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Chapter 1

Introduction

The field of geometric flows is one of the most important areas of geometric
analysis, forming at the nexus of differential equations and geometry. This field
of study is characterized by the deformation of geometric objects such as met-
rics, mappings, and submanifolds by geometric attributes such as curvature and
consists of partial differential equations (PDEs) of parabolic type. These flows
have wide applications in many scientific fields. For example, in cell biology, they
aid in understanding dynamic network rewiring during cellular differentiation and
cancer; in medical imaging, they used to conformal brain mapping and virtual
colonoscopy; in computer graphics, they help model vorticity lines for efficient
smoke and dust animations in games and CGI effects; and in physics, they can
model dynamic systems and space-time geometries. In pure mathematics, geo-
metric flows have demonstrated their great potential by solving various problems
related to differential geometry and topology. The field of geometric flows can be
seen as a bridge between analysis and geometry. Moreover, thanks to this intersec-
tion, researchers can use tools and methods from the theory of PDEs, differential

geometry, or both to study challenging problems in this field.

In the PDEs theory, investigating special solutions, such as radial or stable solu-
tions, plays an important role in establishing qualitative and quantitative proper-
ties for the general solutions of the equation under consideration. These solutions
are either expressible in closed form or, if not feasible, will be systematically clas-
sified. Solitons in geometric flows are a typical example of such special solutions.
They remain invariant in time to a certain degree under a particular flow. A basic
example of these solitons would be a family of round spheres in Euclidean space,
which gradually shrink in size over time and eventually collapse to a single point.
This behavior serves as a solution to the mean curvature flow, a type of geometric

flow that evolves shapes by smoothing them out. On the other hand, as the ge-
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ometric flow progresses, it can lead to intricate geometric changes, including the
appearance of singularities, where quantities containing the norm of the curvature
tensor approach to infinity, typically forming in finite time, due in part to the
nonlinearity of geometric flow equations, as well as for geometric and topological
reasons. Solitons of some geometric flows, such as Ricci flows and mean curvature
flows, serve as prototypical singularity models. This is also one of the main moti-
vations to promote further research by mathematicians in this topic and the field

of geometric flows in general.

This dissertation investigates some aspects of geometric flows, with a particular

focus on two main research directions as follows.

e The first aim is to study some geometric and topological properties of gradient

Ricci solitons and translating solitons.

e The second aim is to explore the analytical aspects of some partial differen-
tial equations that originate from geometry within the context of some super

geometric flows.

In the following three subsections of this chapter, we will provide an overview

of the problems studied in the dissertation.

1.1 Gradient Ricci soltions and isometry groups

The Ricci flow equation is a geometric evolution equation that deforms the
metric g of a Riemannian manifold over time by adjusting it in a way proportional

to the Ricci curvature Ric:

dg .
FTi —2Ric. (1.1)

A Ricci flow (or a solution to the above equation) is a one-parameter family of
metrics g, defined on a smooth manifold M and parameterized by ¢ within a
non-degenerate interval I, that satisfies the equation . The Ricci flow was in-
troduced in 1982 by Hamilton as part of his ambitious program to prove Poincaré’s
conjecture and Thurston’s geometrization conjecture. It’s important to recognize
that the Ricci flow equation is only weakly parabolic, which frequently leads to
finite-time singularities. This has prompted the study of singularity models to
gain insight into the underlying topological and geometric features of Ricci flows.
Probably the most important singularity model is the Ricci soliton, which is a

self-similar solution to the Ricci flow equation (1.1)) and arises as a finite-time
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singularity model. Recall that a Ricci soliton is a Riemannian manifold (M, g)
that is equipped with a smooth vector field X satisfying the equation

1
Ric +§/3Xg = \g, (1.2)

where L is the Lie derivative with respect to X and A\ € R. In particular, if
X = Vf where f : M — R is a smooth function, then we say that a triple
(M, g, f) is a gradient Ricci soliton. In this case the equation (1.2)) becomes

Ric+ Hess f = Ag, (1.3)

where Hess is the Hessian of metric g. Depending on the value of A\, a gradient
Ricci soliton is called shrinking if A > 0, steady if A = 0, or expanding if A < 0.

