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LỜI CAM ĐOAN

Tôi xin cam đoan những kết quả trình bày trong luận án là mới, đã được công bố

trên các tạp chí chuyên ngành uy tín trong và ngoài nước. Các kết quả viết chung

với PGS.TS. Đỗ Đức Thuận đã được sự đồng ý của tác giả khi đưa vào luận án.

Những kết quả được trình bày trong luận án là trung thực và chưa từng được công

bố trong bất kỳ luận văn, luận án nào khác.

Nghiên cứu sinh

Ninh Thị Thu
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Bảng ký hiệu và chữ viết tắt

N Tập các số tự nhiên

Z Tập số nguyên

Q Tập các số hữu tỷ

R Tập các số thực

R+ Tập các số thực không âm

Rn
+ Tập các vectơ không âm trong Rn

Ṙn
+ Phần trong của Rn

+

Rn Không gian vectơ n chiều

Rn×m Không gian các ma trận thực cỡ n×m

N N := {1, 2, . . . , N}, N ∈ N

A A := {A1, A2, . . . , AN : Ai ∈ Rn×n}

imE Không gian ảnh của toán tử E

kerE Không gian nhân của toán tử E

rankE Hạng của ma trận E

In Ma trận đơn vị cấp n

0n Ma trận không cấp n

S A−1(imE) = {ξ ∈ Rn : Aξ ∈ imE}

Si A−1
i (imEi) = {ξ ∈ Rn : Aiξ ∈ imEi}

Si,j A−1
i (imEj) = {ξ ∈ Rn : Aiξ ∈ imEj}

Φσ(k, h) Ma trận chuyển trạng thái từ bước h tới bước k

Φσ(k, h) Toán tử Cauchy liên kết với hệ chuyển mạch

rời rạc tuyến tính suy biến có nhiễu
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Φ(E,A) Ánh xạ một bước của hệ sai phân suy biến

với cặp ma trận (E,A)

Φi,j Ánh xạ một bước từ trạng thái j tới trạng thái i

của hệ chuyển mạch tuyến tính suy biến chỉ số 1

ΠW
V Phép chiếu lên V song song với W

Pi Phép chiếu chính tắc lên Si song song với kerEi

Qi Phép chiếu chính tắc lên kerEi song song với Si

Vi Ma trận gồm các cột vectơ là cơ sở của Si và kerEi

Vi,j Ma trận gồm các cột vectơ là cơ sở của Si và kerEj

ρ(A) Bán kính phổ của một họ các ma trận A

ρ̌(A) Dưới bán kính phổ của một họ các ma trận A

ρ
(
{(Ei, Ai)}Ni=1

)
Bán kính phổ của một họ các cặp ma trận {(Ei, Ai)}Ni=1

ρ̌
(
{(Ei, Ai)}Ni=1

)
Dưới bán kính phổ của một họ các cặp ma trận {(Ei, Ai)}Ni=1

σ(t), σ(k) Quy tắc chuyển mạch

σ(A) Phổ của ma trận A

B = [B(i, j)] ≥ 0 Ma trận (hoặc vectơ) có tất cả các thành phần B(i, j) ≥ 0

B = [B(i, j)] > 0 Ma trận (hoặc vectơ) có tất cả các thành phần B(i, j) > 0

⊕ Tổng trực tiếp của các không gian vectơ

⊗ Tích Kronecker

vec Toán tử vec

B+ Nghịch đảo Moore − Penrose của ma trận B ∈ Rn×n

diag(v) Ma trận vuông có vectơ v ở trên đường chéo

còn các thành phần khác bằng 0

1n Vectơ [1 . . . 1]⊤ ∈ Rn

Hệ SDLS Hệ chuyển mạch rời rạc tuyến tính suy biến

(switched discrete – time linear singular)

Hệ DPSS Hệ chuyển mạch rời rạc tuyến tính dương

(discrete – time positive switched system)
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Mở đầu

Lịch sử vấn đề và lý do chọn đề tài

Lý thuyết ổn định các hệ động lực được nghiên cứu một cách hệ thống từ

những năm cuối thế kỷ XIX bởi nhà toán học người Nga A.M. Lyapunov. Các kết

quả của lý thuyết ổn định được ứng dụng rộng rãi trong nhiều lĩnh vực như cơ

học, vật lý toán, sinh thái học, kinh tế, vũ trụ, . . . . Vì thế, cho đến nay lý thuyết

ổn định vẫn thu hút được nhiều sự quan tâm của các nhà khoa học. Để mô tả

các hệ phức hợp trong tự nhiên, kinh tế, năng lượng, hàng không, . . . khó có thể

dùng các hệ đơn lẻ, mà phải kết hợp nhiều hệ con kèm theo các ràng buộc. Một hệ

chuyển mạch bao gồm một tập hữu hạn các hệ con và quy luật chuyển mạch giữa

chúng. Các hệ con có thể liên tục hay rời rạc, không suy biến hay suy biến. Quy

luật chuyển mạch là một hàm hằng từng khúc phụ thuộc vào các biến thời gian,

giá trị của nó trong quá khứ, trạng thái x(t) của mỗi hệ con đơn lẻ hoặc chuyển

mạch ngẫu nhiên với hàm phân phối cho trước.

Trong thực tế, việc chuyển mạch có thể xảy ra do những thay đổi đột ngột,

không dự báo được của hệ thống, ví dụ do hỏng hóc một thành phần nào đó của

hệ thống hay do một hệ con nào đó tình cờ bị kích hoạt. Trong những trường hợp

này, để đảm bảo sự an toàn của hệ thống, người ta phải thiết kế sao cho hệ ổn

định với mọi quy tắc chuyển mạch. Tính ổn định của hệ chuyển mạch thực chất

là tính vững với mọi nhiễu động của chuyển mạch. Một trong các bài toán quan

trọng khi nghiên cứu hệ chuyển mạch là tìm các điều kiện để hệ chuyển mạch ổn

định với quy luật chuyển mạch bất kỳ. Ngoài ra, trong thực tế có những hệ chuyển

mạch có một số hoặc tất cả các hệ con đều không ổn định, ta cần thiết kế những

quy tắc chuyển mạch để hệ chung thu được ổn định, bài toán này được gọi là bài

toán ổn định hóa hệ chuyển mạch.
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Xét hệ chuyển mạch liên tục tuyến tính không suy biến dạng

ẋ(t) = Aσ(t)x(t)

và hệ chuyển mạch rời rạc tuyến tính không suy biến có dạng

x(k + 1) = Aσ(k)x(k),

trong đó σ là quy tắc chuyển mạch nhận các giá trị trong tập N := {1, 2, . . . , N}.

Một số kết quả tiêu biểu về sự ổn định, ổn định hóa hệ chuyển mạch tuyến tính

phải kể đến như: Ge, Sun & Lee, 2001 ([21]), Shorten & Narendra, 2002 ([52]),

Liberzon, 2003 ([37]), Gökcek, 2004 ([22]), Phat & Hien, 2009 ([44]), . . . . Theo đó,

điều kiện cần để hệ chuyển mạch tuyến tính không suy biến ổn định với mọi quy

tắc chuyển mạch σ là từng hệ con phải ổn định, tức là Ai, i ∈ N là các ma trận

Hurwitz với trường hợp hệ liên tục theo thời gian và Ai, i ∈ N là các ma trận

Schur với hệ rời rạc theo thời gian. Các điều kiện cần và đủ để hệ chuyển mạch

ổn định với mọi quy tắc chuyển mạch σ được phát biểu thông qua sự tồn tại của

hàm Lyapunov toàn phương chung. Tuy nhiên, việc đưa ra điều kiện tồn tại cho

hàm Lyapunov không đơn giản. Các kết quả đầu tiên được Shorten và Narendra

thu được trong [51, 52] cho hệ chuyển mạch hai chiều, với hai ma trận Hurwitz

A1, A2. Các kết quả này được mở rộng cho hệ hai chiều với n ma trận A1, A2, . . . , An

và hệ n chiều với hai ma trận A1, A2. Ngoài ra, bằng việc đưa ra định nghĩa hàm

Lyapunov toàn phương chuyển mạch, Lin và các cộng sự đưa ra các điều kiện dưới

dạng bất đẳng thức ma trận tuyến tính để hệ chuyển mạch ổn định (xem [18]).

