark 3.2. From the results of Ye (see Propositions 2.12, 2.13 in [112]), we
see that the functions L(-,7) and L(x,-) are locally Lipschitz in (M, g(7)) and
(0, 00), respectively when (M, g(z, T))reo,0) is admissible. Moreover, they are dif-
ferentiable almost everywhere. Besides, the admissibility also implies the existence

of minimal £-geodesic (see Proposition 2.8 in [112]).

Note that if H > 0 then by Definition [3.1, we deduce that £ is non-negative,
so is p(x, 7). From this observation, for (z,7) € M x (0,00) and H > 0, we can
define

L(z,7) :=d4rp(z,7) = o(x,7)°.

Next, we list here the following helpful lemma whose proof is exactly the same as
in the proof of (7.88), (7.89), and (7.90) in [27].

Lemma 3.1. 27, Lemma 7.44][114, Subsection 2.3] Suppose that p is smooth at
(7, 7) € M x (0,00). Then we have

1
bp=H-L1 K, (3.5)
T T2
2 __ P 1
IVp|" = —H + = — 5Ky, (3.6)
T T2
n 1 1
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at (T,T), where

K ::/ 2 H(X)dr, Kp ::/ 2 D(X)dr.
0 0

Remark 3.3. We may conclude that even if p is not smooth at (T, 7), the above
inequalities hold in the barrier sense by employing the same barrier function as in
the proof of Lemma 5.3 in [74].

To establish main results, we will use the following Miiller quantity D(X) (see
Definition 1.3 in [70]) and trace Harnack quantity H(X) (see Definition 1.5 in
[70]):

D(X) = 0,H — AH — 2|62 + 4 div §(X)
—29(VH, X) + 2Ric(X, X) — 25(X, X), (3.8)

H(X) = —0,H — g — 99(VH, X) + 25(X, X), (3.9)

where X is a (time-dependent) vector field.

Remark 3.4. For the convenience of the proof later, we divide D(X) into two

parts: D(X) = Dy(X) 4+ 2R(X), where
Dy(X) := —0.H — AH — 2|p|> + 4div h(X) — 29(VH, X),
R(X) := Ric(X, X) — (X, X).
We notice that if (M, g(x, T))rejo.00) is a backward k-super Ricci flow then

R(X) = Ric(X, X) — % g(X, X) > kg(X, X) = k|X|". (3.10)

The next lemma concerning the L-distance and the function 9 plays a key role
in the proof of Theorem [3.1]

Lemma 3.2. [56, Lemma 3.5 and 3.6] Let £ > 0. We assume that the reduced
distance p is smooth at (Z,T) € M x (0,00) and

D(X) > =2k (H+|X|"), HX)>-—, H>0,

for all vector fields X. Then at (T,T) we have the following estimates

(A+0,)L<2n+2kL and |Vo|* <3.
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In order to state the results, we introduce some notations. For R,T" > 0, let
QR,T be
Qrr :={(x,7) € M x (0,T] | o(x,7) < R}.
Throughout the next sections, we make use of the following notation
+

¢" :=max{q,0}, ¢ :=min{g,0}.

3.1.2 Main results

The main purpose of this chapter is to extend and improve the results of
Kunikawa-Sakurai [56] and Dung-Dung [31]. Our first main result is the following

Hamilton type gradient estimate:
Theorem 3.1. Fork > 0, let (M, g(x,T))rej0.00) be an n-dimensional, admissible,

complete backward (—k)-super Ricci flow. We assume

D(X)> =2k (H+|X]?), HX)>-—, H>O0,

S

for all vector fields X. Let u : M x [0,00) — (0,00) be a positive solution to
backward nonlinear heat equation (3.3). For R,T > 0 and B > 0, we suppose
u < B in the cylinder Qrr. Then there exists a positive constant ¢ = c(n)
depending only on n such that

|V VA 1 . B
T <C<?+ﬁ+\/%+\/21;2{[@(2+21HB—1HU)] }) \/l—l—lnz

(3.11)

in Q%%, where A=1+1InB — In (ianR’T u) .

Remark 3.5. Theorem|3.1|can be regarded as a generalization along the backward
(—k)-super Ricci flow of Theorem 1.1 in [31].

When a = 0, we can derive the following local space-only gradient estimate for

the backward heat equation under the (—k)-super Ricci flow.

Corollary 3.1. For k > 0, let (M, g(z,7))refo,) be an n-dimensional, admissi-
ble, complete backward (—k)-super Ricci flow. We assume
9 H
D(X) > —2k(H+\X! ), H(X)>——, H>0

— — )

-
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for all vector fields X. Let u : M x [0,00) — (0, 00) stands for a positive solution
to the backward heat equation

(a% + A) w=0. (3.12)

For R, T"> 0 and B > 0, we suppose w < B in the cylinder Qrr. Then there

exists a positive constant ¢ = c(n) depending only on n such that

|Vul VA 1 B
T§c<?+ﬁ+\/%>\/1+lng, (3.13)

m Q%%, where A=14+1InB — In (ianR’T u) .

Remark 3.6. Since (0, + A)u = 0, let v = v+ 1; then v satisfies (0, + A) v =
0. Thus, without loss of generality, we may assume that v > 1. Then, we get

A =1+ 1In B and the inequality (3.13) becomes

[Vul <c<”1+lnB+ ! +\/E>\/1+ln§.
u R VT u

Notice that /1 + 111% <1l41n %. Thus, our result can be seen as a significant
improvement to Theorem 2.8 of Kunikawa-Sakurai [56].

As an application of Theorem [3.1 we have the following Liouville theorem for

the backward nonlinear heat equation (3.3)).

Theorem 3.2. Let (M, g(x,T))rcpo,) be an n-dimensional, admissible, complete

backward super Ricci flow. We assume
H
D(X)>0, HX)>—-——, H>0 (3.14)
for all vector fields X .

1. When a <0, let u: M x [0,00) — (0,00) be a positive solution to backward
nonlinear heat equation (3.3). If e < u < B for some constant B < 1,
then u does not exist; if e=2 < u < B for some constant B > 1, then u = 1.

2. When a =0 :

2a. If u © M x [0,00) — (0,00) be a positive solution to backward heat
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equation (3.12) such that
u(z,7) =explo(0(z,7) + 7)] (3.15)

near infinity, then u is constant.

2b. If u : M x [0,00) — R be a solution to backward heat equation (3.12)
such that

u(z,7) =0 (0(x,7) + /1) (3.16)

near infinity, then u is constant.

Remark 3.7. The first part of Theorem can be regarded as a generalization
along the backward super Ricci flow of Theorem 1.3 (part ii) in [105] and Corollary
1.3 in [31]. When a = 0, the part 2a of Theorem [3.2|is better than Theorem 2.2 in
[56]. In particular, in the static case of h = 0, the part 2a is reduced to Corollary
1.2 in [31].

3.2 Gradient estimates for (3.3) along the backward

(—k)-supper Ricci flow and Liouville type results

In this section, inspired by the work of Kunikawa-Sakurai [56], we will study
gradient estimates for positive solutions to the nonlinear parabolic equation (3.3)
along the backward (—k)-supper Ricci flow (M, g(7))rep0,00)- Recall the system
that u and g solve

(3.17)

(0r + A)u = —aulnu,
Ric > b o kga

where £ > 0 and h = % .g. Suppose that v is a positive solution to the backward
nonlinear heat equation (3.3). We now introduce an auxiliary function

/ B [ D
h=4\/1+4In—=4/In—>1
U U

on Qrp, where D = Be. Then, we have
w=De" and Inu=1InD — h2.

This implies
u, = —2Dhhe™,  Vu=—2DhVhe ™,
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and

) 1
Au = —2Dhe™" [Ah + |Vh|? (E - 2h)} .

As a consequence, from (3.3]), we get
2 2 ]_ 2
—2Dh he™ = 2Dhe™" [Ah + |Vh|? (E — Qh)] —aDe™ (InD — h?).
which is equivalent to

(0, + A)h = |Vh|? <2h — 1) +

. g (% . h) . (3.18)

3.2.1 Basic lemmas

Using the equality (3.18), we have the following computational lemma, which
will play a significant part in the proof of Theorem [3.1]

Lemma 3.3. Let (M, g(x,T))rep,) be an n-dimensional, admissible, complete
backward (—k)-super Ricci flow (k > 0) and u be a positive solution to the back-
ward nonlinear heat equation (3.3). Suppose that w < B for all (z,t) € Qpr

where B > 0. Denote h = /1+1InZ and w = |Vh|*. Then on the cylinder
Qrr, we have

(A+0,)w >2 (Qh — %) (Vw,Vh) + 2 (2 + %) w® — (2k + P)w, (3.19)

where P = sup {[a(? +2InB — lnu)]+} :

QR,T

Proof of Lemma [3.3. We first proof the following identity
w, = —(0,9) (Vh,Vh)+2(V (h,),Vh). (3.20)

We will apply local coordinates to conveniently compute the above equation.
For each x € M, let {ej,ey,...,e,} be a local orthonormal frame field and
{€4,€2,...,£"} be its coframe field. Here we adopt the notation that subscripts
in ¢, j and k, with 1 <4, 5,k < n, mean covariant differentiations in the e;, ¢; and

e directions respectively. Then, we have

1,5=1
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where [¢"] is the inverse of the matrix [g;;] and g;; = (e;, ;). This implies that

IVh|> = (Vh, Vh) = <Z §'Vihe;, Y gklvkhel>

ij=1 k=1

— Z g”gklvzhvkh <€j7€l>

ik d=1

i,k,l=1 \j=1

= Y §¢g"VihVih = ¢"VihVih.

ik,l=1 i,k=1

Thus, we get

w, = 0, (|Vh|?) (Z 9"V ;hV, h)

2,7=1

:Z 94" Vth-l—Zg”@ Vh+Zg”Vh8 (V;h)

1]1 1,j=1
n

_Z 0,9") V,hV, h+zzng (0,h) V;h

j=1 1,j=1

= Z 0,9") V;hV ;b +2(V (h,), Vh).

Moreover, from the identity Y7 | g”g; = J], we obtain

0= (Z g”gjl> = Z argw gji + Zg Tg]l)
7=1 7=1

Consequently,

n

Z (argij) gj1 = — z": glj (@Qﬂ) .

j=1 i=1

From this, We deduce that
n n

_ Zzg” T.g]l lk ZZ Tg” g9

=1 j=1 =1 j=1

=Y (0.9") (Z gjzg”"’> =) (9:97) 6}
j=1 =1 j=1

38
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This shows that non

09" ==> ") g% (Orgu) g
=1

k=1
Then, we find that

> (0:97)VihVih == Y (d:9u) 9" g7V :hV h. (3.22)
i,j=1 i,4,k, =1

Note that g = >0, g;&' ® &. Thus, we have

(0-9) (VRh, Vh) = (i (0:9:) € ®€j> (Vh, Vh)

ij=1
- <Z (0r9:5) &' ® fj> (Z 9"V yhey, Z gqupheq>
t,5=1 k=1 p,q=1
= Z (0-9i;) g™ "'V hV ,hE' @ & (e, €,)
1,7,k l,p,g=1
- Z (aTgij) gklgpqvkhvphgi (6;) ® fj (eq)
1,7,k,l,p,q=1
= Z (8,9i5) 9" g""V ,h N ,hé; 0}
,5,k,l,p,q=1
= Y (0:95) §"g"VihV,h = Y (0rgw) 99" ViV h.
0,5,k p=1 ijk,l=1

This and entail that
> (0:97) VihV;h = — (9,9) (Vh, Vh).

ij=1

From the above identity and (3.21)), we obtain the identity ([3.20]). Plugging (3.18))
into (3.20]), we conclude that
w, = —(0-9) (Vh,Vh)+2(V (h,),Vh)
1

— —(8.9) (Vh,Vh) — 2(VAh, Vh) + 2|Vh|? <v <2h - E) ,Vh>

1 (2h— %) (V (IVH?) , Vh) +a<V (% _ h) ,Vh>.

Notice that
1 1 2
_ - —(o+ —
<v <2h h) ,Vh> ( + h2> IVh|",
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and

h h? h?

Therefore, we obtain

v(ln—D—h) :—mD@—Vh:—(l“DH) Vh.

w, = — (0-9) (Vh,Vh) — 2(VAh,Vh) + 2 <2h — %) (V (IVRh|?),Vh)

1 InD
+2 (2 + ﬁ) VA" —a ( o+ 1) IVh|®. (3.23)

Using the Bochner-Weitzenbock formula (see [104, Theorem 1.1]), we have
1
SAIVAP = IV2h|” + Ric(Vh, Vh) 4+ (VAh, Vh) .

This and ([3.23)) entail that

w, = — (0,9) (Vh, Vh) — A|Vh|? + 2Ric(Vh, Vh) + 2 |V2h|"
1 1 InD
+2(2h_ﬁ> (Vw,Vh)—i—Q(Q—I—ﬁ)wz-i—a( 2 —I—l)w

1 In D
:—A\Vh\2—|—2|v2h|2+2(2+ﬁ)w2—a(n —|—1>w

49 (Qh - %) (Vw, Vh) + 2 [Ric(Vh, Vh) — % (9.9) (Vh, Vh)]

1 1
= —Aw+2 ]V%]Z + 2 <2h — E) (Vw,Vh) +2 <2 + E) w®

In D
—a ( e + 1> w + 2R(Vh),

or equivalently

1 1
Aw 4w, > 2|V2h}2—|—2 <2h— E) (Vw,Vh) + 2 (24—?) w?

L (h;l? + 1) w + 2R (V). (3.24)

Since h > 1, we get

InD a a
a( 72 -I—l) :ﬁ(lnD—l—hz) :ﬁ(2+21nB—1nu)

1
< 7 max{a(2+2In B —Inwu),0}
< sup{max{a(2+2InB —Inu),0}} = P.

QRr,T
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Moreover, we have R(Vh) > —kw. These inequalities, combined with (3.24)),
yield that

Aw+w722(2h—%> <Vw,Vh>+2(2+%> w® — (2k + P) w.

The proof is complete. []

To prove the main theorems in this section, we recall the following useful space-
time cut-off function in [8, 56|, 57, 61].

Lemma 3.4. Giwven R, T > 0, there exists a smooth cut-off function %(7’, t) sup-
ported in [0,00) X [0,00) satisfying following conditions

(i) 0 < 9Y(r,t) <1 in[0,00) x [0,00).

(ii) The equalities ¥(r,t) = 1 and g—?(r, t) = 0 hold in [0, £] x [0, L] and [0, £] x

) )4 D)
[0, 00), respectively.

(iii) When 0 < € < 1, there is a constant C, such that

Cy” _ ¢ 0| _ G
— < —< .
R — or — 0, and or?| = R?
(iv) ¢(r,t) = 0 on [R,00) x [£,00) and o-7] < £ on [0,00) x [0,T] for some

C > 0.

Now, we take a cut-off function ¥ : [0,00) x [0,00) — [0, 1] satisfying all
conditions in Lemma [3.4 Our main goal is to prove that inequality in
Theorem [3.1| holds at every point (x,7) in Q%% For this purpose, we introduce
a smooth cut-off function ¥ : [0, 00) x [0,00) — [0, 1] by

(@, 7) =@, 7),7). (3.25)
Using the cut-off function 1), we have the following lemma.