We define a gradient Ricci soliton to be rigid if it is a flat bundle N X R* where
N is Einstein, I' acts freely on N and by orthogonal transformations on R* (no
translational components) to get a flat vector bundle over a base that is Einstein
and with f = %dz. Here, d is the distance in the flat fibers to the base. While (non-
gradient) Ricci solitons have been found in various Lie groups and homogeneous
spaces, Petersen and Wylie proved that all homogeneous gradient Ricci solitons
are rigid. Furthermore, they also demonstrated that if the Riemannian metric is
reducible, then the soliton structure is also reducible. Their result is based on the

existence of splitting results induced by Killing vector fields.

Inspired by Petersen and Wylie’s work, in Chapter [2, we will study the isometry
group Iso(M) and its Lie algebra of an irreducible non-trivial gradient Ricci soliton
(M, g, f). Recall that a Riemannian manifold is said to be irreducible if no finite
cover of it can be expressed (in the isometric sense) as a direct product of manifolds

of smaller dimensions.

Problem 1. Find an upper bound on the dimension of the Lie algebra of Killing
vector fields on an irreducible non-trivial gradient Ricci soliton, and classify the

spaces where this maximal dimension is attained.
1.2 Nonlinear parabolic equations and super geometric

flows

Turning the framework of geometric flow theory, we now present the concept of
super Ricci flow, which was originally introduced by McCann and Topping from

the perspective of optimal transport theory. A smooth manifold (M, g(x,t))ses is
3



called a super Ricci flow if

dg
> —2Ric. 1.4
ot — (14)
For each k € R, a time-dependent Riemannian manifold (M, g(z,t))cs is termed

a k-super Ricci flow if it satisfies the following condition:

99

9 + 2 Ric > 2kg, (1.5)

which is a natural extension of the concept of super Ricci flow. A k-supper Ricci
flow (M, g(x,t))er is said to be ancient when I = (—o0, 0].

The reduced distance and reduced volume were first introduced by Perelman
in his groundbreaking paper as two key tools for analyzing the Ricci flow. Later,
Ye proved several properties of Perelman’s reduced distance and obtained some
estimates for the reduced volume. Besides, the applications of these properties in
the analysis of the asymptotic limits of x-solutions of the Ricci flow have been
presented by Ye in the follow-up paper. Recently, Kunikawa and Sakurai ob-
tained Liouville type theorems for harmonic maps under ancient super Ricci flow
with controlled growth, approaching the topic from Perelman’s reduced geometric

perspective.

The next chapter of this thesis is also motivated from a work due to Ma. For

some constants a, b, Ma considered the following nonlinear elliptic equation
Au+aulnu+bu =0 (1.6)

in a complete noncompact Riemannian manifold. From Ma’s observation, we know
that the above equation is closely related to the equation of the gradient Ricci
soliton (M, g, f). Moreover, the equation is naturally linked to geometric and
functional inequalities on manifolds, particularly the logarithmic Sobolev inequal-
ity and Perelman’s VW-entropy. Replacing u by egu, we see that the equation
is equivalent to the following equation

Au+ aulnu = 0. (1.7)

Inspired by the works of Kunikawa, Sakurai, and Ma, in Chapter [3, we will study
gradient estimates for positive bounded solutions to the parabolic counterpart of
equation along ancient k-super Ricci flow and explore some of its applications.
Specifically, we are interested in the following problem.
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Problem 2. FEstablish gradient estimates and Liouwille type results for positive
bounded solutions of the nonlinear parabolic equation related to Perelman’s reduced

distance

s,
&u(x, t) = Au(z,t) + au(z, t) Inu(z, t) (1.8)

along ancient k-super Ricci flow, where a € R.