Trong [26], các tác giả Hespanha và Morse nghiên cứu tính ổn định hóa thông qua

các điều kiện cho thời gian dừng trung bình (average dwell-time) τa.

Liberzon và Trenn [36] thu được những kết quả đầu tiên cho hệ chuyển mạch

suy biến tuyến tính liên tục có dạng

Eσẋ(t) = Aσx(t),

trong đó Eσ là các ma trận suy biến. Nếu chỉ giới hạn trong lớp hàm liên tục tuyệt

đối, thì phần lớn các hệ chuyển mạch suy biến dạng trên không có lời giải nào khác

ngoài nghiệm tầm thường. Để giải quyết bài toán này, các tác giả đưa ra khái niệm

nghiệm suy rộng là các hàm trơn từng khúc và từ đó thiết lập công thức nghiệm
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cho hệ. Phát triển kết quả này, trong [37], Liberzon và các cộng sự đã đưa ra các

điều kiện đủ để hệ ổn định với mọi quy tắc chuyển mạch σ thông qua các hàm

Lyapunov Vp của từng hệ con, đồng thời sử dụng biến đổi Kronecker đưa ra điều

kiện giao hoán để hệ chuyển mạch ổn định. Ngoài ra, trong [42], các tác giả Zhou,

Ho và Zhai đã đưa ra điều kiện cho hệ ổn định dựa trên thời gian dừng trung bình

τa.

Ngày nay, với sự ra đời của nhiều hệ thống lấy mẫu hiện đại, cho ta dữ liệu tại

những thời điểm rời rạc; đây cũng là một trong nhiều lý do dẫn đến sự cần thiết

của việc nghiên cứu hệ suy biến rời rạc.

Xét hệ chuyển mạch rời rạc tuyến tính suy biến (SDLS) dạng

Eσ(k)x(k + 1) = Aσ(k)x(k), (1)

trong đó Ei, Ai ∈ Rn×n, x(k) ∈ Rn là vectơ trạng thái tại thời điểm k ∈ N và

σ : N∪ {0} → N := {1, 2, . . . , N}, N ∈ N, là quy tắc chuyển mạch, nhận giá trị trong

tập hữu hạn N . Giả sử các ma trận Ei suy biến với mọi i ∈ N .

Năm 2010, Zhai và Xu đưa ra điều kiện giao hoán để xét tính ổn định của hệ

chuyển mạch tuyến tính suy biến cho trường hợp hệ có dạng sau (xem [62])Ex(k + 1) = A1x(k),

Ex(k + 1) = A2x(k).

(2)

Ngoài ra, trong [63], Zhai và các cộng sự xét hệ chuyển mạch tuyến tính suy biến

gồm hai hệ con dạng E1x(k + 1) = A1x(k),

E2x(k + 1) = A2x(k).

(3)

Giả sử hai hệ con ứng với cặp ma trận (Ei, Ai) ổn định mũ. Khi đó, nếu các ma trận

E1, E2 có hạng bằng nhau và các ma trận E1, E2, A1, A2 từng đôi một giao hoán,

tức là

EiEj = EjEi, EiAj = AjEi, AiAj = AjAi, i, j ∈ {1, 2},

thì hệ (3) ổn định với mọi quy tắc chuyển mạch.

Gần đây, trong [5, 6], Anh và các cộng sự đã nghiên cứu hệ chuyển mạch rời

rạc tuyến tính suy biến (SDLS) chỉ số 1 dạng (1), đưa ra các tính chất của hệ
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SDLS chỉ số 1 và đưa ra công thức nghiệm của hệ SDLS chỉ số 1 thông qua ánh

xạ một bước (one – step map). Sau đó, các tác giả nghiên cứu sự ổn định của

hệ chuyển mạch rời rạc tuyến tính suy biến chỉ số 1 dựa trên bán kính phổ của

một họ các cặp ma trận và phương pháp hàm Lyapunov. Ở đó, các tác giả đã

khẳng định giả thiết mỗi mode chỉ số 1 không đủ để đảm bảo sự tồn tại và duy

nhất nghiệm của hệ SDLS (1) và đưa ra điều cần và đủ mạnh hơn bằng định

nghĩa hệ chỉ số 1, cụ thể Si ∩ kerEj = {0}, với mọi i, j ∈ {1, 2, . . . , N}, trong đó

Si = A−1
i (imEi) := {ξ ∈ Rn : Aiξ ∈ imEi}. Các kết quả trên được đưa ra với giả

thiết tín hiệu chuyển mạch bất kỳ. Năm 2024, các tác giả Sutrisno và Trenn ([56])

đã mở rộng các kết quả quan trọng này cho trường hợp tín hiệu chuyển mạch có

ràng buộc. Cụ thể, các tác giả nghiên cứu hai tình huống: 1) dãy mode cho trước,

còn thời gian chuyển mạch bất kỳ và 2) toàn bộ tín hiệu chuyển mạch đã cho trước

(cả dãy mode và thời gian chuyển mạch đã cho). Trong cả hai trường hợp, tác giả

đưa ra điều kiện cho các ma trận của hệ để đảm bảo sự tồn tại và duy nhất của

nghiệm bằng các khái niệm "chỉ số 1 tuần tự" và "chỉ số 1 chuyển mạch". Sau đó,

các tác giả cũng mở rộng ý tưởng ánh xạ một bước được giới thiệu bởi Anh và các

cộng sự (xem [5]) cho hai trường hợp này.

Bên cạnh các kết quả cho tính ổn định của hệ chuyển mạch suy biến, còn có

một số công trình nghiên cứu bài toán ổn định hóa hệ chuyển mạch suy biến. Các

tác giả Gu và Koenig đã đề xuất ổn định hóa hệ chuyển mạch bằng cách thiết kế

điều khiển phản hồi (xem ([24, 31]). Năm 2017, trong [7], Anh và Linh đã nghiên

cứu tính ổn định của hệ chuyển mạch tuần hoàn và đề xuất ổn định hóa hệ chuyển

mạch bằng cách chọn quy luật chuyển mạch tuần hoàn phù hợp hoặc bằng các

điều khiển phản hồi.

Hệ chuyển mạch cũng được nhiều nhà khoa học trong nước đặc biệt quan tâm.

Chẳng hạn, nhóm nghiên cứu của GS. Vũ Ngọc Phát và các học trò nghiên cứu

bài toán điều khiển hệ chuyển mạch có trễ biến thiên bằng cách sử dụng công cụ

hàm Lyapunov – Krasovskii và bất đẳng thức ma trận tuyến tính (xem [27, 57, 45],

. . . ). Nhóm nghiên cứu của GS. Nguyễn Khoa Sơn và các học trò nghiên cứu về

tính ổn định vững và ổn định hóa được vững của hệ chuyển mạch tuyến tính không

suy biến (xem [53, 58], . . . ).

Nhìn chung, với hệ chuyển mạch tuyến tính suy biến, nếu không có điều kiện
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tất cả các trạng thái đều dương, đã có nhiều kết quả về tính ổn định và ổn định

hóa của hệ, chẳng hạn các công trình của Meng & Zhang (2006), Liberzon & Treen

(2012), Zhou, Ho & Zhai (2013), Tawani & Treen (2017), . . . cho trường hợp hệ

liên tục theo thời gian; hay các công trình của Xia & Zhang (2008), Zhai, Xu &

Ho (2012), Darouch & Chadli (2013), Anh & Linh (2017), . . . cho trường hợp hệ

rời rạc theo thời gian.