Lemma 3.5. Let (M, g(x,7))rep,) be an n-dimensional, admissible, complete
backward (—k)-super Ricci flow (k> 0) and u be a positive solution to the back-
ward nonlinear heat equation . Suppose that v < B for all (z,t) € Qpr
where B > 0 and

R(X) > —k|X]", D(X)> -2k (H+[X[), HX)>-=, H>0,
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for all vector fields X. We define h and w as in Lemma[/.1. If

O = (A+0,) (Yw) 2<W’Z(W)> ) (2h _ %) (V (w), Vh),

then

R T7 1+2h

at every point in Qrr such that the reduced distance is smooth, where ¢ denotes

2 1 2
¢w2§c<£+—+k2+772)+ g

a constant depending only on n whose value may change from line to line in the

following.

Proof of Lemma[3.5 By direct computations, we see that

b = (A +0,) () — 2<W’Z(W)> 9 <2h _ %) (V (bw), Vh)

= A(yYw) + 0, (Yw) — 2 (2h — %) (YVw +wVy, Vh)
B 2(V, vVw + wV)

(G
Vi ? 1
= (Aw +w,) + w (AP + ;) o 5' w— 2 <2h— E) (Vw, Vh)
— 2w (2h - %) (Vi), Vh). (3.26)

Plugging (3.19) into (3.26), we get
IVWw
Y

— 2w (Qh — %) (Vi, Vh)w +w (A + 1, ,

1
@22(2+ﬁ>¢w2—(2k+77)w—2

or equivalently

2h? 4h (1 — 2h?)
2
<
dopw Tz 2}12(216 + P)yw + TS (Vh, Vip)w
a2 |Vy? 2h? 2h?
. A
Troe o VT T (BT

D, 3.27
1 4 2h? (3.27)

Since L = 0%, we get

—wAy = —w [, (A+0,) 0+ 0, Vo' = —w [, (A +,) (VI) + ¢, |Vof]
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Observe that

(A+&)(ﬁ)—v<vz> Py

L) 2VL
T 2
_AL VIR 1 oo
WL 4L\/_ WL
_AL |V _ VI
D™ 403 —8L_20(A+87)L— 403

Thus, we have
VL]’

VL
(A+0,) L+ wi, e

—wAp = “;wr — wi,, |V,

Note that 1, < 0. Using this fact and the results of Lemma [3.2] we find that

g = (A o) T VI v
<Y “fr‘ (A+0.)L +w || |Va|2
< “’Q;M (2n + 2kI) + 3w |¢.|
< g+ kBw ] + 3w g,
Combining and the above estimate, we obtain
b2 (Bt + K Ruly, |+3wrww|)
: :
1 ithzwa T ihzhfb'
Since 0 < 22 < 1, from the above inequality, we conclude that
dpw? < (2% + P)bw + %KVh Vi) w + 2. $|2w
+ [(2}? + kR) W |9+ 3w || +w[ipr] + 5 ih;hzdl (3.28)

Next, we will use the Young’s inequality and Lemma [4.2] to estimate upper bounds
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for each term of the right-hand side (RHS) of ({3.28]).
For the first term on the RHS of (3.28), we have

(2K + P)iw = (vhw) [v}(2k + P)|
1

%ww + c(2k + P)* < —gpw® 4+ cK? + P> (3:29)

[\

For the second term on the RHS of (3.28)), we have

4h |1 — 2R3 11— 2h?|
——|(Vh <A4h—— h
VR, Ve < bV Vi
< 4h|Vi|w? = 4h\vw|w‘*‘°’ (vu?)’
L, 4|V¢\4 2 4 cA?
< §¢w + ch e —¢ T (3.30)
where A =14 1n B — In (info, , u) .
For the third term on the RHS of , we have
2[Vy|* 2,03\ (i}
5w =2(IvoPed) (vho)
Lo, Vot 1 c
For the fourth term on the RHS of , we have
2
(1—? +KR) w [, ] + 3w [,
1 2n |¢r| 1 ‘¢rr|
S Uk
( ) R Y2 ( ) W2
1 2 0, Il
< —yw? KR
<got+e(Z+ ) v b
8en? [ihy | s |
< 2 T R2
<’ + % +cK2, (3.32)

Finally, we estimate the last term on RHS of (3.28)):

wlwflz(w%w)('zg‘) (wz) (’zg’) <%ww2+%. (3.33)
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Substituting (3.29)-(3.33) into (3.28)), we deduce that

A2 1 2R
2< o o k2 2 q)
¢w_C<R4+T2+ +P)+1+2h2

The proof is complete. ]

3.2.2 Gradient estimates and some special cases

We will apply Lemma [3.5 and the maximum principle to prove Theorem [3.1] by
adapting arguments of [506].

Proof of Theorem [3.1]. Define functions h,w and ) as in Lemma [3.3] and ([3.25)),
respectively. For 6 > 0, we consider a compact subset Qp 1y of Q1 by Qrr9 1=
{(z,7) € Qrr | 7 €[0,T]}. Next, we fix a small § € (0,%). Assume that the
space-time maximum of 1w is reached at some point (T,7) in Qrre. We will
prove Theorem in the following two cases according to the smoothness of the

distance function p at (T, 7).

Case 1: p is smooth at (T,7). From Lemma [3.5) and the fact that 0 < ¢ < 1,

we get

(¢w)2<¢w2<c<A—2+i+K2+772>+ 20 P (3.34)
- —O\R T 1+ 2h2 '

at (T,T), where ® is defined as in Lemma [3.5| Note that for backward (—k)-
supper Ricci flow (M, g(7))re(0,00), the assumption for R(X) in Lemma is

satisfied. Since (Z,7) is a maximum point, we have
A(Yw) <0, 0:(Yw) <0, V(dpw)=0

at (7, 7). By the definition of ® (see Lemma [3.5), we deduce that ®(z,7) < 0.
Therefore, the inequality (3.34) implies that

(¢w)2(x,7') < (lﬁw)z(j, 7T)<c (% i % 4Ry Pz)

for all (z,7) € Qrrg. This shows that

R T
45
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for all (ZE',T) € QR,T,@-

Case 2: p is non-smooth at (Z,7). Then there is a sufficiently small § > 0, a
small open neighborhood U of T in M, and a smooth upper barrier function p of
the reduced distance p on U X (T — 0,7 + 9) such that p satisfies (3.5)), (3.6) and

(3.7) in Lemma |3.1] at (%, 7). Moreover, we define

~

oz, 7) = \/41p(z,7), U(z,7) =00z, 7T),T),

where 1 is the function defined in Lemma [3.4. Note that @Z is a smooth lower

barrier of ¢ at (Z,7). Besides, (Z,7) is the maximum point of hw on U x (7 —
0,7+ 9) N Qrry. Therefore, we conclude that

A(Yw) <0, 9-(hw) <0, V(dw) =0

at (T,7). We can apply Lemma [3.2] combine with the above conditions of @Zw to

get

IA

\/(Aw)z(f,?)§6<%+%+[(+77)

In both cases, since ¢ = 1 on Q%%, by the definition of w and h, we have the

for all (z,7) € Qrre.

following estimate

&§c<@+i+\/ﬁ+\/§>\/1+ln§,
u R /T u

on Q%%@. Thus, by letting # — 0, the proof of Theorem [4.1|is complete. O
Remark 3.8. In the static case % = 0, we obtain

h=2=0, H=trh=0, and d(z,t)=d(x).

Moreover, from the definition of D(X) and H(X), we imply that

Ric > —kg, H(X)=-—-——=0,

R(X) = Ric(X, X) > —kg (X, X) = —k| X",
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D(X) = 2Ric(X, X) > —2k| X|* = =2k (H +|X["),

for all vector fields X. Clearly, the conditions in Theorem are satisfied in
this case. Thus we can apply Theorem to give local gradient estimates for

positive solutions of the equation (3.2) on the static Riemannian manifold with
Ric > —kg.

Corollary 3.2. Let (M, g) be an n-dimensional complete Riemannian manifold
with Ric > —K g for some constant K > 0 in

B (20, R) = {x € M|d(x,2,) = d(z) < R}

for some fized point xy in M, and some fized radius R > 0. Let u : M x [0, 00) —
(0, 00) stand for a positive solution to the nonlinear heat equation (3.2). ForT > 0
and B > 0, we suppose u < B in the cylinder

Onr = B (x0, R) x (0,T] € M x (0, T].

Then there exists a positive constant ¢ = c(n) depending only on n such that

[Vl < c(ﬁ—l—%-l-\/?—k\/sup{[a(2—|-21nB—1nu)]+}> \/1—!—11157

uo R \/_ QRr,T u
(3.35)

in Q%%, where A=14+1nB —In (ianR,T u) .

Remark 3.9. Using the inequality In(1 + z) < x for all z > 0, we see that

/ B /B
1+In— <y/—.
U U

Then we can rewrite the inequality (3.35)) in the case 1 < u < B as

\/a N R \/_ QRr,T

This shows that Corollary[3.2]is better than Theorem 1.3 of Jiang [50] and Theorem
1.1 of Wu [105] in the case a < 0.

&<C<\/1+lnB+ 1T+\/E+\/sup{max{a(2+2lnB—1nu),0}}>.

Using Theorem [3.1], we can derive for positive solutions to the nonlinear parabolic
equation ({3.3) along complete backward Ricci flow with bounded, non-negative

curvature operator.
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Corollary 3.3. For k >0, let (M, g(x,T))reio,00) be an n-dimensional, complete
backward (—k)-Ricci flow with bounded, non-negative curvature operator. Let u :
M x [0,00) — (0,00) be a positive solution to backward nonlinear heat equation
B.3). For R, T >0 and B > 0, we suppose uw < B in the cylinder Qrr. Then

there exists a positive constant ¢ = c¢(n) depending only on n such that

|Vu| VA 1 + B
o §c<?+ﬁ+\/%—l—\/21;2{[@(2+21n3—1nu)] }) \/1—|—lnz

(3.36)
in Q%%, where A=1+1nB —1n (ianR’T u) .
Proof of Corollary[3.3 By the assumption, we have h = Ric + kg. Consequently,
H = trh = tr (Ric+kg) = tr Ric +tr (kg) = S + nk,
for the scalar curvature S. In addition,
R(X) = Ric(X, X) = 30.9(X, X) = ~hg(X, X) = ~K|X["
for all vector fields X. Using the contracted second Bianchi identity, we obtain
Dy(X) = —0.8 — AS — 2| Ric |* — 4kS — 2nk>. (3.37)
By Proposition 4.10 in [2], we have the following evolution formula for S
0.8 = —AS — 2| Ric |* — 2kS.
This and entail that
Dy(X) = —2kS — 2nk* = —2k (S + nk) = —2kH.
Thus, we have
D(X) =Dy(X) +2R(X) = —2kH — 2k|X|* = -2k (H + |X|2) . (3.38)

From (3.9) and h = Ric + kg, we get

H(X) + g = —0.H —29(VH, X) +2h(X, X)

= —0.8 —29(VS, X) + 2Ric(X, X) + 2k|X[? >0,  (3.39)
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where we used Corollary 5.3 in [56] and the assumption & > 0. From the non-
negativity of curvature operator, we see that the admissibility of (M, g(x, T))rep,00)
is satisfied and H > 0. Combining this with and , we conclude that
(M, g(x, T))rejo,0) satisfies the assumption in Theorem . We complete the proof
of Corollary [3.3 O

3.2.3 Liouville type results

We now apply Theorem [3.1] to prove Theorem [3.2]

Proof of Theorem[3.3. Let (M, g(x, T))re0.00) be backward super Ricci flow satis-
fying for all vector fields X. By the assumption of Theorem [3.2] we have
k = 0. Suppose that u : M x [0,00) — (0,00) is a positive solution to the
backward nonlinear heat equation (3.3). We fix (z,7) € Qrr C M x (0, 00). For
every sufficiently large R > 0, we see (x,7) € Q%%

1. When a < 0 and e? < u < B for some constant B, we have A < 3+1In B <

oo and

B
a(24+2ImnB—Inu)=a(2+InB)+aln— <0.
u

This implies that
sup {[a(2 +2InB — lnu)]+} = 0.

OR.R

From Theorem [3.1], we have

|Vu| vV3+InB 1 B
— < 1+1In— 4
< TR, i+~ (3.40)

in Qg g. Letting R — oo in (3.40), we obtain |Vu (x,7)| = 0. This shows that
u must be constant in z. Substituting u(z, 7) = u(7) into the equation (3.3)), we

get the following ordinary differential equation (ODE)
O,u = —aulnu.

If a = 0, then we can obtain 0,u = 0 and w is constant. If a < 0, solving the
above ODE, we deduce that

u(r) = exp {ge” "}

for some ¢ € R. When 7 — +00, we see that: u(7) = exp{qe "} — 40
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if ¢ > 0; u(r) = exp{ge ™} — 0if ¢ < 0. From this and the assumption
e ? <wu(x,7) < B, we see that u only exists when B > 1. The proof is complete.

2. When a = 0, u : M x [0,00) — (0,00) is then a positive solution to
backward heat equation (3.12). Notice that v and v = w+ 1 has the same growth
at infinity. By Remark [3.6] we may assume that « > 1. Using Theorem [3.1], we

get
|Vu| vi+lnB 1 / B
— < 1+1In— 41
» <c A +\/E +nu, (3.41)

in Qppr. For R > 0, we denote Ap = SUpg,, , 4. The growth condition (3.15)

yields
In(Ag) = o(R), as R — .

Applying (3.41)) to the function u on Qg g, we have

u R VR

B 1+o0(R) 1
—c< 7 +\/§> l1+1Ino(R)

at (z, 7). Letting R — 00 in the above inequality, we conclude that

\Vu(x,7)] =0
and u is constant because (x, ) is arbitrary. The proof of 2a is complete.
The proof of 2b is similar as in [56], 94], and we omit the details. O

Remark 3.10. When (M, g(x, T)),ej0,00) is a complete backward Ricci flow with
bounded, non-negative curvature operator, we obtain similar Liouville type results
as in Theorem [3.2]
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Chapter 4

Gradient estimates for a general type
of nonlinear parabolic equations
under geometric conditions and

related problems

This chapter is written based on the paper “Ha Tuan Dung (2023), Gradient
estimates for a general type of nonlinear parabolic equations under geometric con-
ditions and related problems, Nonlinear Analysis, Vol. 226, 113135” [34]. In the
present chapter, we establish gradient estimates for the positive bounded solu-
tions to a general type of nonlinear parabolic equation concerning the weighted

Laplacian

(% () - Af) u(z, t) = Flu(z, 1)) (4.1)

on a smooth metric measure space with the metric evolving under the (k,00)-

super Perelman-Ricci flow (1.11)) and the Yamabe flow (1.13), where a(z,t) is a
function which is C? in the x-variable and C' in the t-variable, and F'(u) is a C*
function of u. We derive several outcomes from these estimates, including Harnack
inequalities, general global constancy, and Liouville type theorems. Applications
related to some important geometric partial differential equations are presented
to illustrate the strength of the results. The content of this chapter can be seen

as a continuation of the work done previously in Chapter [3]

In order to state the main results in Chapter [d], we introduce some notations. On
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an n-dimensional smooth metric measure space (M L g(z,t), e ! (x’t)d,u) rel0.7] with
the metric evolving under the geometric flow, we write dist (x, zg,t) (or r(x,t))
for the Riemannian distance between x € M and xy with respect to the metric

g(z,t), where £y € M is a fixed point. We introduce the compact set
Qrr = {(x,t) € M x [0, T] | dist (x, zo,t) < R},
where R > 2 and T' > 0. Besides, we make use of the following notations

¢ :=max{q,0}, ¢ :=min{q,0},

and
p = max {Asr(x,t) : dist (z,20,t) = 1,0 <t < T}, p":=max{y,0}.
x,t

On the static metric measure space (M, g, e /du), let d(x,xq) (or r(z)) denote
the Riemannian distance to x from xy with respect to g, and B (¢, R) denote the
geodesic ball centered at xy of radius R > 2. For T' > 0, let Qg1 be

QRI = B(I'Q,R) X [O,T] C M x [0,00)
In this case, we also introduce the following quantities
[ 1= MAX{yla(rm) =1} A (2),  p' = max{p, 0}.