A smooth metric measure space, also known as a weighted manifold or a man-
ifold with density, can be viewed as a natural generalization of gradient Ricci
solitons. Since Perelman’s works, this space has been the subject of extensive
study by many mathematicians worldwide. Recall that a smooth metric measure
space is a triple (M, g, e /du), where (M, g) is a complete Riemannian manifold
of dimension n > 3 endowed with a weighted measure e~/ dp for some f € C>*(M)
and dy is the standard Riemannian volume measure of metric g. On (M, g, e /du),

the weighted Laplacian A is defined by
Ap:i=A-—(V[f, V),

which is a natural generalization of the Laplace-Beltrami operator A to the smooth
metric measure space context, and it coincides with the latter precisely when the
potential f is a constant function. For any real number m > 0, the m-Bakry-

Emery curvature is defined by
1
Ric} := Ric + Hessf — Edf ® df.

When m = 0, it means that f is constant and Ric}n becomes the usual Ricci

curvature Ric. When m — 0o, we have the (co-)Bakry-Emery Ricci curvature
Ricy := Ric}” = Ric + Hessf.

It is not difficult to see that Ric?f > cinfers Ric; > ¢, but the contrary may not be
accurateaccurate. When Ric; is bounded from below, many geometric properties
of manifolds with the Ricci tensor bounded from below were also possibly extended

to smooth metric measure spaces, but some extra assumptions on f are required.

Motivated by the above works of Hamilton, McCann-Topping, and Perelman’s
work for the modified Ricci flow (this flow is often referred to as the Perelman-Ricci

flow), X.-D. Li et al. introduced the concept (k, m)-super Perelman-Ricci flow on
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manifolds equipped with time-dependent metrics and potentials. For k, m € R and
m > 0, a time-dependent smooth metric measure space (M, g(x,t), e_f(x’t)d,u)tej
is called (k, m)-super Perelman-Ricci flow if

99

5, T 2R} > —2kg. (1.9)

When m — 00, i.e., if the metric g(x,t) and the potential function f(x,t) satisfy
the following inequality
0
99 4 2Ric; > —2kg, (1.10)
ot
we call (M, g(z,t), e_f(“’t)d,u)tel a (k,c0)-super Perelman-Ricci flow, which can

be viewed as a natural extended of the modified Ricci flow.

The Yamabe flow was initially explored by Hamilton in the unpublished work as
ameans of addressing the Yamabe problem. An n-dimensional manifold (M, g(x,t)):er
equipped with a time-dependent metric is referred to as a Yamabe flow when it
satisfies the following equation

- = — 1.11

where S is the scalar curvatures of the metric g. Chow studied the normalized
Yamabe flow and demonstrated that this flow converges to a metric with constant
scalar curvature. By assuming only that the initial metric is locally conformally
flat, Ye established the convergence of the Yamabe flow, thereby improving upon
Chow’s result. The scenario of metrics that are not conformally flat has been stud-

ied in a series of papers by Schwetlick and Struwe, and subsequently by Brendle.
Inspired the work presented in Chapter |3| and the advancements made in the

smooth metric spaces discussed earlier, Chapter ] will concentrate on investigating
the following problem. Inspired by the work presented in Chapter |3| and the
advancements made in the smooth metric spaces discussed earlier, Chapter {4| will

investigate the following problem.

Problem 3. Study some analytical aspects of a general type of nonlinear parabolic
equation concerning the weighted Laplacian

<% —a(x,t) — Af> u(z,t) = F(u(zx,t)) (1.12)
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on a smooth metric measure space with the metric evolving under the (k, co0)-super
Perelman-Ricci flow (1.10) and the Yamabe flow (1.11]), where a(z,t) is a function
which is C* in the x-variable and C* in the t-variable, and F(u) is a C* function

of u.