Tuy nhiên, ta cần đến hệ với ràng buộc dương ở tất cả các trạng thái để mô

phỏng các hệ trong thực tế, chẳng hạn như hệ biểu diễn các đại lượng vật lý như

nồng độ, mật độ và khối lượng vật chất, kích thước quần thể, hay các gói dữ liệu

trong hệ thống mạng, . . . . Do vậy, việc nghiên cứu hệ chuyển mạch rời rạc suy biến

dương là cần thiết và có nhiều ý nghĩa trong thực tế.

Trong [20], các tác giả Fornasini và Valcher đã đưa ra một số kết quả nền

tảng cho hệ chuyển mạch rời rạc dương không suy biến dạng x(k + 1) = Aσ(k)x(k),

trong đó σ(k) là quy tắc chuyển mạch bất kỳ, nhận giá trị trong tập hữu hạn N ,

x(k) ∈ Rn
+ là biến trạng thái tại thời gian k, Ai ∈ Rn×n là ma trận dương với mọi

i ∈ N . Đầu tiên, các tác giả nghiên cứu các điều kiện đủ để kiểm tra tính ổn định

của hệ dựa vào sự tồn tại của lớp hàm Lyapunov chung. Sau đó, các tác giả giới

thiệu khái niệm ổn định hóa được của hệ và chứng minh được rằng, nếu hệ là ổn

định hóa được, thì có thể ổn định hóa được hệ bằng một dãy chuyển mạch tuần

hoàn, dãy chuyển mạch này sẽ đưa quỹ đạo nghiệm hội tụ về 0 từ mọi trạng thái

ban đầu dương.

Một số kết quả được đưa ra cho hệ chuyển mạch suy biến dương với ràng buộc

lên ma trận E là hằng và nghiên cứu cho trường hợp thời gian liên tục, như công

trình của Li & Xiang (xem [35]).

Theo hiểu biết của chúng tôi, các kết quả cho hệ chuyển mạch rời rạc tuyến

tính suy biến dương dạng (1) còn khá ít. Do đó, như một sự tiếp tục, chúng tôi

mong muốn nghiên cứu được tính dương, tính ổn định và ổn định hóa được của hệ

chuyển mạch rời rạc tuyến tính suy biến dạng (1). Chúng tôi vẫn đặt thêm điều

kiện chỉ số 1 cho hệ (1), giả thiết này liên quan đến tính nhân quả tương ứng với

tín hiệu chuyển mạch, tức là: sự thay đổi tín hiệu chuyển mạch trong tương lai

không làm thay đổi nghiệm tại thời điểm hiện tại (hay trong quá khứ). Phát triển

cách tiếp cận trong [6] và [48], chúng tôi sử dụng ánh xạ một bước và điều kiện
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ổn định dạng Lyapunov để nghiên cứu tính dương và sự ổn định của hệ SDLS chỉ

số 1. Sau đó bằng cách mở rộng bổ đề Fekete, chúng tôi định nghĩa dưới bán kính

phổ cho một họ các cặp ma trận {(Ei, Ai)}Ni=1 và từ đó đưa ra các đặc trưng cho

tính ổn định hóa được của hệ SDLS dương.

Ở khía cạnh khác, ta thấy các tác giả trong [5, 6] đã nghiên cứu tính giải được

và ổn định của hệ SDLS dạng (1), ở đó quy tắc chuyển mạch trong ma trận E và A

là giống nhau. Trong thực tế, hệ có thể chịu các nhiễu không mong muốn. Do vậy,

chúng tôi mong muốn nghiên cứu tính giải được và ổn định của hệ chuyển mạch

rời rạc tuyến tính suy biến có nhiễu. Hơn nữa, nếu quy tắc chuyển mạch trong các

ma trận E và A khác nhau thì bài toán sẽ phức tạp hơn. Điều này xảy ra khi động

lực học của xk+1 phụ thuộc vào ma trận dẫn E tại thời điểm k+1, chẳng hạn trong

trường hợp ta rời rạc hóa hệ liên tục bằng phương pháp Euler ẩn. Trong [38], Linh

đã đề xuất một số kết quả cho trường hợp này với hệ SDLS không có nhiễu. Theo

hiểu biết của chúng tôi, chưa có kết quả nào về tính giải được của hệ SDLS có

nhiễu Lipschitz fσ(k)(x(k)). Do vậy, chúng tôi nghiên cứu tính giải được và ổn định

của hệ chuyển mạch rời rạc tuyến tính suy biến có nhiễu trong hai trường hợp:

trường hợp 1 với quy tắc chuyển mạch ở ma trận E và A giống nhau dạng

Eσ(k)x(k + 1) = Aσ(k)x(k) + fσ(k)(x(k)), (4)

và trường hợp 2 với quy tắc chuyển mạch ở ma trận E và A khác nhau dạng

Eσ(k+1)x(k + 1) = Aσ(k)x(k) + fσ(k)(x(k)), (5)

trong đó σ : N ∪ {0} → N := {1, 2, . . . , N}, N ∈ N, là quy tắc chuyển mạch xác định

mode j ∈ N hoạt động tại thời điểm k. Quy tắc chuyển mạch khác nhau trong các

ma trận hệ số E và A, cùng với động lực học của hệ (5) bị ràng buộc và kết hợp

giữa các hệ con suy biến gây nên một số khó khăn trong việc nghiên cứu tính giải

được cũng như sự ổn định của hệ. Chúng tôi sẽ mở rộng và phát triển cách tiếp

cận trong [4, 6, 38] để nghiên cứu tính giải được của hệ SDLS có nhiễu Lipschitz.

Sự tồn tại duy nhất nghiệm của hệ (5) sẽ được chứng minh dựa vào nguyên lý ánh

xạ co. Sau đó, các đặc trưng về tính ổn định của hệ (5) sẽ được đề xuất bằng cách

sử dụng phương pháp hàm Lyapunov, đánh giá nghiệm và sử dụng bất đẳng thức

Gronwall dạng rời rạc.
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Đối tượng và phạm vi nghiên cứu

Luận án tập trung nghiên cứu hai bài toán của hệ chuyển mạch suy biến.

� Bài toán 1 nghiên cứu hệ chuyển mạch rời rạc tuyến tính suy biến chỉ số 1

dương, nghiên cứu tính ổn định của hệ, xây dựng dưới bán kính phổ của một

họ các cặp ma trận, từ đó đưa ra các đặc trưng cho tính ổn định hóa được của

hệ, cũng như điều kiện để hệ ổn định hóa được.

� Bài toán 2 nghiên cứu tính giải được và ổn định của hệ chuyển mạch rời rạc

tuyến tính suy biến chỉ số 1 có nhiễu Lipschitz trong hai trường hợp: quy tắc

chuyển mạch ở các ma trận hệ số giống nhau dạng

Eσ(k)x(k + 1) = Aσ(k)x(k) + fσ(k)(x(k)),

và quy tắc chuyển mạch ở các ma trận hệ số khác nhau dạng

Eσ(k+1)x(k + 1) = Aσ(k)x(k) + fσ(k)(x(k)).

Phương pháp nghiên cứu

Để nghiên cứu tính giải được, ổn định và ổn định hóa được của hệ chuyển

mạch rời rạc tuyến tính suy biến, ngoài việc sử dụng các tính chất cơ bản của giải

tích, giải tích hàm, đại số tuyến tính như nguyên lý ánh xạ co, nguyên lý so sánh,

tính chất của chuẩn ma trận, tính chất dãy số, dãy hàm, . . . chúng tôi sử dụng

các phương pháp chiếu, phương pháp hàm Lyapunov, bán kính phổ, dưới bán kính

phổ của một họ các cặp ma trận, . . . . Tất cả các ví dụ minh họa được tính toán,

mô phỏng quỹ đạo nghiệm bằng phần mềm Matlab trên máy tính cá nhân có cấu

hình Core i5, RAM 8GB.