Our first main result states as follows.

Theorem 4.1. Let (M, g(x,t), e_f(“’t)du)te[O’T] be a complete solution to the (k, 00)-
super Perelman-Ricci flow on an n-dimensional smooth manifold M and u
be a smooth positive solution to the nonlinear heat equation in Qpr. Assume
that 0 < u < B and

0
Ric; > —(n —1) K, (9_§ > —2Hg
for some K, H > 0 in Qrp. Then there exists a constant ¢ depending only n such
that
\Y% A + 1 / B
MSC £_|_ 'u__|___|_\4/(k+)2+K2_|_H2_|_'pz+Fa 1—|—h’1—
u R Rt u

(4.2)

02



for all (z,t) € Qu ; with t # 0, where A =1+1In B —In (infg,, u) and

T, = sup {(a")* +[Valt}

QRr.T

S AR LI ST )

On.r u +1—1—11(1B—lnu U

In the static case % = 0 and % = 0, we can set

H=0 and k=(n—-1)K

in Theorem [4.1} Then, we see that (M, g, e /du) becomes a static smooth metric
measure space where Ric; > — (n — 1) K for some constant K > 0 in the geodesic

ball B (xy, R). From this observation and Theorem , we have the following
result.

Theorem 4.2. Let (M, g,e 7du) be an n-dimensional complete smooth metric
measure space with Ric; > — (n — 1) K for some constant K > 0 in B (zq, R) .

Assume that 0 < u (z,t) < B for some constant B, is a smooth solution to the

nonlinear heat equation (4.1) in Qrr. Then there exists a constant ¢ depending
ptoo 1
— + E+—t+\/K+\/5+Fa

only n such that
/ B
1+1In—. 4.3

for all (z,t) € Qrr witht #0, where A=1+InB —1In (infg,, u) and

Vu| <e VA

u

[, = sup {(a*)é + \Va\ilﬂ} ,

QRr,T

e ([ 2O 1))

Qr.r u l+InB—Inu u

On the other hand, we can give a local gradient estimate for the positive
bounded solutions to the general type of nonlinear parabolic equation (4.1)) under
the Yamabe flow.

Theorem 4.3. Let (M, g(z, 1), e_f(m’t)d,u)te[oﬂ be a complete solution to the Yam-
abe flow on an n-dimensional smooth manifold M and u be a smooth positive
solution to the nonlinear heat equation in Qpr. Assume that 0 < u < B
and Ric; > —(n—1) K, S < H for some K, H > 0 in Qry. Then there exists
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a constant ¢ depending only n such that

A o1
£+ L VKW AP AT,

B
- Y \/1-%111; (4.4)

for all (z,t) € Qr p with t # 0, where A, ', P are the same as Theorem 4.1,

NVl
u

Chapter 4! is organized as follows. In Section 4.1], we provide a proof of gradient
estimates under the (k,o00)-super Perelman-Ricci flow and some corollaries. In
Section [4.2] we study gradient estimates of under the Yamabe flow and give
a proof of Theorem [£.2] Gradient estimates and Liouville type results for some

important geometric partial differential equations are given in Section [4.3]

4.1 Gradient estimates for (4.1) under the (k, co)-super

Perelman-Ricci flow

In this section, inspired by the work of Taheri [97], we will study gradient esti-
mates for positive solutions of the general type of nonlinear parabolic equation
under the (k,oo)-super Perelman-Ricci flow (M, g(x,t), e /=Ddp)
Recall the system that u and g solve

te[0,7]"

w = Ayu+ au+ F(u),

9y .
o + 2Ricy > —2kg,

with k& € R. Here, Ricy is the Bakry—Emery curvature. We now introduce an

/ B | D
h=4\/1+4In—=4/In—>1
U U

in Qrr, where D = Be. Then, we have

auxiliary function

u=De" Fu)=F (De‘hz) and Inu =InD — h%

This implies
Uy = —2Dhthe’h2, Vu = —2Dthe’h2,

and
Apu=Au—(Vf,Vu) = —2Dhe ™" [Afh + |VA|? (% — Qh)] .
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As a consequence, from (4.1)), we get
2 2 1 2 2
—2Dhhe™" = —2Dhe™" [Afh + |Vh|? (ﬁ — 2h>] +aDe™ + F (De_h ) :

which is equivalent to

] o F(De)
— A 2(Z_op) o S 4,
& sh+ VA <h h) o9h  2Dheh (4.5)

Using the above equality, we have the following computational lemma, which will
play an important part in the proof of Theorem [4.1].

Lemma 4.1. Under the same assumption as in Theorem , for all (x,t) in
Qrr, the function w = |Vh|2 satisfies

1 |
Apw —w, > 2 (Zh — E) (Vw, Vh) — |Va|w?

1
—2kT+a "+ G w+2 (2 + ﬁ) w?, (4.6)
where (w () .
, 2F (u 1 F(u
G_IQF(U)_ u +1+lnB—1nu u ] '

Proof of Lemma[].1. Using the same arguments as in proving equality (i3.20]), we
get

w, = —%(Vh, Vh) +2(V (h),Vh). (4.7)

Now we recall the Bochner-Weitzenbock formula, according to which
1
SOV = VA" + Ric;(Vh, VA) + (VAsh, Vh) .

This and (4.7)) entail that

Ayw — wy
= A;|Vh|* + %(Vh, Vh) —2(V (h;),Vh)
— 2 |V2h|" + %(Vh,w)wmcf(w,vm +2(V (Ash —hy), Vh).

Our assumption on the (k, 00)-super Perelman-Ricci flow of M and (4.5) imply
Y}



the inequality

Ayw — wy
> —2kw+2+2(V (Ath —h;),Vh)
= — 2kw — 2(V (h), Vh)

1 a  (De)e?
2 h 2(2n — = —
+ <V<t+Vh (h h>+2h+ o7 >,Vh>

> — 2kw + 2 <2h — %) (V (|Vh]?),Vh)

+2|Vh|? <v <2h . %) ,Vh> + <v (%) ,Vh> + <v ( Dhe_h: ) ,Vh> .

On the other hand, we have
<V <2h — l) Vh> = (2 + L ) \Vh\Q 4.9
h)’ h? ’ (49)

a ~ /Va aVh 1 a 2
(v (E> Vh) = <T - ,Vh> =+ (Va,Vh) — 5 |Vh[, (4.10)

()
v (F (D)) F (De*) v (Dhe ")

and

Dheh* D2h2e—2

F (De) v (De ) F (D) D [hV () + e V]
B Dhe"? a D2h2e-2W

—2Dhe " F' (De™) Vh D (1—2h?) e F (D) Vh
B Dhe N D?h2e2

_p?
= —2F (D) Vh - (% - 2) ! SZ; >Vh
o 2F(De™) P (De)

= |2F (De_ )  De + h2  De Vh.
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Consequently,

NE=N
2F (D) 1 F(De)

2 (De‘hz) - + =

2
Do T po IVh|*. (4.11)

Substituting — into , we deduce that
1 1 1
Ajw —w, > — 2kw + 2 <2h — E) (Vw,Vh) + 2 (2 + ﬁ) w® + E(Va, Vh)

2F (De™) 1 F(De)
De® TR De

a
— W —

h?

2F" (De‘hz) — w.

We rewrite this inequality as

1

1

B 2F (u) N lF(u)]
U h? wu

1
) w2 + E(VCL, Vh>

— Lw - [2F'(U> w. (4.12)

72
Since h > 1, from the Cauchy—Schwarz inequality, we get
1
h

In addition, we remark that

1 1
(Va,Vh) < +|(Va, Vh)| < |Va||Vh| = [Valw?. (4.13)

1
2w + < 2 max{k, 0}w + — max{a,0}w < (2k" + a™) w,

2 e
and
2F (u 1 F(u
e 21732 uﬁ i)l F
=2F"(u) - U(U);l—i—lnBlniu iU) -
< max{QF'(U) - u(u) 1Y mB_hu ’ELU)’O}
+
= [2F/(u) - 2Fu(u) + 1+1n; — lnuFl(Lu>] -¢ -
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These inequalities, combined with (4.12)), yield that

1 1 L
Apww 22 (2h = 3 ) (Vu, Vhp+Valud=(2k* + a* + G2 (24 3 ) u?.

The proof is complete. ]

To prove the main theorems in this section, we recall the following useful space-
time cut-off function in [, [36], 7, 97).
Lemma 4.2. Given 7 € [0,T)], there exists a smooth cut-off function (r,t)
supported in [0, R] x [0,T] satisfying following propositions
(1) 0 < Y(r,t) < 1in [0, R] x [0,T].
(ii) The equalities (r,t) = 1 and ‘Z—?(T, t) =0 hold in [0, £] x [7,T] and [0, £] x
[0,T), respectively.

(iii) When 0 < € < 1, there is a constant C, such that

(iv) ¥(r,0) = 0 for all v € [0,00) and
c > 0.

Now, we are ready to prove Theorem [4.1]

Proof of Theorem [{.1. With each fixed time 7 € (0, T'], we choose cut-off function
E(T, t) satisfying the conditions of Lemma [4.2, Our main goal is to prove that
inequality in Theorem [4.1| holds at every point (x,7) in Qp . Since 7 is
arbitrary, the conclusion of Theorem will immediately follow. To this purpose,

we introduce a smooth cut-off function ¢ : M x [0,T] — R by

U(x,t) == (r(x,t),t), (4.15)

where £y € M is a fixed point given in the statement of Theorem and r(z,t) =
dist(z, xg, t) is the distance function from the fixed point o € M at time . Let
(21, t1) be a maximum point for the function w in the set Qr . If (Yw) (z1,t;) <
0 then (Yw)(x,7) < 0 for all z € M such that dist (z,xy,7) < R. Note that
Y(z,7) = 1 for all x € M satisfying dist (x,2,7) < £. This implies that
w(z,7) < 0 when d(z,,7) < Z. Since 7 is arbitrarily chosen, we see that the
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(4.2) holds on Qg 1 in this case. Next, we consider the case (Yw) (z1,t1) > 0.
By the standard argument of Calabi [17], we may assume that (¢)w) is smooth at
(21,t1) . Obviously at (z1,%;), we have

A (Ypw) <0, V(Ypw)=0 and (Yw), > 0.
Hence, still being at (x,t;), we see that
0> Ay () — (), = ¥ (Agw = w) +w (A — ) +2(Vaw, Vi)

Using the fact that 0 = V (Yw) = wV + pVw, we get

0> ¢ (Ayw—w) +wApp —wihy, — 2%10

at (x1,t;). The above inequality, combined with (4.6)), yield that

1 1
0>—(2k" +a" 4+ G)yYw — |Va|pw?—2 (2h — E) (V, Vh)w
1 Vi|?
or equivalent to
2h? 4h (1 — 2h?)
4 2 < - 2 + +
Yw? < 1—|—2h2( kT +a" 4+ G)Yw+ s (Vh, Vi)w
2h* 1 2h? 2h? 4h?  |V|?
2 — A
g Vvt = At e Wl ey
at (z1,t;). Note that
0< 20 <1,0< 2 <land0 < 2h <1
T+22= " “Tyoz—= " 1+2h2 =
Thus, from the above inequality, we have
. 4h (1 — 2R?
dpw® < (2kT + at + G)w + |Va|pw?+ 1(+ T )<Vh, Vi)w
oh? 2|V
— ——wA 4.1
1—}—2h2w U+ " w + [ w (4.16)

at (z1,t). Now, we consider two possible cases.
Case 1. We assume d (21, To, t;) > 1. Since Ric; > —(n—1)K and r (x,¢;) > 1

29



in Qpr, R > 2, we have the f-Laplace comparison theorem (see Theorem 3.1 in
[103]) that

Apr(z,t) <p+(n—1)K(R—-1) (4.17)

where

= r?a§< {Apr(x,t) : dist (z,20,t) = 1,0 <t < T}.
z,t

Next, we will estimate upper bounds for each term of the right-hand side (RHS)
of (4.16). For simplicity, we let ¢ denote a constant depending only on n, whose

value may change from line to line.

For the first term on the RHS of , we have
(2k* + a* + G) Yw + |Va|w?y
= (viw) [vt 2"+ a” + G| + (vhw?) (¢1|Val)

1 3
Y’ +c(2kT +at +G) + §¢w2 +c <¢4|Va|>

4
3

[\
N | —

IA

QRrT

Yw 4 ¢ (k) + ¢ (sup G) +c [(a+>2 + |Va|§} :

Using the inequality x* + y* < (x + y)* for all 2,y > 0, we see that

ol

(@) + |Val! < [(@)} + |val!] < [sup {@)t+ |Va|%}] =T

ORrT

This implies that

2
2k + a* + Q) Yw + |Valwiy < puw? + ¢ (k7) + ¢ (sup G) + 2. (4.18)

ORrT

For the second term on the RHS of (4.16)), we have

4h (1 — 21?) 11— 212
< Apl—___ =71
T (Vh, Vi) w < 4h [ on? V|| Vh|w
<4n vy w! = 4(pu?)" (h|Velp )
1 vt 1 A?
S é’QDUJQ + Ch4W S iw 2 + Cﬁ’ (4 19)

where A =14 1n B — In (infg, , u) .
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For the third term on the RHS of (4.16]), using Lemma [4.2] and (4.17)), we have

2h?
~ oA Swltn] (5 + (0= 1) K (R=1)) + [0
i |¢rr‘ + 3 ‘wr‘
<o) () 1 s xin o) ()
SRR T L LR i
1 2 C C(M+)2 2
< §¢w +ﬁ+ 7 + cK”. (4.20)

For the fourth term on the RHS of (4.16)), we have
2| V|2 |Vt
(& P

Next, we will estimate an upper bound for the operator 9,1 in Qg r. Fixed t > 0
and let & = £(s) : [0,a] =& M be a minimal geodesic with respect to g(z,t)

C
ﬁ'

w =2 (|w\2¢—§’) (wéw) < %W? +e < %1/)102 + (4.21)

connecting o = £(0) to x = £(a). Then, we have

Or(x,t) = Oud (, 20, t / 1€ (s

(0.9) <£' f’)
_/o e,y

> / —H ¢, ds > —Hr(x,1) > —HR.
0

Combining this with propositions (iii) and (iv) of Lemma 4.2 we deduce that

_ _ _ ’¢ ’ H{, || s E%

O =y + 0,0 < B, — HRD, < |1+ R 92 < e+ 7))