1.3 Translating solitons of the mean curvature flow

We now recall the definition of mean curvature flow. Let X : M™ — R"™™ be a
smooth immersion of an n-dimensional smooth manifold in Euclidean space R"*™.
A smooth one-parameter family X; = X (-, ) of immersions X; : M x [0,T) —
R™*" with corresponding images M; = X;(M) is called the mean curvature flow

for a submanifold M in R™™ if it satisfies the following condition

{ %X(fﬁat) = H(ZE,t),

X(2,0) = X(x), (1.13)

for any (z,t) € M x [0,T), where H(x,t) is the mean curvature vector of M, at
X;(x) in R™™,

One of the key aspects of studying mean curvature flow is the analysis of sin-
gularities. In various scenarios, the second fundamental form with respect to the
family M, may experience singularities. For instance, if M is compact, the second
fundamental form will blow up in a finite time. Based on the blow-up rate of
the second fundamental form, we categorize the singularities of mean curvature
flow into two types: Type-I singularities and Type-II singularities. The geometry
of the solution near Type-II singularities is more challenging to control, making
the study of Type-II singularities significantly more complex than that of Type-I

singularities.

A solution to ([1.13]) is said to be a translating soliton (or simply a translator)
if there exists a constant vector V' with unit length in R"*™ such that

H=V" (1.14)

R™*™_ Translating solitons are

where V+ denotes the normal component of V' in
significant in the theory of mean curvature flow because they arise as blow-up
solutions at type II singularities. On the other hand, every translating soliton
is a special solution that moves only in a constant direction V' without deform-
ing its shape under the mean curvature flow, specifically, the solution is given by

M, = M + tV. There are few examples of translating solitons even in the hyper-
7



surface case. The primary examples are those translating solitons that are also
minimal hypersurfaces. Indeed, by (1.14)) we know that V' must be tangential to
the translator. Consequently, these solitons could have the form of M X L, where

L is a line parallel to V and M is a minimal hypersurface in L.

Inspired by previous works on on translating solitons, in Chapter [5|of this thesis,

we are interested in the following problem.

Problem 4. Study of the rigidity properties and connectedness at infinity of com-

plete translating solitons in the Euclidean space via the second fundamental form.
1.4 Structure of the present work

As mentioned earlier, the dissertation is divided into five chapters. In addition
to Chapter [I], the remaining four chapters will be described below. It also includes
a section listing the author’s related papers, a Conclusions section, and a list of

references. Below is a brief overview of the contents of each chapter, from Chapter
to Chapter [
In Chapter [2 of this dissertation, we investigate the isometry group Iso(M)

and its Lie algebra of an irreducible non-trivial gradient Ricci soliton (M, g, f).
This chapter aims to study Problem [, which is based on the paper to appear in
https://doi.org/10.1515/forum-2024-0325.

Chapter [3] of this dissertation is devoted to studying the nonlinear parabolic
equation (|1.8)) related to Perelman’s reduced distance, along ancient k-super Ricci
flow. This chapter aims to study Problem [2| which is based on the paper published

in the Journal of Mathematical Analysis and Applications.
In Chapter |4 of this dissertation, we focus instead on studying the general type

of nonlinear parabolic equation (1.12)) on a smooth metric measure space with

the metric evolving under the (k, co)-super Perelman-Ricci flow (1.10) and the
Yamabe flow (L.11). Chapter [ aims to study Problem [, based on the paper
published in Nonlinear Analysis.

Chapter [5| of this dissertation focuses on studying some aspects of complete
translating solitons in the Euclidean space. Chapter [5] aims to study Problem [,
which is based on the paper published in Manuscripta Mathematica.

The results of this dissertation were presented at

- The weekly seminar of Geometric Analysis group (June 28, 2023, Vietnam
Institute for Advanced Studies in Mathematics, Hanoi);
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- The monthly seminar of the Department of Geometry, (December 12, 2023,
Hanoi National University of Education, Hanoi);

- The 10th Vietnam Mathematical Congress, Committee on Partial Differential
Equations (August 11, 2023, the University of Da Nang-University of Science
and Education, Da Nang);

- The Workshop “Some selected topics in Geometric Analysis and applications”

(February 1, 2024, Hanoi University of Civil Engineering, Hanoi).