11



Bố cục của luận án

Luận án được viết dựa trên các kết quả của ba bài báo [CT1, CT2, CT3]. Luận

án gồm phần mở đầu, kết luận chung và ba chương lần lượt như sau:

� Chương 1. Kiến thức chuẩn bị. Trong chương này, chúng tôi trình bày lại

một số khái niệm cơ bản về bán kính phổ của ma trận, bán kính phổ của một

họ các ma trận, dưới bán kính phổ của một họ các ma trận, một số ma trận

đặc biệt, tích Kronecker, toán tử vec, nghịch đảo Drazin, nghịch đảo Moore –

Penrose, hệ chuyển mạch tuyến tính thường cùng với các điều kiện để hệ ổn

định. Tiếp theo chúng tôi trình bày lại các kết quả về phương trình sai phân

suy biến tuyến tính với các khái niệm chỉ số, bài toán giá trị ban đầu cho

phương trình sai phân suy biến tuyến tính chỉ số 1 và hệ chuyển mạch rời rạc

tuyến tính dương.

� Chương 2. Tính ổn định và ổn định hóa được của hệ chuyển mạch

rời rạc tuyến tính suy biến chỉ số 1 dương. Đầu tiên chúng tôi trình bày

lại định nghĩa hệ chuyển mạch rời rạc tuyến tính suy biến chỉ số 1, công thức

nghiệm và một số tính chất quan trọng của hệ suy biến chỉ số 1 thông qua

ánh xạ một bước và phép chiếu. Sau đó, luận án nghiên cứu tính dương và

tính ổn định của hệ chuyển mạch rời rạc tuyến tính suy biến chỉ số 1. Chúng

tôi định nghĩa dưới bán kính phổ cho một họ các cặp ma trận, từ đó đưa ra

một số đặc trưng cho tính ổn định hóa được của hệ chuyển mạch rời rạc tuyến

tính suy biến chỉ số 1 dương. Cuối cùng chúng tôi đưa ra một số ví dụ minh

họa cho các kết quả lý thuyết.

� Chương 3. Tính giải được và tính ổn định của hệ chuyển mạch rời

rạc tuyến tính suy biến chỉ số 1 có nhiễu Lipschitz. Chúng tôi nghiên

cứu tính giải được và ổn định của hệ chuyển mạch rời rạc tuyến tính suy biến

chỉ số 1 có nhiễu Lipschitz với quy tắc chuyển mạch giống nhau ở ma trận hệ

số. Sau đó, chúng tôi xét hệ chuyển mạch rời rạc tuyến tính suy biến chỉ số

1 với quy tắc chuyển mạch khác nhau ở ma trận hệ số, nghiên cứu tính giải

được của hệ, thiết lập các điều kiện cần và đủ cho tính ổn định của hệ. Cuối

cùng chúng tôi đưa ra một số ví dụ minh họa cho các kết quả lý thuyết.
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Các kết quả chính của luận án được công bố trong ba bài báo [CT1-CT3] trên

các tạp chí Systems & Control Letters ([CT1]), Journal of Difference Equations and

Applications ([CT2]), VNU Journal of Science: Mathematics – Physics ([CT3]).

Ngoài ra, nội dung của luận án đã được trình bày tại các hội nghị, hội thảo:

1. Hội nghị Toán học toàn quốc lần thứ 10, Đà Nẵng, 08− 2023.

2. Hội thảo Tối ưu và tính toán khoa học, Ba Vì – Hà Nội, 04− 2024.

3. Hội thảo Gặp gỡ Toán học, Đại học Sư phạm Hà Nội 2, Vĩnh Phúc, 09− 2024.

4. Hội nghị Toán học, Khoa Toán – Cơ – Tin học, Trường Đại học Khoa học Tự

nhiên, Đại học Quốc gia Hà Nội, 10− 2024.
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Chương 1

Kiến thức chuẩn bị

Trong chương này, chúng tôi trình bày lại một số khái niệm cơ bản về bán kính

phổ của ma trận, bán kính phổ của một họ các ma trận, dưới bán kính phổ của

một họ các ma trận, một số ma trận đặc biệt, tích Kronecker, toán tử vec, nghịch

đảo Drazin, nghịch đảo Moore – Penrose, hệ chuyển mạch tuyến tính thường cùng

với các điều kiện để hệ ổn định. Tiếp theo chúng tôi nhắc lại một số kết quả về

phương trình sai phân suy biến tuyến tính với các khái niệm chỉ số, bài toán giá

trị ban đầu cho phương trình sai phân suy biến tuyến tính chỉ số 1 và hệ chuyển

mạch rời rạc tuyến tính dương cùng một số kết quả bổ trợ sử dụng trong luận án

(xem [6, 9, 11, 16, 20, 23, 32, 46, 47, 48, 49, 59, 61]).

Chúng tôi nhấn mạnh một số kí hiệu dùng trong toàn bộ luận án. Ma trận

(vectơ) thực A với tất cả các phần tử không âm được gọi là ma trận (vectơ) không

âm, kí hiệu A ≥ 0; A là ma trận (vectơ) dương, kí hiệu A > 0 nếu tất cả các phần

tử của A đều dương. Với hai ma trận thực cùng cỡ M,N , kí hiệu M ≥ N ;M > N

nghĩa là M−N ≥ 0;M−N > 0 tương ứng. Rn
+ là tập hợp các vectơ không âm trong

Rn; Ṙn
+ là phần trong của Rn

+ – tập các vectơ dương trong Rn.

1.1. Một số khái niệm cơ bản

1.1.1. Bán kính phổ của ma trận

Cho ma trận A = (aij)n×n ∈ Rn×n.

i) Phổ của ma trận A là tập các giá trị riêng của A, kí hiệu là σ(A).

σ(A) = {λ ∈ C : Av = λv}.

14



ii) Bán kính phổ của ma trận A kí hiệu là ρ(A) và được xác định bởi

ρ(A) = max{|λ| : λ ∈ σ(A)}.

Ta cũng có ρ(A) = lim
k→∞

∥Ak∥ 1
k .

Gọi N := {1, 2, . . . , N}, N ∈ N, xét một tập các ma trận

A := {A1, A2, . . . , AN : Ai ∈ Rn×n}.

Năm 1960, các tác giả Rota và Strang đã đưa ra khái niệm bán kính phổ chung

(joint spectral radius) của một họ các ma trận như sau.

Định nghĩa 1.1.1 (xem [50]). Bán kính phổ chung của họ các ma trận A là

ρ (A) = lim
k→∞

max
i1,...,ik∈N

∥Ai1Ai2 . . . Aik∥
1
k .

Sau đó, khái niệm dưới bán kính phổ chung của một họ các ma trận được tác

giả Gurvits đưa ra như sau.

Định nghĩa 1.1.2 (xem [25]). Dưới kính phổ chung (joint spectral subradius)

của họ các ma trận A là

ρ̌ (A) = lim
k→∞

min
i1,...,ik∈N

∥Ai1Ai2 . . . Aik∥
1
k .

Nhận xét 1.1.1. Do trong không gian hữu hạn chiều Rn các chuẩn là tương đương

nên các định nghĩa bán kính phổ của ma trận, bán kính phổ chung của họ các ma

trận, dưới bán kính phổ chung của họ các ma trận không phụ thuộc vào chuẩn

được sử dụng.

1.1.2. Một số ma trận đặc biệt

Định nghĩa 1.1.3. Cho ma trận A = (aij)n×n ∈ Rn×n. Khi đó

i) A là ma trận Schur nếu tất cả các giá trị riêng của nó nằm trong đĩa tròn đơn

vị mở (hay bán kính phổ ρ(A) := max{|λ| : λ ∈ σ(A)} là nhỏ hơn 1).

ii) A là ma trận Hurwitz nếu tất cả các giá trị riêng nằm trong nửa mặt phẳng

phức trái.
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Ta đã có các kết quả quan trọng cho tính ổn định của hệ động lực theo ma

trận Hurwitz và ma trận Schur tương ứng với trường hợp thời gian liên tục và

thời gian rời rạc. Hệ liên tục theo thời gian ẋ(t) = Ax(t) ổn định tiệm cận (tức là

lim
t→∞

x(t) = 0) nếu A là ma trận Hurwitz (xem [17]).