¢2 wQ T
(4.22)

From this and the Cauchy-Schwarz inequality, we get
whil = (wv7) o < ca/y +rm L2
§1¢w2 (1+7H) §1¢w2+c<i—|—H2>
2 T2 2 T2

(4.23)
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Substituting (4.18))-(4.23) into (4.16), we conclude that

A24+1 ()’ ¢ 2
c oY + 2 —|—§—|—C(1€+)

Yw® <

2

+cK*+cH? +c|supG | + I} (4.24)
QRrT

at (z1,t1). Note that 0 < ¢ < 1 and ¢(z,7) = 1 when d (z, zy, 7) < £. Thus,

we obtain

wi(@,7) < (Yu?) (v1,1)

A24+1 ()’ ¢ 5
St +§+c(k+)+cK2+cH2+cP2+CFﬁ

for all z € M such that d (z,29,7) < %, where P = (SupQRT G) . Since T €

(0, 7] is arbitrary and w = |VA/|?, this completes the proof of Theorem [4.1]in this
case.
Case 2. We assume d (z1, g, t;) < 1. Then, by the definition of 1), we see that 1

is a constant in space direction in Q £ where R > 2. Thus, from (4.16)), we have

Apw® < (2K + at + Q) Yw + |Valw? + w iy . (4.25)
Substituting (4.18]) and (4.23]) into (4.25]), we obtain
Yw® < % + (k) + cH? + ¢P? + oI
T

at (x1,t1). Note that 0 < ¢ < 1 and ¥(x,7) = 1 when d (z, 2y, 7) <
we deduce that

2|

. Thus,

w¥(e,7) < (90) (a1, 1)
% + (k) + cH? + ¢P? + oIt
-

IA

for all x € M such that d (x,zo, 7) < &. From the definition of h(x,t) and the
above inequality, we complete the proof of Theorem in this case. O

Remark 4.1. When (M, g(z,1), e‘f(“’t)du)te[oﬂ is a complete solution to the
(k, m)-super Perelman-Ricci flow (m < 00), we can give another gradient esti-
mate for the positive solutions to the general heat equation in QO B Indeed,
if Ric}' > — (m +n — 1) K for some constant K > 0 then the generalized Lapla-
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cian comparison theorem [103] implies

Asr(z,t) < (m+n — 1)V Kcoth (\/Er(a:, t))

< T(gjl’t)(m—I—n —1) [1 + \/Er(x,t)]
=(m+n-—1) (T(;’t)vL\/E). (4.26)

From this and the definition of the function 1, we see that

Aph = ANy + 9, |Vr|?

C%¢% 2 C%@/J%
> — 7 (m+n—1)<}—%+vK>— F7
Cyb(m+n) (2+ RVE)
> = | (4.27)

for some positive constant C 1 in Qp,, R > 2. Using the above inequality and

repeating arguments in the proof of Theorem [4.1] we get the following result.

Theorem 4.4. Let (M, g(x,t), e‘f(‘”)du)te[o 1) be a complete solution to the (k,m)-
super Perelman-Ricci flow (1.10) and u be a smooth positive solution to the non-
linear heat equation (4.1) in Qrr. Assume that 0 < u < B and

dyg

Ric} > — - 1)K, — >-2H
icy 2—(m+n-1)K, — > 9

VA

for some KK, H > 0 in Qrr. Then there exists a constant ¢ depending only n such
1
—+—t+{‘/(k+)2+K2+H2+P2+Fa

that
B
14+In— (4.2
R T \/ +nu (4.28)

for all (z,t) € Q%T with t # 0, where A,T'y, P are the same as Theorem |4. 1.

V|
ol <e
U

Remark 4.2. When & = m = 0, the (k, m)-super Perelman-Ricci flow returns
the super Ricci flow. Furthermore, if we have |Ric(z,t)| < & for some constant
Kk > 0 then

in Qp . From this point of view and Theorem 4.4} we obtain the following local

gradient estimate for the nonlinear heat equation under super Ricci flow.
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Theorem 4.5. Let (M, g(x,t) )i, be a complete solution to the super Ricci flow
(1.4) and w be a smooth positive solution to the nonlinear heat equation

<% —a(xz,t) — A) u(z,t) = F(u(z,t)) (4.29)

in the set Qrr, where a(x,t) is a function which is C* in the x-variable and C*
in the t-variable, and F(u) is a C* function of u. Assume that |Ric(z,t)| < k
for some constant k > 0 for all (x,t) € Qrr. If u(x,t) < B for some constant
B > 0 in Qrr, then there exists a constant ¢ depending only n such that

VA 1 B
7+%+\/E+\/5+Fa y1+n— (4.30)

for all (z,t) € Q%T with t # 0, where A, 'y, P are the same as Theorem |4. 1],

—‘VU! <c

u

As an application of Theorem [4.1] we can drive a global gradient estimate for
positive bounded solutions to (4.1).

Corollary 4.1. Let (M,g(w,t),e_f(x7t)du)te[OT] be a complete solution to the
(k, 00)-super Perelman-Ricci flow (L.11) and w : M x [0,T] — R be a smooth
positive solution to the nonlinear heat equation (4.1)). Assume that

Ric; > —(n —1) K, %2—2Hg

for some K, H > 0 on M x [0,T]. If § < u(z,t) < B for some constants
0, B > 0, then there exists a constant ¢ depending only n such that

——<cl|l— k)Y + K2+ H>+P>+T,|1/1+In—
— \/%+\/( )"+ K2+ H*+ P2+ T, +In—

on M x [0,T] with t # 0, where

I, = sup {(cﬁ)% -+ \Va\é} :

M x[0,T]

and

b Sup}{[QF,(u)2F(u)+ 1 F(u)r}

Mx[0,T U l1+4InB—Inu u

Proof of Corollary[4.1. Since § < u(x,t) < B is a smooth solution of the equation
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(4.1]), using Theorem (4.1}, we get

—— =+ — k) + K2+ H>+P?>+T
7t R+\/Z+\/( )+ K2+ H*+ P2+ T,

[Vl
ol <e
U

/ B
1+1In—,
u

(4.31)

where A=14+4InB—Inu<1+InB —1Ind < oco. We notice that the inequality
holds for every R > 2, and each term of the right-hand side of does
not depend on R. Thus, the conclusion immediately follows by taking R — oo in
(4.31)). The proof is complete. ]

Another application of Theorem is a Harnack-type inequality for positive

solutions of (4.1]), which can be used to compare solutions at the same time.

Corollary 4.2. Under the same assumption as in Corollary if u : M X
[0,7] — R is a smooth solution to the general heat equation and 6 <
u(z,t) < B for some positive constants d, B, then for any x1,29 € M and
t € (0, T] we have

u (29, 1) < [u (@1, t)} g (4.32)

where

1
Vi

and Ty, P are the same as Corollary[f.1. Here c¢ is a constant depending only on

8= exp{—cdist (21, 29, 1) { + C/(k+)2 + K24+ H2 4 P2 _|_Fa] },

n.

Proof of Corollary[4.3. Let v(s) be a geodesic of minimal length with respect to
the metric ¢ = g(x,t) connecting x; and 2,7 : [0, 1] = M, v(0) = x4, v(1) = z1.
We can assume that I',, P < 00, otherwise § = 0 and the inequality is
trivially true. Next, put h = /1 + ln% = ln%, where D = Be. Using the

Cauchy-Schwarz inequality, we obtain

_ /1 (VA(y(s), )7/ (5))
O1 h(7(3)7t) .
=, @W'dsz/o 2u(|1v+u1|n§) Ylds. (4.33)
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Here, we have used the fact that

vl VY2 va v
h In 2

[1. D _QUIH% 2u(1+ln§)'

By the inequality 4/1 + ln% <1+ ln% and Corollary [4.1], we see that

V) (1 NIy )
<cl|—- kT + K2+ H>+ P2+ 1T, ),
2u(1+1n§)—c \/%+\/( )"+ K+ H? +P? +

where c¢ is a constant depending only on n. This and (4.33)) entail that

h(x,t)
h(zy,1)

We rewrite this inequality as

1
Vi

In < cdist (xy, T2, 1) [ + (4/(]§+)2 + K2+ H? 4 P2 _|_Fa]

- < exp{cdist (xy, w9, t) |— + /(BT + K2+ H24+P2+T,| ¢ = —.
h (x27 t) — p ( 1 2 ) \/% \/( ) 6
From the above inequality, by some easy calculations, we obtain (4.32]). ]

4.2 Gradient estimates for (4.1)) under the Yamabe flow

Let (M,g(:U,t),e_f(w’t)d,u)te[oﬂ be a complete solution to the Yamabe flow
. Our goal in this section is to drive a local Hamilton type gradient es-
timate for any positive bounded solutions of the nonlinear heat equation (4.1)
under the Yamabe flow (1.13). Assume that 0 < u(z,t) < B for some positive
constant B, is a smooth solution to the equation in Qg r. Then we see that

u and g solve

u = Apu+ au+ F(u),
9 _ o (4.34)
ot~ 7Y

Consider the function h = \/1 + lng = \/ln% > 1 in Qgryp, where D = Be.
From ({4.5)), we see that

(A;— ) h = —|Vh]? (% —2h> b2l (D) (4.35)

2h 2Dhe—h*

To prove Theorem (4.3, we need the following useful lemma.
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Lemma 4.3. Under the same assumption as in Theorem for all (z,t) in
Qrr, the function w = |Vh|2 satisfies

1 1
Apw — w; > 2 <2h — E) (Vw, Vh) — |Va|w?
1
—[(n—DK+H+G+aJw+2 <2+ ﬁ) w?, (4.36)
where G is the same as Lemma [4.1]

Proof of Lemma[4.5 By the Bochner-Weitzenbéck formula and note that Ricy >
—(n—1) K, we get

1 1
AW = A VA] = IV2h[* + Ric;(Vh, Vh) + (VA h, Vh)

> —(n—1)K|Vh]*+ (VAsh,Vh) . (4.37)
From and (4.34), we obtain
0
w, = —a—g(Vh, Vh) +2(V (h), VR = S|VAP +2(V (h,), Vh) .

Combining this with (4.37)), we imply that

Apw —wy, > —2(n — 1)K|VA[> +2(VAsh, Vh) — S|Vh|* = 2(V (h), Vh)
= —[2(n = 1)K + SJw +2(V (Ath — hy), Vh).

This and entail that
Apw — wy
1
> —[2(n— 1)K + S]w + 2 <2h — E) (V (IVR|*),Vh)
1 a F (De‘h2>
2 _ — p— _—
+2|Vh| <v (2h h) ,Vh> +(V (h) Vh) + <v ( St | VR
Substituting — into the above inequality, we conclude that

Afw—th—[2(n—1)K+S]w+2<2h—l> <Vw,Vh>+2<2+%>w2

h
(Va,Vh) — L — [2F’(u) B QF@EU) . %FZ(LU,)]

(4.38)

S =

+ %
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As in the proof of Lemma [4.1], we have

a 1 1 1
W S < ﬁmax{a,O}w <a‘w, E(Va, Vh) < |Va||Vh| = |Va|w?,

and

2F(u) 1 F(u)

2F" (u) — —
(v) u +h2 u

) 2F (u) 1 F(u)
< _
_max{2F(u) u Jr1+haB—hr1u U ’0}
B , 2F (u) 1 F(u) +_
—[2F(u) U +1—|—lnB—lnu U ] =G

Plugging these above inequalities into (4.38) and note that S < H, we complete
the proof of Lemma 4.3 ]

In the following, we will use the same arguments as in the proof of Theorem
to prove Theorem [.3] Specifically, we will apply Lemma [£.3] and the localized

technique to obtain an upper bound for the function w? in Q%T.

Proof of Theorem [{.3. For the fixed 7 € (0,77, let (z1,%;) be a maximum point
for the function ¥w in the set Qp r, where the function 1 is defined as in (4.15)).
We may suppose that (Yw) (z1,t1) > 0; otherwise if (Yw) (z1,%1) < 0 then
(Yw)(x,7) < 0 for all z € M such that dist (z,xy,t) < R; here, we used fact
that (x,?;) is a maximum point of Yw in Qpy. Note that ¥(z,7) = 1 for all
x € M satisfying dist (z, 2, 7) < £. It shows that

w(z,7) <0 when dist (z,zy,7) <

| =

Since 7 is arbitrarily chosen, we see that the inequality holds on Q%T.
Moreover, we have t; # 0, since (Yw) (x1,t1) > 0. According to the standard
argument of Calabi [I7], we may assume that ()w) is smooth at (z1,t,) . Clearly,
at (z1,t;), we have

Ay (w) < 0,V (Yw) = 0 and (Yw), > 0

From these results, we see that

IVM

0> ¢ (Ajw —w) + wApp — wihy — 2—— ”
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at (x1,t;). The above inequality combined with (4.36)) yield that

20?2
2
dpw §1+2h2[(n—1)K—I—H—|—G+a+]ww
4h (1 — 282)
e WV
2h L 2h?
P S WA
o VAt Ay
W A VL
1+2n2 "7 T 14202 9
at (z1,t;). Since h > 1, we have
2h? 2 2h
0 <1,0 <1,and 0 <1.
STgo s S igoe s MY ST e S

Using these inequalities, we get

Wuw® <[(n—1)K +H+ G+ a'|vw + |Valpw? + [t w

4h (1 — 2h2) 2?2 2V
_ h _ A
Lope VRVl A+ =

at (r1,t;). We now consider two possible cases.

(4.39)

Case 1. We assume d (21, %o, t1) > 1. Since Ric; > —(n—1)K and 7 (21,11) > 1

in Qrr, R > 2, we have the f-Laplace comparison theorem (see Theorem 3.1 in

[103]) that Asr (z1,t1) < p+ (n—1)K(R — 1) where

p = max {Ayr(z,t) : dist (2, 2,t) = 1,0 <t <T}.
z,t

Next, we will estimate upper bounds for each term of the right-hand side of (4.39)).

For simplicity, we let ¢ denote a constant depending only on n, whose value may

change from line to line. Performing similar arguments as in the proof of Theorem

[4.1], we have the following inequalities

( 2|Vi|? 1, c

4h (1 — 2h?) 1 A?

— h < Zhw? -

< TS (V ,V¢)w_2ww —|—cR4,
2h? 1 ¢ e(pt)?

_ < = 2 . -\ 2

\ 1+2h2wAf¢_2¢w +R4+ 2 + cK”~,
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where A=1+InB —In (ianR’T u) . Moreover, we also have

2(n — 1)K +H + G + a*]yw + |Va|w?