Chapter 2

On isometry groups of gradient Ricci

solitons

This chapter is written based on the paper “Ha Tuan Dung, Hung Tran (2025),
On isometry groups of gradient Ricci solitons, to appear in Forum Mathematicum,
https://doi.org/10.1515/forum-2024-0325" and focuses on examining Prob-
lem [1] discussed in Chapter [I, We specifically investigate the isometry group and
its Lie algebra of an irreducible, non-trivial gradient Ricci soliton (M, g, f). Our
goal is to determine the maximum dimension of the isometry group and study the
structure of this manifold when the maximal dimension is attained. Towards that

end, we recall the Lie algebra of the isometry group of (M, g, f):
iso(M, g) := {X is a smooth tangent vector field on M, Lyg = 0}.

Closely related to the Lie algebra iso(M, g) is the Lie algebra of Killing vector
fields preserving f:

is0;(M, g, f) == {X is a smooth tangent vector field on M, Lxg =0= Lxf}.

Throughout this chapter, for convenience in presentation, we will abbreviate the

term gradient Ricci soliton as GRS.

In order to achieve the main goal, we first give a result estimating the dimension

of iso;(M, g, f) and classify the spaces where this maximal dimension is achieved.

Theorem 2.1. Let (M", g, f), withn > 3, be a GRS. If f is non-constant then
iso;(M, g, f) is of dimension at most % (n—1)n and equality happens iff each

connected component of a reqular level set of f is a space of constant curvature.

Let (N""! gn) denote the space form model. If gy is non-flat, the equality

happens iff the metric is locally a warped product. That s, there is an open dense
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subset such that around each of its points, there is a neighborhood diffeomorphic
to a product I x N and the metric g is given by g = dt* + F*(t)gn. Here, I is an

open interval, and F : I — R is a smooth function.

Furthermore, it is possible to relax the assumption on preserving f. A Rieman-
nian manifold is locally irreducible if it is not a local Riemannian product metric

around each point.

Theorem 2.2. Let (M", g, f), with n > 3, be a locally irreducible non-trivial
GRS. Then iso(M, g) is of dimension at most 5 (n —1)n. In addition, equality
happens iff it is smoothly constructed, as in the case of equality of Theorem [2.1]

The above theorems are essentially local. That is, there is no mention of the
completeness of the metric. Indeed, the soliton structure is so rigid that it is

difficult to complete the above metrics.

Theorem 2.3. Let (M", g, f), with n > 3, be an irreducible non-trivial complete
GRS. Then iso(M, g) is of dimension at most 3 (n —1)n. For X\ > 0, equality

happens iff A = 0 and it is isometric to a Bryant soliton.
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Chapter 3

Liouville type theorems and gradient
estimates for nonlinear heat equations
along ancient k-super Ricci flow via

reduced geometry

Recall that for each real number £, a time-dependent Riemannian manifold
(M, g(z,1))ses is called a k-super Ricci flow if it satisfies the following condition
%9 + 2 Ric > 2kg. (3.1)
ot
A k-super Ricci flow (M, g(x,t))er is said to be ancient when I = (—o0,0].
Written based on the paper “Ha Tuan Dung, Nguyen Tien Manh, and Nguyen
Dang Tuyen (2023), Liouville type theorems and gradient estimates for nonlinear
heat equations along ancient K -super Ricci flow via reduced geometry, Journal of
Mathematical Analysis and Applications, Vol. 519 (2), 126836”, Chapter [2 delves
into the study of Liouville type theorems and gradient estimates for the posi-
tive bounded solutions to the nonlinear parabolic equation concerning Perelman’s

reduced distance

0
gy W@ t) = Au(z, t) + au(, t) Inu(z, 1) (3.2)

along ancient k-super Ricci flow (M, g(x,1))ie(—000), Where a is a real number.
This is the content of Problem [2] that was discussed in Chapter [ We will work

on the reverse time parameter 7 := —t. On this parameter, the ancient K-super

12



Ricci flow (M, g(t))1e(—co,0) becomes backward k-super Ricci flow (M, g(7))rep0,00)»

namely,

1 0g
Ric > ——= + kg.
1(3_2(97‘+ I

Moreover, the equation (3.2) can be translated as follows

(% + A) u(z,t) = —au(z,t) Inu(z,t). (3.3)

We begin by providing the definition of reduced distance.