Xét hệ động lực tuyến tính rời rạc theo thời gian dạng

x(k + 1) = Ax(k), k = 0, 1, 2, . . . , (1.1)

trong đó x(k) ∈ Rn, A ∈ Rn×n.

Hệ (1.1) được gọi là ổn định tiệm cận nếu đa thức đặc trưng của hệ det(λIn−A)

có tất cả các nghiệm nằm trong đường tròn đơn vị trong mặt phẳng phức (xem

[30]). Từ đó, hệ động lực (1.1) ổn định tiệm cận nếu A là ma trận Schur.

1.1.3. Tích Kronecker

Cho ma trận A = (aij)m×n cỡ m× n và ma trận B cỡ p× q, khi đó tích Kronecker

của A và B được ký hiệu A⊗B, là ma trận khối cỡ pm× qn và được xác định bởi

A⊗B =


a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .

1.1.4. Toán tử vec

Vectơ hóa một ma trận là một phép biến đổi tuyến tính chuyển một ma trận thành

một vectơ.

Với ma trận B cỡ m× n, định nghĩa vec(B) là ma trận cỡ mn× 1, thu được bằng

cách lấy các cột của ma trận B từ trái sang phải và xếp chồng lên nhau. Chẳng

hạn, B =

a b

c d

 thì vec(B) =


a

c

b

d

.

Cho các ma trận B,C và D có cỡ thích hợp, ta có tính chất

vec(BCD) =
(
D⊤ ⊗B

)
vec(C).
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1.1.5. Nghịch đảo Drazin

Chúng tôi trình bày định nghĩa và một số tính chất cơ bản của nghịch đảo Drazin.

Định nghĩa 1.1.4 (xem [16]). Cho ma trận M ∈ Rn×n, nghịch đảo Drazin của

ma trận M là ma trận duy nhất MD thỏa mãn

MDM =MMD, MDMMD =MD, MDMν+1 =Mν ,

trong đó ν là số nguyên không âm nhỏ nhất sao cho rank(Mν) = rank(Mν+1).

Trong [33], Kunkel và Mehrmann (2006) đã chỉ ra cách tính nghịch đảo Drazin

của một ma trận; ngoài ra có thể xem công trình [13] của Cantó, Coll và Sánchez

(2005) để biết thêm chi tiết về vấn đề này. Ta cũng có thể sử dụng dạng chuẩn

Jordan để tìm nghịch đảo Drazin của ma trận M (xem [11]) như sau: phân tích

ma trận M thành dạng

M = T

C 0

0 N

T−1, (1.2)

trong đó C là ma trận khả nghịch và N là ma trận lũy linh. Khi đó, nghịch đảo

Drazin của ma trận M được xác định bởi

MD = T

C−1 0

0 0

T−1. (1.3)

Chú ý rằng, nếu M là ma trận không suy biến thì khối N trong (1.2) sẽ mất

đi và MD = M−1, nếu M là ma trận lũy linh thì khối C trong (1.2) sẽ mất đi và

MD = 0.

1.1.6. Nghịch đảo Moore – Penrose

Định nghĩa 1.1.5 (xem [12]). Cho ma trận A ∈ Rm×n, nghịch đảo Moore –

Penrose của A là ma trận A+ ∈ Rn×m thỏa mãn các tính chất sau

AA+A = A, A+AA+ = A+, (AA+)⊤ = AA+, (A+A)⊤ = A+A.

Chú ý rằng, A+A và AA+ là các toán tử chiếu, do (A+A)2 = A+A và

(AA+)2 = AA+. Thực tế, bốn điều kiện trên tương đương với điều kiện A+A và
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AA+ là các phép chiếu trực giao. Hơn nữa, AA+ là phép chiếu lên im(A) suy ra

(AA+)A = A và A+A là phép chiếu lên im(A⊤) nên (A+A)A⊤ = A⊤.

Nếu A ∈ Rn×n là ma trận khả nghịch thì A+ = A−1.

1.1.7. Bất đẳng thức Gronwall

Ta cần sử dụng bất đẳng thức Gronwall dạng rời rạc dưới đây để nghiên cứu tính

ổn định mũ của hệ SDLS ở Chương 3.

Định lý 1.1.1 (xem [32]). Giả sử rằng {ym}, {fm}, {gm} là các dãy không âm sao

cho

ym ≤ fm +
∑

0≤i<m

giyi,∀m ≥ 0.

Khi đó

ym ≤ fm +
∑

0≤i<m

figi
∏

i<j<m

(1 + gj).

1.1.8. Bổ đề Fekete

Bổ đề 1.1.1 (Bổ đề Fekete, xem [19]). Cho {an}∞n=1 là dãy số thực thỏa mãn

am+n ≤ am + an, với mọi m,n ≥ 1.

Khi đó, giới hạn lim
n→∞

an
n

tồn tại và bằng inf
n≥1

an
n
.

Từ Bổ đề Fekete ta có hệ quả sau.

Hệ quả 1.1.1 (xem [46]). Cho {ak}∞k=1 là một dãy số dương sao cho ak+ℓ ≤ akaℓ

với mọi k, ℓ ≥ 1. Khi đó giới hạn lim
k→∞

(ak)
1
k tồn tại.

1.1.9. Định lý Perron – Frobenius

Định lý 1.1.2 (Định lý Perron – Frobenius, xem [10, 28]). Giả sử A ∈ Rn×n
+ .

Khi đó

i) ρ(A) là một giá trị riêng của A và tồn tại vectơ x ∈ Rn, x ≥ 0, x ̸= 0 sao cho

Ax = ρ(A)x.
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ii) Cho trước α > 0, tồn tại vectơ x ∈ Rn, x ≥ 0, x ̸= 0 sao cho Ax ≥ αx nếu và

chỉ nếu ρ(A) ≥ α.

Từ Định lý Perron – Frobenius ta suy ra được hệ quả sau, được sử dụng trong

chứng minh một số kết quả ở Chương 2.

Hệ quả 1.1.2. Giả sử A ∈ Rn×n
+ , cho trước α > 0. Khi đó, nếu tồn tại vectơ

x ∈ Rn, x ≥ 0, x ̸= 0 sao cho Ax < αx thì ta có ρ(A) < α.

Chứng minh. Giả sử tồn tại vectơ x ∈ Rn, x ≥ 0, x ̸= 0 sao cho Ax < αx nhưng

ρ(A) ≥ α. Ta sẽ chỉ ra mâu thuẫn.

Ta có ρ(A⊤) = ρ(A), mà ρ(A) ≥ α nên ρ(A⊤) ≥ α.

Khi đó, theo Định lý Perron – Frobenius, tồn tại vectơ y ∈ Rn, y ≥ 0, y ̸= 0 sao

cho A⊤y ≥ αy, suy ra y⊤A ≥ αy⊤. Từ đó, y⊤Ax ≥ αy⊤x. Do vậy, y⊤(Ax− αx) ≥ 0,

điều này là vô lý do Ax < αx nên Ax− αx < 0 và y⊤ ≥ 0.

Vậy với A ∈ Rn×n
+ , nếu tồn tại vectơ x ∈ Rn, x ≥ 0, x ̸= 0 sao cho Ax < αx thì ta

có ρ(A) < α. ■

1.2. Hệ phương trình sai phân suy biến tuyến tính hệ số hằng

Xét hệ rời rạc tuyến tính suy biến dạng

Ex(k + 1) = Ax(k), k = 0, 1, 2, . . . , (1.4)

trong đó, các ma trận E,A ∈ Rn×n cho trước, E là ma trận suy biến và x(k) ∈ Rn.

1.2.1. Tính giải được của hệ sai phân suy biến tuyến tính

chỉ số 1

Định nghĩa 1.2.1 (xem [61]). Cặp ma trận (E,A) ∈
(
Rn×n,Rn×n

)
được gọi là

chính quy nếu đa thức đặc trưng det(sE − A) không đồng nhất 0.