= (vhw) ¥i2(n - DK + H+ G + ']+ (viwt) (v¥|Va))
1

IN
DO |

1 5 5
v+ ce2(n— 1)K +H+G+a"]’ + §¢w2 +c (¢4|Va\)
< Yw® + cK* + cH* + cG* + ¢ [(cﬁ)2 + |Va]§}
< Yw® + cK? + cH? + ¢P? + I}, (4.41)

where P = (supQRT G) and I', = supg, . {(a‘L)% + |Va|fl’>} . Next, fixed t > 0
and let & = £(s) : [0,a] — M be a minimal geodesic with respect to g(z,t)
connecting xy = £(0) to x = £(a). Then, we have

Or(x,t) = 0id (z, g, t / €' (s
= —— S
: / £(s)
1 [ , 1 1
> —5/0 HIE(5)] ) ds = —éﬂr(x,t) > _iHR'
Combining this with propositions iii and iv of Lemma [4.2, we conclude that
. I
O =y + 1,0 < b, — SHRD,
E _
< [_f 2
[ U

Using the above inequality and the Cauchy-Schwarz inequality, we get

w || = (w\/E) % <c (wﬂ) (1+ 77-[) @

Substituting (4.40]), (4.41]) and (4.42)) into (4.39)), we conclude that

A2 41 )?
Y’ < c RJZ +C(g2) +%+0K2+0H2+C772+CF§
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at (21,¢1). Since 0 < ¢ < 1 and ¢ (x,7) = 1 when d (z, o, 7) < &, we get

A 41 e(pt)? e
w(z,7) < (Yw?) (z1,4) < c i + (gﬂ) —i—;—l—cKQ—i—cHQ—l—cPZ—l—cFi

for all € M such that d(z,z9,7) < %. Since 7 € (0,7] is arbitrary and
w = |Vh|*, this completes the proof of Theorem [4.3]in this case.

Case 2. We assume d (1, g, t;) < 1. Then, by the definition of ¥, we see that 1
is a constant in space direction in Q%T where R > 2. Thus, from , we have

puw? < [(n— 1)K +H + G+ a’|Yw + |Va|pw? + w |1 . (4.43)

Substituting (4.41)) and (4.42)) into (4.43]), we deduce that
c

Yw® < = + K+ H* + P+ T,
T

at (x1,t;). Note that 0 < ¢ < 1 and ¥(x,7) = 1 when d (z,z0,7) < Z

E .
Therefore,

w(z,7) < (Yw*M) (z1,t) < % + cK? + ¢H? + cP? + ).
T

for all @ € M such that d (z, 2, 7) < 4. From the definition of h(z,t) and the
above inequality, we complete the proof of Theorem in this case. O

Applying the same technique as in Corollary [4.2] we get the following Harnack-
type inequality.

Corollary 4.3. Let (M,g(a:,t),e_f(x’t)du)te[O’T] be a complete solution to the
Yamabe flow and u : M x [0,T] — R be a smooth positive solution to
the semilinear heat equation ([4.1). Assume that Ric; > —(n — 1) K and R < H
for some K, H >0 on M x [0,T]. If § < wu(x,t) < B for some 6, B > 0 then
for any x1, x5 € M and t € (0,T] we have

toat) < [eloe]”

where

1
3= exp{—cdist (21, Ta, 1) [% + VK2 +7—[2+732—|—Fa] },

Ly, P are the same as Corollary[4.1, and ¢ is a constant depending only on n.
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4.3 Liouville type theorems and gradient estimates for
some important geometric partial differential equa-

tions

4.3.1 On the nonlinear elliptic equations related to gradient Ricci

solitons

Let (M, g,e 7du) be an n-dimensional complete smooth metric measure space.
In this subsection, we will study gradient estimates and related problems for pos-

itive smooth solutions of the following nonlinear elliptic equation
Apu(z) + a(x)u(x) + bu(x) Inu(x) =0 (4.44)
and its parabolic counterpart
w(x,t) = Apu(z, t) + a(z, t)u(z, t) + bu(z, t) Inu(z, t), (4.45)

on (M,g,e'du). Here, b € R, a(z) is a C' function of x in ({4.44), and a(z,t) is
a function which is C? in the z-variable and C! in the t-variable in (4.45)).

Assume that the Bakry-Emery Ricci Ricy is bounded below, we now apply
Theorem to derive a local gradient estimate for the equation (4.45) on the
static smooth metric measure space (M, g,e~/du). For F(u) = bulnu, we have

2w, 1P
U h? u

where h = /1 + ln% > 1. Thus, we obtain

P <sup{[b(2+2In B —lnu)]"} = P,.

QR,T

2F" (u)

1 b
= 2(blnu+b)—261nu+ﬁblnu =3 (2h* +Inu),

From this and Theorem [4.2] we get the following gradient estimate result for

positive solutions of the equation (4.45)).

Theorem 4.6. Let (M, g,e'du) be an n-dimensional complete smooth metric
measure space with Ric; > — (n — 1) K for some constant K > 0 in B (zo, R) .
Assume that 0 < wu(z,t) < B for some constant B, is a smooth solution to
the nonlinear parabolic equation in Qrr. Then there exists a constant c
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depending only n such that

Vul _
<

A |
c £+\/%+—t+\/?+\/7>o+ra

- NG V1 +1n§ (4.46)

in Qrp witht # 0, where A=1+1InB —In (infg,, u) and

Py =supg,, {6(2+2In B —Inu)[*}, T, =supg,, {(aJ’)% + \Va\é} :

When b = 0, the equation (4.45) becomes the weighted Schrédinger equation
on (M, g,e 'du). Using Theorem , we can derive the following result.

Corollary 4.4. Under the same assumption as in Theorem if 0 <u(x,t) <
B for some constant B > 0 is a smooth solution to the weighted Schrodinger

equation uy = Apu+ aw in Qrr, then there exists a constant ¢ depending only n

such that
|Vu| VA pt 1 1 1 B
I R R E 4L - VK )2 4 Va3 1+1In=
SR VR +21£{(a)+] a\}\/+nu

in Q%T with t # 0, where A is the same as Theorem 4.0,

Remark 4.3. We notice that /1 + lng <1+ ln% and

1 1

sup {(a+)2 + |Va|§} < sup {(a+)2} + sup {|Va|§} :

QR,T QR,T QR,T

From the above inequalities, we see that Corollary [4.4]is better than Theorem 1.1
in [I16]. Moreover, our result can be regarded as an extension and improvement
of Ruan [84].

On the other hand, if a(x,t) = 0 then the equation (4.45)) becomes the following
general f-heat equation
u = Apu+ bulnu. (4.47)

From Theorem [4.6], we obtain the following gradient estimate result.

Corollary 4.5. Under the same assumption as in Theorem[4.6, if 0 < u (z,t) <
B for some constant B > 0 is a smooth solution to the equation (4.47) in Qrr,

then there exists a constant ¢ depending only n such that
VA + 1 B
=+ \/%+ — + VK + \/Sup (b2 2B —Ilnw)*}| /1 +In >
u

\/E QrrT

Vul _
u
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in QEI with t # 0, where A is the same as Theorem [4.6.

Remark 4.4. By the inequality In(1 4+ z) < x for all x > 0, we see that

o< T

Then, we can rewrite the inequality in Corollary in the case 1 <u < B as

|Vl
— <
Nl

This shows that Corollary[4.5]is better than Theorem 1.3 of Jiang [50] and Theorem
1.1 of Wu [105] in the case a < 0.

V1 _;lnB 4+ \/Z};+%+\/E+ \/sup{[b(?—l—?lnB—lnu)]*}

Qr,T

An immediate application of Theorem is the following Liouville type result
for posstive solutions of the equation (4.44)).

Theorem 4.7. Let (M, g,e 7du) be an n-dimensional complete smooth metric

measure space with Ric; > 0. Suppose u is a positive and bounded solution to the
equation (4.44), where a,b € R.

(1) Ifa <0,b<0 andu > e ? then u = e 4

(i) Ifa < 0,0 >0 and e % <u < e *° for any ¢ > 0 then u does not exist.
Proof of Theorem[.7. Suppose that u is a positive solution of (4.44) with u < B
for some constant B > 0. Since u does not depend on t, u is also a solution of the

prabolic equation (4.45)) in the case a,b € R. Furthermore, since a < 0, we have
Iy = supg, . {(a+)2 + \Va\é} = 0. Letting ¢t — +o00 in (4.46) and note that

K=T,=0, we get
/ B
1+In—.
u

__|_\/7 \/21;5{[6 (24+2InB—1Inu)]t}
(4.48)

IW\

(i) Since b < 0 and u > e~ %, we deduce that A < 3+ In B and

B
b(2+2In B —Inu) :b<2—|—lnu—|—21n—) <0.
u

This shows that sup,,. {[0(2 +2In B —Inu)]"} = 0. Then, letting R — +00
in (4.48), we imply that |Vu| = 0. Therefore, u is a constant. Using A ju + au +
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bulnu = 0, we get u = et
(i) Since b > 0 and e 2% < u < ¢ %7 for any € > 0, we obtain A < 3 +
2In B 4 2¢, and

b(2+2InB —Inu) <b2+2(—2—¢) — (-2 —2¢)] =0.

This implies that supg, , {[b(2 +2In B — Inu)|"} = 0. Then, letting R — +00
in (4.46), we get |Vu| = 0. Thus, u is a constant. Using A yu+ au+ bulnu = 0,
we deduce that u = e« > 1, but u < e 2% < 1. So, u does not exist. We
complete the proof of Theorem [4.7] ]

Remark 4.5. By Theorem , we see that if e < u < B is a positive solution
of the nonlinear elliptic equation Asu + bulnu = 0 where b < 0 on the smooth
metric measure space (M, g,e/du) with Ric; > 0 then u = 1. Our Liouville
type result is similar to Corollary 1.1 of Jiang [50] and Theorem 1.3 of Wu [105]
in the case of b < 0.

On the other hand, from Corollary 4.5, we can give a local parabolic gradient

estimate for positive smooth solutions to the following nonlinear parabolic equation
u(x,t) = Au(z, t) + a(x, t)u(z, t) + bu(z, t) Inu(x, t), (4.49)

on Riemaniann manifolds along super Ricci flow (1.4)). This is a version of the
equation (4.45)) when f is a constant.

Theorem 4.8. Under the same assumption as in Theorem , if u(z,t) < B
for some constant B > 0, is a smooth solution to the nonlinear parabolic equation
(4.45) in Qgrr, then there exists a constant ¢ depending only n such that

VA \/1—|—1n§
U

1
cl— + 7 + VK + \/8up{[b(2—|—21nB —Inuw)]*} + T,
QRr,T
(4.50)

Vul _

Rt

u

in Q%T with t # 0, where A, 1", are the same as Theorem |4.5.

Remark 4.6. Since 1 + 1n§ > 1, we get

B
max{b(2+2InB —Inu),0} = max{b (1 +In —) + blnB,O}
u

B
< (1 + In —) max{b,0} + max{bln B, 0}.
u
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Besides, we have

sup {(cﬁ)5 + |Va|113} < sup {(a*)%} + sup {|Va|11*} : (4.51)

QRr,T QRr,T QRr,T
The above two inequalities show that our theorem is better than Theorem 1.1 of
Wang in [102].
When b = 0, from Theorem [4.8, we obtain the following result.

Corollary 4.6. Under the same assumption as in Theorem if 0 <wu(x,t) <
B for some constant B > 0 is a smooth solution to the Schrodinger equation

uy = Au + au in Qpr, then there exists a constant ¢ depending only n such that

[Vl vA Ji+mZ s
u

1 1 1
—<c —+—+\/E+sup{ at)? + Va3}
” R Sup (a7)” +|Val
in Q%T with t # 0, where A is the same as Theorem[4.5.

Remark 4.7. By the inequality (4.51)), we see that the estimate (4.52)) is stronger
than Corollary 1.3 of Wang [102]. Our result can be considered as a generalization
along the super Ricci flow of the results of Ruan [84] and Zhu [116].

In particular, when b = 0 and a(z,t) = 0, by Theorem , we can derive the
following local space-only gradient estimate for the linear heat equation under the

super Ricci flow.

Corollary 4.7. Under the same assumption as in Theorem[4.5, if 0 < u (z,t) <
B for some constant B > 0 is a smooth solution to the linear heat equation

uy = Au in Qg o, then there exists a constant ¢ depending only n such that

|Vu| vA 1 B
— < — + — 14+ 1In— 4.
—<c|l g +\/Z+\/E +In— (4.53)

in Q%T with t # 0, where A is the same as Theorem[4.5.

Remark 4.8. Since v, = Au, let v = u + 1; then v satisfies v, = Awv. Thus,
without loss of generality, we may assume that v > 1. Then, we get A=1+1InB

and the inequality (4.53)) becomes

Vi+InB 1 B
W—u<c<i+—+\/ﬁ> 14+ In—.
u R Vit u
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Since /1 + 11’1% <1+ 11’1%, our results can be seen as an improvement and

extension of Theorem 1.1 of Bailesteanu-Cao-Pulemotov [g].

Applying Theorem [4.8] we obtain the new local gradient estimate for the equa-
tion (4.45) under Yamabe flow.

Corollary 4.8. Under the same assumption as in Theorem[4.d, if 0 < u (z,t) <

B for some constant B > 0 is a smooth solution to the equation (4.45)) in Qg 7,
Vu + 1
[Vl —+\/%+—t+\/4K2+H2+\/PO+Fa

<
U

then there exists a constant ¢ depending only n such that
/ B
1+In—
R Vit u

VA
in Q%T with t # 0, where A, T, are the same as Theorem |].3 and

Py =sup{[b(2+2InB —Inwu)]"}.

QRr,T

Next, we will derive a series of gradient estimates and Liouville type results for

positive solutions of the following parabolic partial differential equation
u(x,t) = Apu(z,t) + alz, t)u(x, t) + bu(x, t)(Inwu(z, t))” (4.54)

on smooth metric measure spaces (M, g, e~/du), where o, b € R. This equation
can be seen as a generalized version of (4.45]). We first obtain the following result.

Theorem 4.9. Under the same assumption as in Theorem[4.6, if 1 < u (z,t) < B
for some constant B, is a smooth solution to the nonlinear parabolic equation (4.54)
in Qrr then there exists a constant ¢ depending only n such that

Vv1+4+InB [t 1 / B
L—f— M——}———}-VK—}-\/Pl—f-Fa 14+ 1In—, (4.55)
R R i u

in Qr p with t # 0, where I'y = supg,,, - {(a+)% + |Va\é} and

Ml
u

P, = [b<2 n In u >r {(Inw)™")
Lo “ 1+InB—1Inu onpalin '

QRr,T QRr,T

Proof of Theorem[[.9. We will apply the Theorem to the function F(u) =
77



bu(Inu)* to prove Theorem 1.9, Observe that

2F(u) 1 F(u) w1 N
T R 2ab(Inu)*~ + Eb(lnu)

1
=b <2a + 7 In u> (Inw)* ™,

where h = /1 + lng > 1. From this, we get

P<s [b (2 L )TS {(nu)*'} =P
n = P,.
_QI;E @ l1+InB—-Inu QI;I; ¢ !

2F" (u)

The proof is complete. ]

Remark 4.9. Forh:,/1+1n§21, we see that
Inu * Inu
b2 = b2 — 1,0
{ <a+1+1nB—lnu>] maX{ (&+ hQ)’ }

1
< max{2ab,0} + 7 max{bIlnwu,0}

< max{2ab,0} + In Bmax{blnu,0}.

Moreover, we have

B B B B
l4+In—<1+4+1In—, 14+1In— <y/—.
u u u U

Therefore, Theorem is stronger than Theorem 1.3, Theorem 1.4 of Yang-
Zhang [109] and Theorem 1.1 of Dung-Linh-Thu [37].

An interesting application of Theorem is the following Liouville type result
for positive solutions of nonlinear elliptic equations of the form (4.56|) under the
assumption Ricy > 0.