£(y) = /f(lﬂji

where

Definition 3.1. The L-length of a curve 7y : |1y, 7] — M is defined as
1
h==0.9, H :=trh.

2
) dr,
2

Definition 3.2. For each (x,7) € M x (0,00), we define the L-distance L(x,T)

and the reduced distance p(x,T) from a space-time base point (xg,0) as follows

1
L(x77—> = 13f£(7)7 p(.T,T) = ﬁL($77)7 (34)
where we take the infimum over all curves vy : [0,7] — M with v(0) = xy and
v(1T) = . If a curve attains the infimum of (3.4) then it is called minimal

L-geodesic from (xg,0) to (x,T).

Definition 3.3. Let (M, g(x,T))rcp,) be a complete, time-dependent Rieman-
nian manifold. If for each T > 0 there is ¢™ > 0 depending only on T such that
h > —c"g on [0, 7] then (M, g(x,T))rep,00) s admissible.

Note that if H > 0 then by Definition [3.1, we deduce that £ is non-negative,
so is p(x, 7). From this observation, for (z,7) € M x (0,00) and H > 0, we can
define

L(x,7) = 47p(x,7) =0(2,7)%
To establish main results, we will use the following Miiller quantity D(X) and
13



trace Harnack quantity H(X):

D(X) :=0.H — AH — 2|p|* + 4divh(X)

_ 9g(VH. X) + 2Ric(X, X) — 25(X, X), (3.5)
H(X) = —0.H — g — 29(VH, X) + 25(X, X), (3.6)

where X is a (time-dependent) vector field.

Our first main result is the following Hamilton type gradient estimate:

Theorem 3.4. Fork > 0, let (M, g(x,T))rej0.00) be an n-dimensional, admissible,

complete backward (—k)-super Ricci flow. We assume

D(X)> =2k (H+|X]?), H(X)>-

S s

Y HZO?

for all vector fields X. Let uw : M x [0,00) — (0,00) be a positive solution to
backward nonlinear heat equation (3.3). For R, T > 0 and B > 0, we suppose
u < B in the cylinder Qrr. Then there exists a positive constant ¢ = c(n)
depending only on n such that

[Vul <C<%+%+\/E+\/8up{[a(2+21n3lnu)r}) \/1+1n§

u QRr.T U

(3.7)
in Qrr, where A=1+InB —In (infg, , u) .
When a = 0, we can derive the following local space-only gradient estimate for
the backward heat equation under the (—k)-super Ricci flow.

Corollary 3.5. For k > 0, let (M, g(x,T))rej0,00) be an n-dimensional, admissi-

ble, complete backward (—k)-super Ricci flow. We assume
5 H
D(X) > =2k (H+|X|), HX)>-—, H>0,
T
for all vector fields X. Let u : M x [0, 00) — (0, 00) stands for a positive solution

to the backward heat equation

(a% + A) u=0. (3.8)

For R, T"> 0 and B > 0, we suppose w < B in the cylinder Qrr. Then there
14



exists a positive constant ¢ = c¢(n) depending only on n such that

|Vl VA 1 B
Tg(;(?juﬁju\/%)mjulna, (3.9)

in Q%%, where A=1+1nB —1n (ianR’T u) .

As an application of Theorem [3.4] we have the following Liouville theorem for
the backward nonlinear heat equation (3.3)).

Theorem 3.6. Let (M, g(x,T))rcp,) be an n-dimensional, admissible, complete
backward super Ricci flow. We assume

DX)>0, HX)>-2 H>0 (3.10)

for all vector fields X.

1. When a <0, let u: M x [0,00) — (0,00) be a positive solution to backward
nonlinear heat equation (3.3). If e ? < u < B for some constant B < 1,
then w does not exist; if e > < u < B for some constant B > 1, then u = 1.

2. Whena =20 :

2a. If u © M x [0,00) — (0,00) be a positive solution to backward heat
equation (3.8)) such that

u(z,7) =explo(0(z,7) + 7)] (3.11)

near infinity, then u is constant.