Bổ đề 1.2.1 (xem [61]). Cặp ma trận (E,A) ∈
(
Rn×n,Rn×n

)
là chính quy khi và

chỉ khi tồn tại các ma trận khả nghịch U, V ∈ Rn×n sao cho

(UEV,UAV ) =

 Ir 0r×(n−r)

0(n−r)×r N

 ,
 J 0r×(n−r)

0(n−r)×r In−r

 , (1.5)
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trong đó J ∈ Rr×r là ma trận chuẩn Jordan và N ∈ R(n−r)×(n−r) là ma trận lũy linh

cũng có dạng chuẩn Jordan.

Nhận xét 1.2.1. Chỉ số lũy linh của N là số ν ∈ N bé nhất sao cho Nν = 0n−r.

Chỉ số này không phụ thuộc vào việc chọn các ma trận U, V và gọi là chỉ số của

cặp (E,A).

Khi N = 0n−r thì cặp ma trận (E,A) có chỉ số 1. Trong trường hợp này, ta chọn

các ma trận V = [V1, V2] và U = [EV1, AV2] với

imV1 = S := A−1(imE) := {ξ ∈ Rn : Aξ ∈ imE},

imV2 = kerE.

Bổ đề 1.2.2 (xem [23]). Các khẳng định sau là tương đương với E,A ∈ Rn×n và

S := A−1(imE).

i) Cặp ma trận (E,A) là chính quy và có chỉ số 1.

ii) S ∩ kerE = {0}.

iii) S ⊕ kerE = Rn.

Tính chính quy và chỉ số 1 của cặp ma trận (E,A) liên quan đến sự tồn tại và

duy nhất nghiệm của hệ (1.4) được khẳng định trong bổ đề dưới đây.

Bổ đề 1.2.3 (xem [61]). Giả sử cặp ma trận (E,A) là chính quy chỉ số 1. Khi

đó, hệ rời rạc tuyến tính suy biến (1.4) với điều kiện đầu x(0) = x0 ∈ Rn có nghiệm

duy nhất khi và chỉ khi x0 ∈ S và nghiệm được cho bởi công thức

x(k) = Φk
(E,A)x0, với Φ(E,A) := V

J 0

0 0

V −1,

trong đó V và J là các ma trận trong khai triển dạng (1.5) và Φ(E,A) không phụ

thuộc vào các ma trận V và J.
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1.2.2. Tính giải được của hệ sai phân suy biến tổng quát

Kết quả dưới đây trình bày tính giải được của hệ (1.4) được Campbel đưa ra năm

1980.

Định lý 1.2.1 (xem [11]). Hệ suy biến (1.4) có nghiệm duy nhất với mỗi điều

kiện ban đầu chấp nhận được nếu và chỉ nếu cặp ma trận (E,A) là chính quy (tức

là, tồn tại λ ∈ C sao cho (λE − A)−1 tồn tại). Hơn nữa, tập điều kiện ban đầu chấp

nhận được cho bởi im
(
ÊDÊ

)
và các nghiệm của hệ (1.4) có dạng

x(k) =
(
ÊDÂ

)k

ÊDÊv,

trong đó v là vectơ bất kỳ trong Rn, các ma trận Â và Ê được xác định bởi

Ê = (λE − A)−1E, Â = (λE − A)−1A, (1.6)

với λ ∈ C sao cho (λE − A)−1 tồn tại và ÊD là nghịch đảo Drazin của Ê.

Nhận xét 1.2.2. Nghiệm của hệ (1.4) không phụ thuộc vào λ và nó thỏa mãn

phương trình sai phân x(k + 1) = ÊDÂx(k),

x(0) = ÊDÊv ∈ im(ÊDÊ).

Từ đây ta luôn giả thiết cặp ma trận (E,A) chính quy.

Đặt P := ÊDÊ và A := ÊDÂ. Bổ đề dưới đây trình bày một số tính chất quan

trọng cho các ma trận này.

Bổ đề 1.2.4 (xem [47]). Các tính chất sau là đúng.

i) P là một phép chiếu (P 2 = P ).

ii) PA = AP = A.

iii) Với mọi nghiệm x(k) của hệ (1.4) ta có Px(k) = x(k).
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1.2.3. Tính dương của hệ sai phân suy biến

Nhìn chung, việc phân tích tính dương của hệ với tập điều kiện ban đầu chấp nhận

được bất kỳ là bài toán không dễ. Trong [43, 54], Nieuwenhuis (1984) và Stern

(1982) đã nghiên cứu tính dương của hệ LTI (linear time–invariant systems) với

tập điều kiện ban đầu chấp nhận được là một nón nhọn lồi đóng. Tuy nhiên, các

kết quả đề xuất còn mang tính lý thuyết và không thể kiểm tra bằng phương pháp

số trị. Năm 2014, trong [48], các tác giả Rami và Napp đã nghiên cứu tính toán các

điều kiện cho tính dương của hệ (1.4) liên kết với một tập nón dạng im(P ) ∩Rn
+.

Định nghĩa 1.2.2 (xem [48]). Ta nói hệ (1.4) là dương nếu với mọi điều kiện

ban đầu chấp nhận được không âm x(0) ∈ X0 = im(P ) ∩Rn
+ ta có x(k) ≥ 0 với mọi

k ≥ 0.

Để đưa ra các kết quả về tính dương của hệ (1.4) ta sử dụng kết quả trong bổ đề

dưới đây.

Bổ đề 1.2.5 (xem [41]). Cho M,N là các ma trận có cỡ thích hợp. Các khẳng

định dưới đây là tương đương:

i) Mx ≥ 0 suy ra Nx ≥ 0, với x có cỡ thích hợp;

ii) Tồn tại H ≥ 0 thỏa mãn phương trình ma trận N = HM .

Bây giờ, chúng ta xét hệ  x(k + 1) = Ax(k),

x(0) ∈ imP.

(1.7)

Từ Định lý 1.2.1 và Nhận xét 1.2.2 ta có hệ (1.7) và hệ (1.4) có cùng tập nghiệm

với bất kỳ điều kiện ban đầu nằm trong im(P ). Từ đó, tính dương của hệ (1.4)

tương đương với tính dương của hệ (1.7) với tập điều kiện ban đầu chấp nhận được

không âm X0 = imP ∩Rn
+.

Định lý 1.2.2 (xem [48]). Các khẳng định dưới đây là tương đương.

i) Hệ (1.4) (hoặc hệ (1.7)) là dương với tập điều kiện ban đầu chấp nhận được

không âm X0 = im(P ) ∩Rn
+.
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ii) Tồn tại một ma trận H sao choH ≥ 0,

A = HP.

(1.8)

Định lý 1.2.2 đưa ra đặc trưng tính dương của hệ (1.4) bằng sự tồn tại của ma

trận H không âm thỏa mãn đẳng thức tuyến tính, việc này có thể được kiểm tra

thông qua bất đẳng thức ma trận và dạng quy hoạch tuyến tính một cách hiệu

quả. Tuy nhiên, đặc trưng tính dương có thể được cải thiện bằng cách loại bỏ ràng

buộc đẳng thức trong (1.8) và thay thế bằng một bất đẳng thức tuyến tính. Để

làm được điều này, ta cần bổ đề dưới đây.

Bổ đề 1.2.6 (xem [47, 48]). Hệ phương trình ma trận XM = N có nghiệm theo

biến X nếu và chỉ nếu N(I − M+M) = 0, trong đó M+ là nghịch đảo Moore –

Penrose. Hơn nữa, tất cả các nghiệm được xác định bởi X = NM++D(I −MM+),

với D là một ma trận bất kỳ.

Kết quả đơn giản hóa tính dương được phát biểu trong định lý dưới đây.

Định lý 1.2.3 (xem [48]). Các khẳng định dưới đây là tương đương.

i) Hệ (1.4) (hoặc hệ (1.7)) là dương với tập điều kiện ban đầu chấp nhận được

không âm X0 = imP ∩Rn
+.

ii) Tồn tại một ma trận D sao cho

A+D(I − P ) ≥ 0.