Corollary 4.9. Let (M, g,e du) be an n-dimensional complete smooth metric
measure space with Ric; > 0. Assume that 1 < u(x,t) < B for some positive

constant B, is a smooth solution to the following nonlinear elliptic equation
Aru+ bu(lnwu)®* =0, (4.56)
where o, b € R.

(i) If b < 0, > 0 then u = 1.
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(i) If b > 0,a <0 and 1 <u < e * thenu = 1.

Proof of Corollary[{.9. Suppose that u is a positive solution of (4.56) with 1 <
u < B for some constant B > (. Since u does not depend on ¢, u is also a
solution of the prabolic equation (4.54)). Letting ¢ — 400 in (4.55)) and note that

K=T,=0, we get
vV1+InB + B
%%—\/%4—\/731 \/1—|—lnz, (4.57)

(i) Since b < 0, > 0 and ©w > 1, we obtain P; = 0. Then, letting R — 400 in
([4.57)), we have |Vu| = 0. Thus, u is a constant. From (4.56), we get u = 1.

[Vl _

u

(i) Since & < 0,1 <u < e and h = /1 +1In% > 1, we deduce that

2

1 1
20+ nu = 2a+Inu+ (— — 1) Inu < 2a+Ine **+

Inu<0.
1+InB —-Inu h? H=

h2

From this and note that b > 0, we obtain P; = 0. Then, letting R — 400 in
([4.57), we get |Vu| = 0. This shows that u is a constant. Using (4.56), we imply
that ©u = 1. n

Remark 4.10. Our Liouville type result can be seen as an extension and improve-
ment of Corollary 3.5 in [I], Theorem 1.2 in [37], and Theorem 5.2 in [?].

Besides, from Theorem [4.5, we obtain a local gradient estimate for the following

nonlinear parabolic equation
u(z,t) = Au(x, t) + a(z, u(z, t) + bu(z, t)(Inu(z, t))* (4.58)
on Riemannian manifolds along super Ricci flow (1.4)).

Corollary 4.10. Under the same assumption as in Theorem[{.8, if 1 < u(z,t) <
B for some constant B > 0 is a smooth solution to the nonlinear heat equation

(4.58) in Qgrr, then there exists a constant ¢ depending only n such that

Vi+hnB 1 / B
W—“§c<%+%+\/§+\/ﬂ+m> 1““2 (4.59)

u
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in Q%T with t # 0, where I', = SUPg, {(CLJF)% + ]Va\é} ; and

P [b (2 + o u )] ) {(Inw)*'} (4.60)
= su « su nu : :
! QRE l+InB—1Inu QRE

Remark 4.11. Our result is stronger than Theorem 1.1, Theorem 1.2 of Yang-
Zhang [110]. Moreover, Corollary can be considered as a generalization along
the super Ricci flow of the results of Dung-Linh-Thu [37].

Applying Theorem (4.3, we obtain the following local gradient estimate for the
equation ({4.45)) under Yamabe flow.

Corollary 4.11. Under the same assumption as in Theorem[{.d, if 1 < u(z,t) <
B for some constant B > 0 is a smooth solution to the equation (4.58) in Qrr,

then there exists a constant ¢ depending only n such that
B
1+1In—
U

vl _,
U

V1+1InB + 1,
Tn+\/%+ﬁ+\/K2+H2+\/P1+Fa

in Q%T with t # 0, where A, Ty, Py are the same as Corollary|4.1}).

4.3.2 On the Einstein-scalar field Lichnerowicz type equations

The purpose of this subsection was to derive Liouville type results and gradient
estimates for positive, smooth solutions of the following nonlinear elliptic equation

on smooth metric measure spaces (M, g, e/ du) of dimension n > 3,
Au(z) + a(z)u(z) + bu®(x) + cu’(z) =0 (4.61)
and its parabolic counterpart
w(x,t) = Aju(r,t) + alz, t)u(z, t) + bu®(z,t) + cu’(x,t) (4.62)

Here, v, 3,b, ¢ € R, a(x) is a C* function of x in (4.61]), and a(x,t) is a function
which is C? in the z-variable and C! in the ¢-variable in (4.62)).

Assume that the Bakry-Emery Ricci Ricy is bounded below, we now apply
Theorem to derive a local gradient estimate for the equation (4.62) on the
static smooth metric measure space (M, g, e /du). For F(u) = bu® + cu”, we
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have

2F (u) N 1 F(u)
u h? u

2R (1) —

= 2[(a — 1)bJu*" + %bu“‘1 +[(28 — Dcu” " + <;2 1) =L (4.63)

where h = wl—l—ln— > 1. Note that 0 < 75 < 1 and ——1 < 0. Thus, we get

1
(&—1) oa— 1_‘_Ebua—1

< 2[(a — Do u Tt + 0w < {2[(a — DO]T + b Fsup {ut' ), (4.64)

R, T

and

(28 — 1)cu’ " + <% — 1) !

<28 — 1)’ + PP < {[(28 = 1)c]t — ¢ }sup {u"'}.

h? T
Plugging this and (4.64) into (4.63) , we imply that

P <A{2[(a—1)b" +0b"} sup {7} +{l28 1) —c} sup {"} =P

From this and Theorem [4.3] we obtain the following gradient estimate result for

positive solutions of the equation (4.62)).

Theorem 4.10. Under the same assumption as in Theorem[{.3, if 0 < u (z,t) <
B for some constant B, is a smooth solution to the nonlinear parabolic equation
(4.62) in Qrr, then there exists a constant ¢ depending only n such that

A T B
va e Yl (4.65)

V|

u

1
<c| 4/ =4+ VK T,
Sl tWETAT + P+

in Q%T with t # 0, where

A=1+InB—-1In (inf u) , La=supg,, {(CLJ“)é + |Va|=’1’>},

Qr,T




As an application of Theorem [4.10], we can get a Liouville type result for positive

solutions of the Einstein-scalar field Lichnerowicz type equation (4.61)).

Corollary 4.12. Let (M, g,e /du) be an n-dimensional complete smooth metric
measure space with Ric; > 0. Assume that § < u(x,t) < B for some positive
constants 0 and B, is a smooth solution to the equation . Ifa,b,c,a, B are
constants satisfying a < 0,0 < 0,c¢>0,a>1 and B < %, then u 1s constant.

Proof of Corollary[{.13 Suppose that u is a positive solution of with § <
u < B for some constants 6, B > 0. Since u does not depend on ¢, u is also a
solution of the prabolic equation in the case a, b, c,a, 8 € R. Furthermore,
since a < 0, we have I', = 0. From the assumption b < 0,¢ > 0,a > 1 and
g < %, we see that

o(a — )" + " =0, [(28—1)d" —c = 0.

This shows that P, = 0. Letting ¢ — 400 in (4.65) and note that K = I', =
Py =0, we get

NVl
u

7V

\/ 14mZ (4.66)

u

Since d < u < D, we deduce that A =1+1n B —1In (ianR’T u) <1+InB—-1Iné.
Then, letting R — 400 in (4.66|), we obtain W—u“| < 0. Thus, u is a constant. We
finish the proof. O

Remark 4.12. It is worth noting that Corollary is an improvement of Dung-
Khanh-Ngo’s result (see [36], Corollary 2.5).

An immediate application of Corollary is the following Liouville type result
for positive solutions of Yamabe-type equations of the form (4.67) below.

Corollary 4.13. Let (M, g,e 7du) be an n-dimensional complete smooth metric
measure space with Ricy > 0. Suppose that o, a, b are real numbers. Assume that
0 <wu(z,t) < B for some positive constants 6 and B, is a smooth solution to the

following equation
Asu+ au + bu® = 0. (4.67)

(i) Ifa>1,a <0,b <0, then u does not exist.

(ii) Ifa < i,a<0,b>0, thenu = N

99
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Using Theorem 4.5, we can derive a local parabolic gradient estimate for positive

smooth solutions to the following nonlinear parabolic equation
w(z,t) = Au(x,t) + alx, t)u(x, t) + bu®(x,t) + cu’(z, 1), (4.68)

on Riemaniann manifolds along super Ricci flow ([1.4)).

Corollary 4.14. Under the same assumption as in Theorem if u(z,t) < B

for some constant B > 0 in Qpr, then there exists a constant ¢ depending only

B
\/1+1In— (4.69)
u

A=1+InB—-In (ianR,T u) , I'y= SUDg, , {<a+)§ + |va|§} ,

n such that

VA 1
Sy = r,
B +\/¥+\/E+P2+

[Vl
ol <e
(7

in @z p with t # 0, where

and

P, = \/2[(04 — 1)b]* + b* sup

QRr,T

{uagl} + \/[(QB — 1)c]*t — ¢ sup {uﬂgl} :

QRr,T

Moreover, applying Theorem [4.8] we obtain the following local gradient estimate
for the equation (4.68)) under Yamabe flow.

Corollary 4.15. Under the same assumption as in Theorem[4.d, if 0 < u (z,t) <
B for some constant B > 0 is a smooth solution to the equation (4.68) in Qrr,
VA |
— + “—+—t+\/4K2+H2+P2+Fa

then there exists a constant ¢ depending only n such that
/ B
1+In— (4.70
R R i u (4.70)

in Q%T with t # 0, where A, Py, 'y are the same as Corollary|4.1J.

[Vl
ol <e

u

Inspired by the recent work due to Dung-Khanh-Ngo [36], in the last of this
subsection, we will study the gradient estimate for solutions of the following general

f-heat equation
u = Aju+ au+ bulnu + Au® + Bu” (4.71)

on complete smooth metric measure spaces (M, g, e’ du) of dimension n > 3,
where a,b, A, B, «, and § be constants with A < 0,B > 0,a > 1,5 < % We
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first obtain the following result.

Theorem 4.11. Let (M, g,e /du) be an n-dimensional complete smooth metric
measure space with Ricy > — (n — 1) K for some constant K > 0 in B (x, R) .
Assume that u € (0,1] is a smooth solution to the nonlinear heat equation (4.71))

in Qrr. Then there exists a constant ¢ depending only n such that

1 —In (infy, . u T 1
v _ [Vl w1 e )
U R R

for all (z,t) € Qr r with T # 0, where A = max{b+ max{a + b, 0}, 0}.
Proof of Theorem[4.11. We will apply the Theorem to the function
F(u) = au + bulnu + Au® + Bu”

to prove Theorem [4.11| Observe that

_2F(w) | 1P

2F'
() u h?
1 1
= 2b + ﬁ(a +bInu) + 2[(a — 1) AJu*" + ﬁAuo‘_l
1
+[(26 — 1)B]Ju’ " + (ﬁ — 1) Bu’ ™,

where h = /1 — Inu > 1. We notice that

a—+b
2

< max{b + max{a + b,0},0}.

1
2b+ —(a+blnu) =b+

3 < b+ max{a + b,0}

Since A<0,B>0,a>1,8< %, we obtain

1

2[(a — 1) AJu®™" + =

Au +[(28 - D)BJu” + (% - 1) Bu’' <.

From the above results, we imply that
P < max{b+ max{a+b,0},0} = A.
The proof is complete. ]

When f is constant, using Theorem [4.5 we can give a local gradient estimate
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for the positive bounded solutions to the equation (4.71]) under the super Ricci
flow.

Theorem 4.12. Let (M, g(x,t))iecpor) be a complete solution to the super Ricci
flow (L.4) and u be a smooth positive solution to the nonlinear heat equation

uy = Au+ au + bulnu + Au® + Bu” (4.72)

in the set Qpr, where a,b, A, B, a, and 3 be constants with A < 0,B > 0, a >
1,5 < 5. Assume that |Ric(z,t)| < K for some constant & > 0 for all (x,t) €
Qrr. If u € (0,1], then there exists a constant ¢ depending only n such that

\V4 1 —1In (infg, , u) 1

Vul v 4 VE+VA|VI—Inu  (473)
u R Vit

for all (z,t) € Qr r with t # 0, where A = max{b + max{a + b, 0}, 0}.

Remark 4.13. In the case b < 0, Theorem is better than Theorem 1.1 in [36].

Besides, Theorem can be seen as an extension and improvement Theorem 1.2
in [36].

85



Chapter 5

Rigidity and vanishing theorems for

complete translating solitons

This chapter is written on the basis of the paper “Ha Tuan Dung, Nguyen Thac
Dung, and Tran Quang Huy (2023), Rigidity and vanishing theorems for complete
translating solitons, Manuscripta Mathematica Vol. 172, pp. 331-352” [34]. In this
chapter, we will investigate several rigidity theorems and study the connectedness
at infinity of complete translators in Euclidean spaces. This content was mentioned
in Problem in Chapter [1] Recall that a submanifold X : M"™ — R™™ of the
Euclidean space is said to be a translating soliton (abbreviated by translator) for

the mean curvature flow if its mean curvature vector field H satisfies the equation
H=V" (5.1)

for some fixed unit length constant vector V in R"™™, where V* is the normal

projection of V' to the normal bundle of R"*™,

Assume that the Lf-norm of the trace-free second fundamental form is finite,
for some ¢ € R and using a Sobolev inequality, we first show that a translator in

the Euclidean space R™™™ must be a linear subspace.

Theorem 5.1. Let X : M™% — R™™ be a smooth complete translating soliton
in the Euclidean space R™™. If the trace-free second fundamental form ® of M

satisfies

(/ \@\”du) "< K(n,a) and / |2V dy < oo,
M M

where

n -+ vn?—2n
< 3
2
Q6

1<a



(n—2)"(a—1) 2 ifm=1
2 1 ) [’: ) )
D?(n) (=2(a=3) + (n— 1)2 a2 4 ifm>2

Qn(na—%—(ﬂ)

K(n,a) =

and D(n) is the Sobolev constant defined in Lemma then M is a linear sub-

space.

The proof of this theorem relies on a Sobolev inequality on immersed subman-
ifolds, which was first verified in [47, Theorem 2.1} and [71l, Theorem 2.1]. When
a = %, Theorem [5.1 recovers Theorem 1 in [I0I]. As noted in [101], the curvature
condition in Theorem [5.1| is weaker than that in Theorem 7.1 in [106]. If transla-
tors are located in a halfspace, in [48, Lemma 4.2], [49] Lemma A.1], Impera and
Rimoldi proved a weighted Sobolev inequality by using the bijective correspon-
dence found by Smoczyk [91] between translators and minimal hypersurfaces in a
suitable warped product. Applying Sobolev inequality, we are able to obtain the

following theorem.

Theorem 5.2. Let X : M"=3 — R"™! be a smooth complete translating soliton

in the Buclidean space R"™ contained in the halfspace
My, ={y eR"": (y,V) > a},

for some a € R. If the second fundamental form A of M satisfies

(/, ‘A'"@d”y < \/ (nznzsi?z;(i)(—n 1322)2’
V,.X)

where S(n) is the Sobolev constant given in Lemma 4.2 in [48] and p = eV,

then M is a hyperplane.

Compared with the results in [101, Theorem 1], [I06, Theorem 7.1], this result
drops the assumption on the smallness of the L"-norm of |A|, instead of this,
we require the weighed L"-norm of |A| to be small. In fact, in [I06], the author
supposed that the weighted L™norm of |A| is finite and the L"-norm is small.
Hence, when the weighted L"-norm of |A| is small, this theorem can be considered
as a refinement of Theorem 7.1 in [106]. Moreover, using the weighted Sobolev

inequality, we obtain a vanishing theorem as follows.