2b. If u: M x [0,00) — R be a solution to backward heat equation (3.8)) such
that

u(z,7) =0 (0(x,7) + /1) (3.12)

near infinity, then u is constant.
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Chapter 4

Gradient estimates for a general type
of nonlinear parabolic equations
under geometric conditions and

related problems

This chapter is written based on the paper “Ha Tuan Dung (2023), Gradi-
ent estimates for a general type of nonlinear parabolic equations under geometric
conditions and related problems, Nonlinear Analysis, Vol. 226, 113135”. In the
present chapter, we establish gradient estimates for the positive bounded solu-
tions to a general type of nonlinear parabolic equation concerning the weighted

Laplacian

(% () - Af) u(z, t) = Flu(z, 1)) (4.1)

on a smooth metric measure space with the metric evolving under the (k,00)-

super Perelman-Ricci flow (1.10) and the Yamabe flow (1.11]), where a(z,t) is a
function which is C? in the x-variable and C' in the t-variable, and F'(u) is a C*
function of u. We derive several outcomes from these estimates, including Harnack
inequalities, general global constancy, and Liouville type theorems. Applications
related to some important geometric partial differential equations are presented
to illustrate the strength of the results. The content of this chapter can be seen

as a continuation of the work done previously in Chapter [3]

In order to state the main results in Chapter [d], we introduce some notations. On

16



an n-dimensional smooth metric measure space (M L g(z,t), e ! (x’t)d,u) rel0.7] with
the metric evolving under the geometric flow, we write dist (x, zg,t) (or r(x,t))
for the Riemannian distance between x € M and xy with respect to the metric

g(z,t), where £y € M is a fixed point. We introduce the compact set
Orr = {(z,t) € M x [0,T] | dist (z, o, t) < R},

where R > 2 and T > 0. We make use of the following notations ¢ := max{q, 0},
¢~ := min{q, 0}, and

# = max {Apr(z,t) : dist (z,20,) = 1,0 <t < T}, p":=max{u,0}.
z,t

On the static metric measure space (M, g,e~/du), let d (z,zy) (or r(x)) denote
the Riemannian distance to x from xy with respect to g, and B (¢, R) denote the
geodesic ball centered at xy of radius R > 2. For T' > 0, let Qpr be

Qrr = B (29, R) x [0,T] C M x [0, 00).

In this case, we also introduce the following quantities p := max{x|d(m,xo):1}A fr(x),
pt = max{u,0}.
Our first main result states as follows.

Theorem 4.1. Let (M, g(z, 1), eff(x’t)dﬂ)te[o T

super Perelman-Ricci flow (1.10) on an n-dimensional smooth manifold M and u

| be a complete solution to the (k,00)-

be a smooth positive solution to the nonlinear heat equation (4.1)) in Qrr. Assume
that 0 < u < B and

Ric; > —(n—1) K, %2—21[]9

for some K, H > 0 in Qrr. Then there exists a constant ¢ depending only n such

that
— <c|— — 4 — k+ K? + H? 24T, /14 1In—
—<c R“/RJF\/EJF\/( )+ K2+ H?2+P? + \/+nu

(4.2)

for all (z,t) € Qp y witht # 0, where A=1+InB —1In (infg,, u) and

[, = sup {(a*)% + |Va|il’>} ,

ORr,T
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Qn.r u l1+InB—-lnu u

P — sup { {QF,(U) 2F(w) 1 F(u)r} |

In the static case % = 0 and g—{ =0,wecanset H=0and k = (n — 1)K
in Theorem . Then, we see that (M, g, e~/ dp) becomes a static smooth metric
measure space where Ric; > — (n — 1) K for some constant K > 0 in the geodesic

ball B (zy, R). From this observation and Theorem [4.1] we have the following
result.