Bất đẳng thức ma trận theo biến ma trận D ∈ Rn×n

A+D(I − P ) ≥ 0, (1.9)

có thể viết lại thành bất đẳng thức tuyến tính

[
(
P⊤ − I

)
⊗ I]x ≤ b, (1.10)

ở đó x = vec(D) và b = vec(A).
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1.2.4. Tính ổn định của hệ sai phân suy biến dương

Định nghĩa 1.2.3 (xem [48]). Ta nói hệ (1.4) là ổn định nếu với bất kì điều kiện

ban đầu x(0) ∈ X0 ta có x(k) → 0 khi k → ∞.

Chúng tôi trình bày lại một số điều kiện ổn định cho hệ rời rạc tuyến tính

không suy biến dương.

Mệnh đề 1.2.1 (xem [48]). Cho N là ma trận không âm và xét hệ tuyến tính

không suy biến dạng

z(k + 1) = Nz(k). (1.11)

Khi đó, các khẳng định sau là tương đương.

i) N là ma trận Schur, hay hệ (1.11) là ổn định với mọi điều kiện ban đầu.

ii) Tồn tại vectơ ν ∈ Rn sao cho

ν > 0 và (N − I)ν < 0.

iii) Tồn tại vectơ γ ∈ Rn sao cho

γ > 0 và γ⊤(N − I) < 0.

Dưới đây, ta trình bày các đặc trưng cho tính ổn định của hệ (1.4) với điều kiện

imP ∩ Ṙn
+ ̸= ∅, nghĩa là ta yêu cầu hệ (1.4) có quỹ đạo nghiệm không chỉ nằm trên

biên của Rn
+.

Định lý 1.2.4 (xem [48]). Giả sử rằng, tồn tại vectơ v ∈ Rn sao cho Pv > 0.

Khi đó, các khẳng định sau là tương đương.

i) Hệ (1.4) (hay (1.7)) là dương và ổn định với tập điều kiện ban đầu chấp nhận

được X0 = imP ∩Rn
+.

ii) Tồn tại một ma trận D sao cho

H := A+D(I − P ) là ma trận Schur không âm. (1.12)
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iii) Tồn tại vectơ γ ∈ Rn, γ > 0 và ma trận Z ∈ Rn×n sao choγ⊤(A− I) + 1
⊤
nZ(I − P ) < 0,

diag(γ)A+ Z(I − P ) ≥ 0,

(1.13)

trong đó 1n = [1 . . . 1]⊤ ∈ Rn.

1.3. Hệ chuyển mạch rời rạc tuyến tính dương

Xét hệ chuyển mạch rời rạc tuyến tính dương (DPSS) dạng

x(k + 1) = Aσ(k)x(k), (1.14)

trong đó x(k) ∈ Rn
+ là biến trạng thái tại thời gian k, σ : N ∪ {0} → N là quy tắc

chuyển mạch bất kỳ, nhận giá trị trong tập N , Ai ∈ Rn×n là ma trận dương với

mọi i ∈ N .

1.3.1. Tính ổn định của hệ chuyển mạch rời rạc tuyến tính dương

Định nghĩa 1.3.1 (xem [20]). Hệ (1.14) là ổn định (tiệm cận) nếu với mọi quy

tắc chuyển mạch σ và điều kiện ban đầu x(0) ∈ Rn
+ ta có x(k) → 0 khi k → ∞.

Định nghĩa 1.3.2 (xem [20]). Một hàm V (x) : Rn → R được gọi là hàm đồng

dương (copositive) nếu V (x) > 0 với mọi x > 0 và V (0) = 0. Hàm đồng dương

V (x) : Rn → R được gọi là hàm Lyapunov chung cho hệ DPSS (1.14) nếu

∀x > 0, ∀i ∈ N ∆Vi(x) := V (Aix)− V (x) < 0,

hoặc tương đương

∀x > 0, max
i∈N

∆Vi(x) < 0.

Ta thường xét ba lớp hàm đồng dương dưới đây:

� hàm đồng dương tuyến tính: V (x) = v⊤x, với v ∈ Rn, v > 0.

� hàm đồng dương bậc hai: V (x) = x⊤Px, với P = P⊤ ∈ Rn×n sao cho x⊤Px > 0

với mọi x ≥ 0, x ̸= 0.
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� hàm bậc hai xác định dương: V (x) = x⊤Px, với P = P⊤ ≻ 0.

Trong luận án, chúng tôi sử dụng lớp hàm đồng dương tuyến tính để đưa ra điều

kiện ổn định của hệ chuyển mạch rời rạc tuyến tính suy biến chỉ số 1 dương ở

chương 2.

Một hàm đồng dương tuyến tính V (x) = v⊤x, với v > 0 là hàm Lyapunov chung

cho hệ DPSS (1.14) nếu v⊤Aix < v⊤x với mọi i ∈ N và với mỗi x > 0. Nếu tồn tại

một hàm Lyapunov chung cho hệ (1.14) thì hệ (1.14) ổn định (tiệm cận). Điều này

được khẳng định trong mệnh đề dưới đây.

Mệnh đề 1.3.1 (xem [20]). Hệ DPSS (1.14) là ổn định nếu tồn tại v ∈ Rn sao

cho

v > 0 và v⊤(Ai − I) < 0, ∀i ∈ N.

1.3.2. Tính ổn định của hệ chuyển mạch rời rạc tuyến tính dương

theo thời gian dừng nhỏ nhất

Ta gọi dãy {kq}q∈N là dãy thời điểm chuyển mạch, tức là thời điểm σ(k) thay đổi

giá trị và τq := kq+1 − kq được gọi là thời gian dừng. Ta quy ước k0 = 0.

Ta biết rằng, một hệ chuyển mạch là ổn định nếu tất cả các hệ con là ổn định và

việc chuyển mạch được thực hiện đủ chậm. Trong [59], các tác giả đã nghiên cứu

xác định thời gian dừng nhỏ nhất τ∗ để hệ (1.14) bao gồm các hệ con ổn định là

ổn định tiệm cận, với quy tắc chuyển mạch

σ(k) = i ∈ N, ∀k ∈ [kq, kq+1), (1.15)

trong đó kq và kq+1 là hai thời điểm chuyển mạch liên tiếp thỏa mãn kq+1−kq ≥ τ∗.

Điều kiện ổn định của hệ DPSS (1.14) với thời gian dừng nhỏ nhất được trình

bày trong định lý dưới đây.

Định lý 1.3.1 (xem [59]). Giả sử, với hằng số 0 < τ ∈ N cho trước, tồn tại một

tập các vectơ v1, v2, . . . , vN ∈ Rn, vi > 0, i ∈ N sao cho

v⊤i (Ai − I) < 0, ∀i ∈ N (1.16)

và

v⊤i A
τ
i − v⊤j < 0, ∀ i, j ∈ N. (1.17)
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Khi đó, hệ (1.14) ổn định (tiệm cận) với dãy thời điểm chuyển mạch {kq}q∈N thỏa

mãn τq ≥ τ .

Trong [34], các tác giả Li và Zhang cũng đã xây dựng được điều kiện ổn định

cho hệ chuyển mạch rời rạc tuyến tính dương (1.14) với thời gian dừng nhỏ nhất. Ở

đó, các tác giả đưa ra điều kiện tương đương với các điều kiện (1.16), (1.17) trong

Định lý 1.3.1, được trình bày trong định lý dưới đây.