Theorem 5.3. Let X : M"=3 — R"™ be a smooth complete translating soliton
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in the Euclidean space R"™ contained in the halfspace
My, ={y eR"™ : (y,V) > a},

for some a € R. Assume that for any p > 2,

s

where f = —(X,V) and S(n) is the Sobolev constant as in Lemma [5.4. Then

there are no nontrivial L? f-harmonic 1-forms on M.

Recall that a 1-form w is called by Lfc f-harmonic if it satisfies
Ajw =0, / w|Pe ' du < oo.
M

Chapter |5 has three sections. Section [5.1]is used to derive some rigidity theorems.
Then we prove a vanishing result for weighted harmonic forms in Section [5.2]
Finally, we study translators in the Euclidean space with a Sobolev inequality in
Section and give another rigidity theorem.

5.1 Rigidity theorems

Let X : M — R"™™ be an n-dimensional translating soliton. H, A, ® denote
the mean curvature vector, the second fundamental form, and the trace-free second

fundamental form of M, respectively. Suppose that V' is the unit vector such that
VE=H. Let f = —(V, X), we define

Ap=A+(V,V(-)) =e VN div (6<V’X>V(-)> = e/ div(e 'V(")).

The trace-free second fundamental form is given by & = A — %g ® H. It is well

known that
1 1
|(I>|2 = \A|2 — —|H\2 and |V(I>|2 = \VA\Q — —V\H|2.
n n

In order to prove our theorems, we need the following Simons type identity, which
has been obtained by Xin [I01], Lemma 3| (see also [106, Proposition 2.1]).

Lemma 5.1. [101, Lemma 3] On a translating soliton M™ in R"*™ we have
2
Af@FF > 2[V[Q|* — @' — —|H[*|Df, (5:2)
n
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where

L 2, if m=1,
) 4, iF m>2.

Moreover, when m = 1, we have
Af|<I>|2 = Q\VCI)\Q — 2\A|2|<I>|2. (5.3)

We now recall that the following Sobolev inequality for submanifolds in the

Euclidean is beneficial in deriving our rigidity theorems (see [107, Lemma 2.5]).

Lemma 5.2 (Sobolev inequality). Let M" (n > 3) be a complete submanifold
in the Euclidean space R"™™. Let f be a nonnegative C* function with compact

support. Then for all s € R, we have

4(n —1)*(1+ s)
(n—2)?

where D(n) =2"(1+n) = (n — 1)_10;%, and o, denotes the volume of the unit
ball in R".

1\ 1
11, < D*(n) V1 (1 5)

For convenience in proving Theorem , we denote o = ¥ and dp might be
omitted in the integrations. We can follow the proof of Theorem 1 in [101], but
instead of using the function f defined in Lemma 5 of [I0T], we use the function
© = \@\“Q%n, where @ > 1 is a constant to be determined later and 7 is a smooth
function with compact support on M. For the convenience of the reader, in order
to help him/her check the influence of the constant a in every step, we give all the
details of the computations.

Lemma 5.3. Assume that |®| # 0 on M. If i is a smooth function with compact
support on M, then

a 1 a 1 a 2
[ wer= [ [waernPe-g [ wprer [ o vTre 6a)
Proof of Lemma [5.4]. Integrating by parts, we deduce that
Vel = [ 1V(erP ot [ (7 (apr).Vey+ [ jopp|ve!
2
M M M M

1 2
= [ V(e[ e—5 [ | nAc+ | |0
2
M M M

Since M™" is a translating soliton, we have
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Vo=Vel"™ = oVT, Vp?=20:Vo= 0V,

and

Ao=Y Vio(Vie)+ > 0(V.Viey) = 0 (\va + \VL}Q) _
Using this, we conclude that

2
[ vek= [ vaernre—; [ 1opper g [ 1o v e

The proof is complete. ]

Now, combining the Sobolev inequality in Lemma [5.2] and (5.4)), we get

([ 1=) "
< D*(n) - {4(n (_nl_)QS; 8)/ [Veol* + <1+1) ni/ |H|2902}

= o) { D ([ 9 arnro- ] [ ok

1 B 1\ 1 .
wq [ vEare) + (141) o [ oo}
M S n°Jm

Note that

VIP+IVIP=VIP+HP =1

Thus, we obtain

()

< o) (LI ([ 9 qornPo - [ 0B v e

(n
g)1+ 8()1 1) [ 1eplPe o

—2
1
—5 [ 1o
M
4(n—1)*(1+ _
— 2 X 2 P 2(1)2a2 2
D) { T ([ vieipiap e

1
+/ 2a|CI>|2a_177V|CI>|'V779+/ |<I>|2“!Vn\29——/ D[ VT %0
M M 4 Jm

1 1 1
=5 [1errpae) + (14 2) - [ epiHpe).
M S n®Jm
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By the Cauchy inequality, for 6 > 0 we have

4D*(n)(n — 1)?*(1 + s .
(n—2) M
1 1 2 1
+<1+_)/ |q)|2a|v77‘29__/ |(I)|2a‘vT‘ nQQ__/ |q)‘2a|H‘2n2Q}
5 M 4 M 2 M
1 1
+ D*(n) (1 + —) —2/ D> | H |*n°o. (5.6)
S n M

In order to estimate the term [,, |V|®|?|®|***n?p, we multiply |®|***n* on both
sides of (b.2)) and integrating by parts with respect to the measure odp on M gives

02 [ [vielplep e - [ (oo -2 [ opiapy
M

(5.7)
- [ 1opapajafe.
Since 71 has compact support on M, by the Stokes theorem, we obtain
Ui
— [ 1appa el
—— [ Jopipdiv (o VioP)
M (5.8)

=2 [ ol@|(V]e].V (BF )
= (o~ 1) [ (VI0P 10 o+ [ (V191,958 no
M M
Combining and (5.8), we get
1 _ . 2 .
021 (a=3) [ wialerte = [ oo [ (o,
M M n.Jm
+4 [ (/2L In)laf e
By the Cauchy inequality, for 0 < € < a — l we have

1
[ Japepe [ AT JERALY:

>4 <a ——— 8) / IV|®|)?|®]***n0.
2 M
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Substituting into (5.6]), we get
(/ W\ﬁg)n < 4D*(n)(n — 1)*(1 + s) 2(1+9) ( / D22,
M (n — 2)? 4(a———€
2 2a 2,2 1 2a 2
+= [N [H o+ = [ |2Vl e
n Jm €JMm
1 1
(145) [ orwnte = [ oimpre
0/ Ju 2 Jm
1 1
+ D?*(n) <1 + E) E/M |B|**|H|*n*0. (5.10)

We want to get rid of the term [, |®[**|H|*n?0 by choosing ¢ > 0 appropriately.

Put
(2(n—1)n*s — (n—2)*) (a — 5 —¢) 1

2(n — 1)%a’ns

d=49d(n,e,a) =
We would require o > 0, this occurs only if s satisfies

(2P (a—1—¢)

2(n —1)?n (na — % — a® — ne)

s >

(5.11)

for some € € (0, a— % — “—;) defined later and also, we need 1 < a < —“‘/ﬁ_
Consequently, we have

) 2 \7T a1+ s)(1+6 ) 1 )
([ o) e S jepe 2 [ apwne)
M (CL 2 5) M €JMm
1
s149) (1+5) [ opiente

_ (I +s)e[2sn*(n —1)° = (n = 2)’] 22,2,
B 8sn(n — 1)2 / a

+C(s,6,n,a)/ D> | V|0,
M

where C'(s,e,n,a) is an explicit positive constant depending on s,&,n,a and

4D?(n)(n—1)?

(-2
/M|(D|2a+2772gg (/M(@\?-Z) .(/M(|<I>|2a?7293$2> : 512

— (/ |®|22> . ( ‘Sp‘n—Q) .
M M
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Applying this to (5.12), we get

n—2
n
M
n—2

. (HS)L[Q?;?Z{_?;_ (n—2)7 ( /M @‘Qa)i | ( /M ,@,,@ T (5.13)

+CX&8JLGX/|¢PﬂVUP@
M

Put

8sn(n — 1)?
K = :
(. 5) ¢u+sﬁpm%nn2m2mm
By condition (5.11]) we can choose

(n—2)*(a—3)
2(n —1)?n (na — % —a® —ne)’

S =

Hence, substituting s into K (n, s), we have

Set

K(n,a) = sup K(n,a,e) = T
e (0, o= ttan) zﬁmdﬁiiii

We now can give a proof of Theorem [5.1]

1
Proof of Theorem[5.1. Since we made the assumption ([, |®|"du)" < K(n,a),

there exists a positive constant K such that

1
(/@w@ < K < K(n,a). (5.15)
M
Thus, there exists € = ¢y > 0 such that

K < K (n,a,e) < K(n,a).
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Using this and combining ((5.13), (5.15]), there exists 0 < € < 1 such that

(=)

< K(mac) K (/ e ) +C*(n,a,€o)/M|@|2“!an2@

n—2

< ([ 1) " v Cmaz) [ ot (516

or equivalently

€ 2n, nEQ —
S([in#=) " ccmas [epwate a0
KR M M

Let n(X) = n.(X) = ¢ (%') for any r > 0, where ¢ is a non-negative smooth
function on [0, +00) satisfying

1, if ze€]|0,1),

¢lz) = { 0, if z€ 2 +00), (5.18)

and |¢/| < C for some absolute constant. Since [, |®|% and C(n,a,¢,) are
bounded the right-hand side of (5.17)) approaches zero as 7 — oo, which implies
the left-hand side to be equal to zero i.e. |®| = 0.

Finally, using the assertion that |®| = 0, it was confirmed in [I0I, Theorem
1] that M is a linear subspace. In the rest of the proof, we give a detail of
argument, which is inspired by Impera and Rimoldi in [48, Theorem A]. We argue
as follows. Since |®| = 0, it turns out that [A|* = L H?. Moreover, we note that

|IV®|? = |V|®||? = 0. This implies
1
0=|VO]=|VA] - E‘VHP'
Therefore, we get
2 1 D) 2 2
VIAP| =~ |VH?| = = |H||VH| = = (Vi |A]) (Vi |VA]) = 2]A][VA].

As a consequence, |VA| = |V|A||. Therefore, we can apply the argument in the
proof of Theorem A in [48] to conclude that M is a linear subspace. The proof is

complete. O
Observe that [1,n — 1] C [1, ntvn - ’212_2”), the weighted L** norm of |®| in our
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theorem is wider than those in [I01]. Moreover, when a = 7, our theorem recovers
the following rigidity property, which was obtained by Wang, Xu, and Zhao in
[101].

Theorem 5.4. [I0I, Theorem 1] Let X : M"=* — R™" be a smooth complete
translating soliton in the Euclidean space R™1". If the trace-free second funda-
mental form ® of M satisfies

(/ |q>|ndu)"<f<<n) and /\@\"ewwﬂ@o,
M M

where K (n) is defined as above, then M is a linear subspace.
It is worth mentioning that the above condition is weaker than that in the

rigidity theorem of Xin [I06, Theorem 7.1]. To derive another rigidity result, we
can use the following version of the Sobolev inequality.

Lemma 5.4. [48, Lemma 4.2] Let X : M"=* — R"*! be a translator contained
in the halfspace My, = {p € R"™ : (p,V) > a} for some a € R. Let u be a

non-negative compactly supported C* function on M. Then,

[/M U%Qd“]nf = <2(n ” 1)S(n))2/M Vul*odp, (5.19)

n— 2

where p = eV and S(n) is the Sobolev constant given in Lemma 4.2 in [48].

Repeating the same computation as above, we can give a verification of Theorem
5.2 as follows.

Proof of Theorem[5.3 Applying the Sobolev inequalities (5.19) to u = |®|%1 and
using the Cauchy inequality, we have

UM (|c1>|’;77)n2"2 @dur"z . (QS(Z)(_nl— 1))2/M v (\‘I’\gn)r@du

_ (ZS(n)(n— 1))2 (/M%V@W@I“n?@du

n—2
+ [ nlo (10l Vnjodu-+ [ (o1 VaPodn)

< (PO ZIN (1) [ oo

1
(143) [ 1or19ared).
M
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Applying (5.9) and notice that ¢ = 2, we have, for 0 < e < 2 — 3,

n—2 9

n O\ 23 B (1 4+ 9)
-1 @5 d < 4 2/ q)n+22d
K [/M(I In) QN] _{4(3 _5)( R ody

1
2

2 1
2 [ (oplPredn s - [ 0119 edn )
nJyu €JMm
1
+(143) [ orivaked],
0/ Ju

2
where ko = <25(n)("1)) . By the fact that

n—2

(5.20)

AP = @ + IHIQ,

we can rewrite ((5.20]) as

n—2

at | () on] " <5

P [ Ao

Q) ml: %ls

+ / 9/ Vnlodp,

where C (n, 0, €) is explicit positive constant depending on n, d, €. Applying Holder
inequality, we have

iy [/M (I@Ign)”% Qdu]n

+6*<n,5 ‘) / BV odp,

< gD ( [ apan) ([ (#)™ o)

8 ?
+C( n,é,e / A"Vl edp,
M

here we used |®| < |A| in the last inequality. Put

SG-1-
K2(n7575) - \/ n22(1 _:5)1%2 )
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and

(n—2)7
Ks(n) = sup Ky(n,e,6) = \/
6>0,0<e<a—"-1 S(n)Q(n - 1)?12
By the assumption
([ 141 edn)" < Kol
M
and using the same argument as Theorem 5.1 we complete the proof. ]

Now, as mentioned in [48], an application of the maximum principle and the
weighted version of a result in [29] give that translator with mean curvature that
does not change sign are either f-stable (generalizing, in particular, Theorem
1.2.5 in [88], and Theorem 2.5 in [89]) or they split as the product of a line
parallel to the translating direction and a minimal hypersurface in the orthogonal
complement of the line. Note that, in this latter case, by Fubini theorem, the
condition |A| € LP(M;) for some p > 0 is met if and only if |A] =0 (i.e. M is a
translator hyperplane), here M; = (M, g,e /du) . Moreover, to adapt the ideas
in [86] for minimal surface, Ma and Miquel proved in [68, Lemma 9] a refined Kato

inequality on translating solitons as follows.

Lemma 5.5. [68, Lemma 9] Let M™ be a hypersurface immersed in R satisfying

n—+1

Al <
|V ‘_ 2n

[VH],

then we have
n+1

n

Vo) > " e

Note that on the translating soliton M, we have VH = (Vv,v) = A(-,v), so

the condition becomes
n—+1

2n
Now, under these assumptions, we obtain the following result, which can be con-

VA < [A( v)]-

sidered as an improvement of Theorem 6 in [68].

Theorem 5.5. Let X : M"=? — R""! be a translator with mean curvature which
does not change sign. Suppose that |V A| < SV H| and the traceless second fun-
damental form of the immersion satisfies |®| € L? (M) forp € <2 — \/%, 2+ \/%) .
Then M is a hyperplane.