Theorem 4.2. Let (M, g,e/du) be an n-dimensional complete smooth metric
measure space with Ric; > — (n — 1) K for some constant K > 0 in B (zo, R) .
Assume that 0 < u (z,t) < B for some constant B, is a smooth solution to the

nonlinear heat equation (4.1) in Qrr. Then there exists a constant ¢ depending
pto 1
c|— + §+_t+\/K+\/7_D+F“

only n such that
/ B
1+In—. 4.3

for all (x,t) € Qg with t # 0, where A =1+1n B —1n (infg, . u) and

|Vu| < VA

u

T, = sup {(a")* + Vel '},

Qr,T

P — sup { [2F,(u) _2F(u) | 1 F(u)]+} |

Qrr u l+InB—-—Inu wu

On the other hand, we can give a local gradient estimate for the positive
bounded solutions to the general type of nonlinear parabolic equation (4.1)) under
the Yamabe flow.

Theorem 4.3. Let (M, g(z,1), e*f(m’t)d,u)te[oﬂ be a complete solution to the Yam-
abe flow (1.11)) on an n-dimensional smooth manifold M andw be a smooth positive
solution to the nonlinear heat equation (4.1) in Qrr. Assume that 0 < u < B
and Ric; > —(n—1) K, S < H for some K, H > 0 in Qry. Then there exists
I
— 5+ =+ VK H+ P2 4T,

a constant ¢ depending only . such that
/ B
1+1In— 4.4
R R "/t u (4.4)

VA pr
for all (z,t) € Q%T with t # 0, where A, Ty, P are the same as Theorem |4. 1.

vl _,

u
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Chapter 5

Rigidity and vanishing theorems for

complete translating solitons

This chapter is written on the basis of the paper “Ha Tuan Dung, Nguyen Thac
Dung, and Tran Quang Huy (2023), Rigidity and vanishing theorems for complete
translating solitons, Manuscripta Mathematica Vol. 172, pp. 331-352”. In this
chapter, we will investigate several rigidity theorems and study the connectedness
at infinity of complete translators in Euclidean spaces. This content was mentioned
in Problem [4] in Chapter [1 Recall that a submanifold X : M™ — R™™ of the
Euclidean space is said to be a translating soliton (abbreviated by translator) for

the mean curvature flow if its mean curvature vector field H satisfies the equation
H=V"* (5.1)

for some fixed unit length constant vector V in R"™™, where V* is the normal

projection of V' to the normal bundle of R"*™,

Assume that the Lf-norm of the trace-free second fundamental form is finite,
for some ¢ € R and using a Sobolev inequality, we first show that a translator in

the Euclidean space R™™™ must be a linear subspace.

Theorem 5.1. Let X : M™% — R™™ be a smooth complete translating soliton
in the Euclidean space R™™. If the trace-free second fundamental form ® of M

satisfies

(/ \@\”du) "< K(n,a) and / |2V dy < oo,
M M

where

n -+ vn?—2n
< 3
2
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(n—2)*(a—1) 2 ifm=1

2
(n—2)2 (af%)
2n(na—%—a2)

D?(n) +(n—1)% a?

and D(n) is the Sobolev constant, then M is a linear subspace.

Applying the Sobolev inequality, we are able to obtain the following theorem.

Theorem 5.2. Let X : M"=3 — R"™ be a smooth complete translating soliton

in the Euclidean space R™™ contained in the halfspace
Mve={y eR"": (y,V) > a},

for some a € R. If the second fundamental form A of M satisfies

( /M \AI”@du)}l < \/ mz;;&; (fl)(_”l‘)fV,

where S(n) is the Sobolev constant and p = eV"X) | then M is a hyperplane.

Moreover, using the weighted Sobolev inequality, we obtain a vanishing theorem

as follows.

Theorem 5.3. Let X : M"=3 — R"™! be a smooth complete translating soliton

in the Buclidean space R"™ contained in the halfspace
My, ={y e R""": (y,V) > a},

for some a € R. Assume that for any p > 2,

(/M |A‘n€fdu)* _ Vo ;Slgg -1

where f = —(X, V) and S(n) is the Sobolev constant. Then there are no non-

trivial L'y f-harmonic 1-forms on M.
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