Proof of Theorem[5.5 Since the curvature does not change sign, we may assume
that M is f-stable. Otherwise, |A| = 0, so M is a hyperplane. From the definition

97



of the f-Laplacian operator and the equation ([5.3), we have
2
O] Af @] = [VO[ — [V |2 — [A[|[".
By the Kato-type inequality in Lemma [5.5] this implies
1 2
([ As |0 = S|V [@]]" — [AF|P[ (5.21)

Now, let 17 be a smooth compactly supported function on M. For any a > 1,
multiplying \(D\afl n? both sides of the (5.21)) and integrating by parts with respect
to the measure e /du on M yield

[N
M

1

a—1 _ a _
> [ el Vel - [ ARt (522
n Jmu M

Since 1 has compact support on M, by the Stokes theorem, it shows that
[ ttera el e
M
—— [ (Pl Vo)
_ _/ (20/®]"Vn + @V |B], T[] ) e T dp
M
— 2 [ (0 (V9. V(@) e Y —a [ 7|0V (@] dp
M M

Substituting the above identity into ([5.22)), we obtain

—2/M|<I>Ia <Vn,V|®|>nefdu—aA4n2\@\“1\V|¢>|\Qefdu
1 a—1 _ a _
> [ el el T~ [ AP dp,
n Ju M

or equivalently

1 a—
(a3 [ PIal 9 jo)Pe g
n; Jm

<2 [ 10 (V0. Vi@ netdp + [ JAPPRPTe . (523)
M M

On the other hand, since M satisfies the stability inequality, we have
[ 1areetan < [ [vufetap
M M
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Replacing 9 by 1|®|“*" in the above inequality gives
[ ARt Ty
/ )V 77\‘1>!M oSy
/ \cb\““\vm S+ (a+1) [ (O] (V1)) ne

V|V *re dp. (5.24)

Combining (5.23) and ({5.24), we have
1 a— _
(a2) [ tlal™ 1Vl 7au
n M
2 [ op (v, 1@ ne e+ [ 10 Vle d
M M

+lat1) / B (i, V| @) ne'd
M

+1)°
L la - ) / 1B |V|VD|Pe du.
M
Hence,
1 (a+1) . B
ot~ [ e e tan
n 4 M

< / B\ VnlPe T dp + (a + 3) / B (Vi V|B]) ne . (5.25)
M M

From the Cauchy-Schwarz inequality and the inequality zy < ex? + - y for all
e > 0, we see that

(a+3)|0" (Vn, VD)) < |a+ 3| (|07 [V]@]| |n]) (\<I>|““ Vil

(a+3)
4e

< el Ve[ + @[ V*. (5.26)

Substituting ((5.26]) into (5.25]), we get

1 (a+1)

n 4

— &

[ 1909 9l d
M

(a+3

< |1+

/\cb\““\vm Sdp. (5.27)
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Now let p = a + 1. Then, the above inequality becomes

p2

1 _ _
e ] [ 1RP e
n M

22
< |14 220
4e

/M B[V [2e dp. (5.28)

Next, we choose the number p to be p — 1 — p; + % > 0, or equivalently

2 2 1
22y 2 (i1
Vn b +\/ﬁ <+ n)

Hence, for 2 — \/% <p<2+ ln, we can choose € > () small such that there is a
constant C' > 0 depending on n, p such that

[ 1or v ity dap < ¢ [ ol |wate fap
M M

Let o € M be a fixed point and let Bg(0) be the geodesic ball centered at o with
radius R. We choose 77 to be a smooth function on M such that 0 < n < 1.
Moreover, 7 satisfies:

(i) n =1 on Bg(o) and n = 0 outside Bap(0);

(ii) [Vl < 2.

Plugging 71 into the above inequality then letting R tend to infinity, we conclude
that |V|®|| = 0, since |®| € LP(M;). Therefore, |®| is constant. Note that
a translating solition is of Euclidean volume growth ([106]), this implies & = 0
because |®| € LP(M;). Now, we apply the argument as in the proof of Theorem
to conclude that M is a hyperplane. O

As a consequence of this theorem, for p = 2, we obtain the following corollary,
which can be considered as an improvement of Theorem 6 by Ma and Miquel in
[68].

Corollary 5.1. Let X : M™=?* — R"™ be a translator with mean curvature which

does not change sign and
n—+1

2n

Suppose that the traceless second fundamental form of the immersion satisfies
|®| € L? (M;). Then M is a hyperplane.
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5.2 Vanishing result for weighted harmonic forms
In this section, we give a proof of Theorem [5.3]
Proof the Theorem[5.3 Let w be L% harmonic 1-form on M. We denote the dual

1
n

vector field of w by w* and ||A|l.; = ([, |A|"e/dp)” . Applying the extended

Bochner formula for a LI} harmonic 1-form, we get

Aslw|® = 2|Vw|* 4+ 2 (Ajw, w) + 2 Ric; (WF, W)
= 2|Vw|® + 2Ric; (wh, w?) . (5.29)

Note that As|w|” = 2|w| A |w| + 2|V |w||* and the Bakry-Emery Ricci tensor of
M satisfies
Ricy (wﬂ,wﬁ) = — <A2wﬁ,wﬁ> :

This implies
W Ay |w] = [Vwl* = [V |w][* = (A%, o).

Consequently, by Kato’s inequality, we have
Wl A Jw| > — (A% wf) > — | A% W] > — A |wl.

Now, let n be a smooth compactly supported function on M. By multiplying both
sides of the above inequality by n?|w[’~2? and then integrating the obtained result,

we arrive at
|t Al Tdp > — [ AP e Y dp. (5.30)
M M
Since 1 has compact support on M, by the Stokes theorem, we see that
/ P lwl” Ay lwl e dp
M
— —/ <V (n2]w\p_1> ,V |w|> e ldpu
M
= —2/ W™V, V |wl) e du — (p - 1)/ eIV wl e dp
M M
This inequality and ([5.30) implies
p=1) [ Pl ol dn
<=2 [l (V. Vel ne dut [ APl e dp (531
M M
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By Holder’s inequality and the weighted Sobolev inequality, we have

[ AP e d
M

(L) (L (mwl’%)%)nn
_(ic ) I1A|2 /\v ”lwl

=DA% | <|w|p|vm2+p|w|p*1<V|w\,w>n

2
P Tl ) a3
2
where D, = 200" Using the Cauchy-Schwarz inequality and the inequality
n—1

xy < ex? + % for any € > 0, we see that

plwl”” (Viw], Vi) < plwl" [{V]w], Vi) [|n]
< pIWIP_IIV\WHIV??Hn\
_ Vollel”

| 7V wl ]
9

This together with ([5.32)) implies

1 N
[ 1apae < DAl (14 2) [ wl9aie d
M £ M

1 2
S e g

4
= (14 2) DAL, [ [wPIVaPedn
L+e)p - -
+ I DAl [ e 639

On the other hand, for any € > 0, we have

—2 [ ™ V0,V kel e T
M
2 [ ol (99, fol) 1] e /d

1 _
< —/ ]Vn\z\w|pe_fdu+5/ W I Pt dy. (5.34)
EJM M
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Combining (31), E33), and E30), we get
2 2
D 2 EP 2 -9 2 _
p= 1= EDu AL, ~ DAL ] [ ol Y el
1 1
< [(1 n —) D, IA, + —] / WP |V e dp.
e ’ £ M

For a sufficiently small € > 0, the above inequality implies that there is a constant
C' > 0 such that

/ WV e TP du SC/ W[Vl dp, (5.35)
M M

provided that p — 1 — pZQDn ||AHi ;> 0, or equivalently

: _4p-1) _(p-1{n-1)
HAan < pQDn - pQCQ (n)

Let 0 € M be a fixed point and let Br(0) be the geodesic ball centered at o with
radius R. We choose 17 to be a smooth function on M such that 0 < n < 1.
Moreover, 1) satisfies:

(i) n =1 on Bz (o) and n = 0 outside Bg(o);

(i) [Vl < 2.

Applying this test function 7 to (5.35)), we get

_ 4C
/ w7V fw|[e T du < —2/ w|Pe~Fdp. (5.36)
BR(O) R BR(O)

Letting R tend to oo in the above inequality and noting that w € Lg , We con-
clude that V |w| = 0, which shows that |w| is a constant. Moreover, since
[ lwlPe?dp < oo and the weighted volume of M is infinite, we finally get

w = 0. The proof is complete. ]

Now, we note that if a Sobolev inequality holds true on M every end of M is
non- f-parabolic, for example see [48]. Therefore, we have the following corollary.

Corollary 5.2. Let X : M"=3 — R"™! be a smooth complete translating soliton

in the Euclidean space R™™! contained in the halfspace

Iy, ={y e R"™" : (y,V) > a},
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for some a € R. Furthermore, assume that

o1
Al"e ! <
(/M' e d”) = 25(n)’

where S(n) is the constant as in Lemma . Then there are no nontrivial Lfc

harmonic 1-forms on M. In particular, M has only one end.

Proof of Corollary[5.9. Since every end of M is non- f-parabolic, we can argue by
contradiction to assume that M has at least two ends. Then by Li-Tam [62],

there exists a non-constant f-harmonic function u such that w := du satisfying

lw| € L}. An application of Theorem [5.3| implies that w = 0 or u is constant.

This is a contradiction. The proof is complete. ]

5.3 Translators with a Sobolev inequality

Suppose that M satisfies the following Sobolev inequality

2(n+1 Ziﬁ 2 2
[/ u (njl)gdu] < ( C(n)n> / \Vu|®odu (5.37)
M n—1 M

for any u that is a non-negative compactly supported C* function on M and C(n)

is the Sobolev constant. In fact, the above inequality was proved in [48]. However,
the authors pointed out in [49] that there is a gap in their proof of this inequality.
Here, we assume that this inequality holds true. The Sobolev inequality was
used by Kunikawa and Saito in [55] to study the injectivity of the natural map
between the first de Rham cohomology group with compact support, the reduced
Lfc cohomology, and the space of Lfc f-harmonic 1-forms. They proved that if M
supports the Sobolev inequality and admits a codimension one cycle which
does not disconnect M then the space of pr f-harmonic 1-forms is non-trivial.

Now, we apply the above Sobolev inequality above to u = |®|*. Then we have

o @dﬂ]% < (220 [ 19 o oy

n—1
2C(n)n\” _
= (22 ([ avel e ypo
n— M
+ [ 2al@p (V1] Vayodu+ [ [0l edr).

(5.38)
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By the Cauchy inequality, we obtain

2(n+1) wr 20(n)n\ > B
[ o ] < (ZEEY ([ vial o ity

+ [ 2alap (18] Vipodu + [ [0 ITufed)

2 2
< () (a+o) [ @vialpopiied,

n_

1
#(1+5) [ 10rI9nleda)
0) Ju
(5.39)

Apply (5.9) and keep in mind that right now ¢ = 2. For 0 < e < a — %, we have

~ o\ 2mtD it a*(1+9 .
it | [ o o §{4< S0 (2 oo
M a—y

/\‘P\Z“\H\ @du+g/M|<I>l2“|V77\29du)

+(1+—) / |¢\2“|Vn\2@du},
0) Ju

(5.40)
2
where K, = (%) .
Using the fact that |A|* = |®]> 4+ 1| H|?, we can rewrite (5.40) as
n-1
2(n+1) n+1 a %,
it [ Qo ¥ o] < A [ Aoy
2 (5.41)
+Clnade) [ 10F|Vylgdn
M

where C (n,a,d,e) is an explicit positive constant depending on n, a, d, €.
By the Holder’s inequality, we have that

1

nal TLL-H n+1
[ 10kAPredn < ([ 1apF o) ([ (o) o)

. (5.42)

— An—H d T+1‘ [6)) (n+11 d nll
Ml\ odp (Hn) odp ) .

Our goal is to decrease the number of conditions in theorem [5.1], only one condition

n+1
-

instead of two as in Theorem 5.1, so we should choose a = For that reason,
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combining ((5.41]) and ([5.42)), we have

o) " o
(120 0) T odu

nFl

33
==

Ry

(n+1)*(1+0) (/ )nil ntl 2 w
< Al : / "2 nod d
—8(%1_%_8) M‘ | M<| | 779#) oaft

Put

and

(n—1)°

2+

Applying the argument as in the proof of Theorem [5.1I, we have the following
result.

Ki(n)= sup Ki(n,e,6) = \/C(n

§>0,0<e<a—3

Theorem 5.6. Let X : M"=3 — R" be a smooth complete translating soliton in

the Buclidean space R with Sobolev inequality (5.37)). If the second fundamental
form A of M satisfies

1

n+1
(/ \A|”+1Qd,u> < Ki(n),
M

where K1(n) is defined as above, then M is a hyperplane.
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Conclusions

The main results of the dissertation include:

1) An upper bound on the dimension of the Lie algebra of Killing vector fields
on an irreducible, non-trivial gradient Ricci soliton, as well as some results
on the geometric structure of this class of gradient Ricci solitons when this

maximal dimension is attained;

2) Liouville-type theorems and gradient estimates for the positive bounded so-
lutions to the nonlinear parabolic equation related to gradient Ricci solitons

concerning Perelman’s reduced distance along ancient k-super Ricci flow;

3) Some analytical aspects of a general type of nonlinear parabolic equation con-
cerning the weighted Laplacian on a smooth metric measure space, with the
metric evolving under the (k, co)-super Perelman-Ricci flow and the Yamabe
flow, such as gradient estimates, Harnack inequalities, general global con-

stancy, and Liouville type theorems;

4) Rigidity and vanishing results for complete translating solitons in Euclidean

spaces.

In the near future, we will focus on researching two key problems that will

continue the work done in this dissertation.

1) The main approach to studying Problem in this dissertation is to use the
level set of the potential function of gradient Ricci solitons. However, in the
case of Einstein manifolds (that is, Ric = Ag), this approach is not feasible
due to the absence of the potential function. We aim to estimate the upper
bound on the dimension of the group of isometries of an Einstein manifold
and classify the spaces where this maximum dimension is attained. We also

intend to study the group of isometries of quasi-Einstein m-manifolds.

Besides, we are also particularly interested in classifying Kéahler gradient Ricci

solitons with geometric transformation groups in real dimension four.
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2) Let (M",g) be an n-dimensional complete Riemannian manifold. For any

smooth vector field V on M, the m-Bakry-Emery Ricci tensor is defined by
s m : 1 1 * *
Ric)) ;= Ric+=Lyg— —V" @V
2 m

for some number m > 0. Here Ly denotes the Lie derivative in the direction
of V, and V* is the metric dual of V. When m = 0, we regard V' = 0
and Ric}; becomes the usual Ricci tensor Ric. When m = 0o, we have (00)-

Bakry-Emery Ricci curvature
. . Oo . 1
Ricy := Ric,, = Ric +§£Vg.

We aim to formulate and prove gradient estimates and Hessian estimates for

positive smooth solutions u to the following non-linear parabolic equation
0
P Ay ) F(u(z,t)) = G(u(z,t)).

Here, Ay is the so-called V-Laplacian, which acts on functions u € C*(M) by
Ayu = Au — (V, Vu). From these estimates, we will derive various analyti-
cal aspects, such as Harnack inequalities, results on parabolic frequency, and
Liouville and global constancy-type results. It should be emphasized that, un-
der the assumption regarding Ricy, most of the previous gradient estimates
require that the smooth vector field V' be bounded, that is, |V| < a for some
real constant a > 0. We hope that this condition can be eliminated in the

estimation results.
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