Định lý 1.3.2 (xem [34]). Cho trước hằng số 0 < τ ∈ N. Các khẳng định dưới

đây là tương tương:

i) Tồn tại một tập các vectơ vi ∈ Rn, vi > 0, i ∈ N sao chov⊤i (Ai − I) < 0, ∀i ∈ N,

v⊤i A
τ
i − v⊤j < 0, ∀i, j ∈ N ;

ii) Tồn tại một tập các vectơ vi,l ∈ Rn, vi,τ > 0, i ∈ N, l = 0, 1, . . . τ sao cho
vj,0 − vi,τ < 0, ∀i, j ∈ N,

v⊤i,τ (Ai − I) < 0, ∀i ∈ N,

v⊤i,l+1Ai − v⊤i,l ≤ 0, ∀i ∈ N, 0 ≤ l ≤ τ − 1.

Hơn nữa, khi một trong các khẳng định trên đúng, hệ DPSS (1.14) là ổn định (tiệm

cận) với dãy thời điểm chuyển mạch {kq}q thỏa mãn τq ≥ τ .

1.3.3. Tính ổn định hóa được bằng quy tắc chuyển mạch của hệ

chuyển mạch rời rạc tuyến tính dương

Định nghĩa 1.3.3 (xem [20]). Hệ DPSS (1.14) là ổn định hóa được nếu với mọi

điều kiện ban đầu dương x(0), tồn tại một dãy chuyển mạch σ : N ∪ {0} → N sao

cho quỹ đạo trạng thái x(k) hội tụ về 0.

Rõ ràng bài toán ổn định hóa là không tầm thường nếu tất cả các ma trận

Ai, i ∈ N không là ma trận Schur, tức là tất cả các hệ con đều không ổn định.

Trong định nghĩa trên, việc chọn dãy chuyển mạch σ có thể phụ thuộc vào điều

kiện ban đầu x(0). Một định nghĩa mạnh hơn của điều kiện ổn định hóa được là

dãy chuyển mạch ổn định hệ không phụ thuộc vào điều kiện ban đầu.
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Định nghĩa 1.3.4 (xem [20]). Hệ DPSS (1.14) là ổn định hóa được nhất quán

nếu tồn tại một dãy chuyển mạch σ : N ∪ {0} → N sao cho với mọi điều kiện ban

đầu dương x(0), quỹ đạo trạng thái tương ứng x(k) hội tụ về 0.

Ta thấy, hệ ổn định hóa được nhất quán suy ra hệ ổn định hóa được, điều

ngược lại chưa chắc đúng. Trong trường hợp tổng quát, tức là không có điều kiện

dương, người ta có thể tìm được hệ ổn định hóa được nhưng không ổn định hóa

được nhất quán (xem ví dụ trang 112 – 113 trong [55]). Tuy nhiên, trong [20] các

tác giả đã chứng minh được, với hệ chuyển mạch dương (1.14), hai định nghĩa trên

là tương đương và chúng tương đương với khả năng ổn định hóa được hệ bằng một

dãy chuyển mạch tuần hoàn không phụ thuộc vào điều kiện ban đầu dương. Điều

này được khẳng định trong mệnh đề dưới đây.

Mệnh đề 1.3.2 (xem [20]). Xét hệ chuyển mạch rời rạc tuyến tính dương (1.14),

các khẳng định sau là tương đương:

i) hệ ổn định hóa được;

ii) hệ ổn định hóa được nhất quán;

iii) tồn tại M > 0 và bộ chỉ số i0, i1, . . . , iM−1 ∈ N sao cho ma trận tích

AiM−1AiM−2 . . . Ai1 là một ma trận Schur dương;

iv) tồn tại một dãy chuyển mạch tuần hoàn đưa quỹ đạo trạng thái tương ứng với

mọi điều kiện ban đầu dương hội tụ về 0.
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Chương 2

Hệ chuyển mạch rời rạc tuyến tính

suy biến chỉ số 1 dương

Chương này chúng tôi trình bày một số kết quả về tính ổn định và ổn định hóa

được cho hệ chuyển mạch rời rạc tuyến tính suy biến chỉ số 1 dương. Chúng tôi

đưa ra định nghĩa tính dương của hệ, sau đó thiết lập điều kiện đủ cho tính ổn

định của hệ. Cuối cùng, chúng tôi định nghĩa dưới bán kính phổ của một họ các

cặp ma trận, từ đó đưa ra đặc trưng cho tính ổn định hóa được của hệ. Kết quả

của chương đã được công bố trong bài báo [CT1].

Đầu tiên, chúng tôi trình bày lại một số kết quả quan trọng cho hệ chuyển mạch

rời rạc tuyến tính suy biến chỉ số 1 đã được Anh và các cộng sự đề xuất trong

[5, 6].

2.1. Hệ chuyển mạch rời rạc tuyến tính suy biến chỉ số 1

2.1.1. Định nghĩa hệ chuyển mạch rời rạc tuyến tính suy biến chỉ

số 1

Ta xét hệ chuyển mạch rời rạc tuyến tính suy biến (SDLS) dạng

Eσ(k)x(k + 1) = Aσ(k)x(k), (2.1)

trong đó Ei, Ai ∈ Rn×n, x(k) ∈ Rn là vectơ trạng thái tại thời điểm k ∈ N và

σ : N∪ {0} → N := {1, 2, . . . , N}, N ∈ N, là quy tắc chuyển mạch, nhận giá trị trong

tập hữu hạn N . Giả sử các ma trận Ei suy biến với mọi i ∈ N .
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Ta liên kết hệ (2.1) với điều kiện ban đầu

x(0) = x0 ∈ Rn. (2.2)

Định nghĩa 2.1.1. Nghiệm của hệ chuyển mạch rời rạc tuyến tính suy biến dạng

(2.1) là dãy {x(k)}k thỏa mãn hệ (2.1) với mỗi k = 1, 2, . . . và quy tắc chuyển mạch

σ(k) ∈ N bắt đầu từ trạng thái x(0) tương thích.

Đối với hệ chuyển mạch liên tục suy biến công thức nghiệm đã được thiết lập

trong [60]. Đặc biệt, khi xét không gian nghiệm suy rộng là không gian các hàm

trơn từng khúc, sự tồn tại và duy nhất nghiệm với mọi tín hiệu chuyển mạch được

đảm bảo khi và chỉ khi các cặp ma trận (Ei, Ai) là chính quy. Hai tính chất quan

trọng của hệ chuyển mạch liên tục suy biến là: 1) tính nhân quả của nghiệm liên

quan tới tín hiệu chuyển mạch, tức là, sự thay đổi tín hiệu chuyển mạch trong

tương lai không làm thay đổi nghiệm tại thời điểm hiện tại và 2) tính duy nhất

nghiệm khi cho trước tín hiệu chuyển mạch và giá trị ban đầu. Tuy nhiên, ví dụ

dưới đây cho thấy các tính chất này không còn đúng trong trường hợp hệ rời rạc.

Điều này chứng tỏ các kết quả cho hệ rời rạc không thể suy ra trực tiếp từ các kết

quả tương ứng cho hệ liên tục.

Ví dụ 2.1.1 (xem [5]). Xét hệ chuyển mạch tuyến tính suy biến (2.1) với

N = {1, 2} và

E1 =

1 0

0 0

 , E2 =

0 0

0 1

 , A1 = A2 =

1 0

0 1

 .
Ta xét hai tín hiệu chuyển mạch cụ thể với σ1 ≡ 1 và σ2 ≡ 2, nghiệm của hệ tương

ứng có dạng

x(k) =

x10

0

 và x(k) =

 0

x20

 ,

với k ∈ N và x(0) = (x10, x
2
0) ∈ R2 là điều kiện ban đầu cho trước. Tiếp theo, ta xét

hệ chuyển mạch (2.1) với tín hiệu chuyển mạch thay đổi tại thời điểm ks > 0 như

sau σ(k) =

1, k < ks,

2, k ≥ ks.
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Hệ chuyển mạch tuyến tính suy biến (2.1) trở thành

k < ks

x1(k + 1) = x1(k)

0 = x2(k),

k ≥ ks

0 = x1(k)

x2(k + 1) = x2(k).

Ta thấy, thành phần thứ nhất x1(ks) bị phụ thuộc vào cả hai trạng thái: với

k = ks − 1, từ trạng thái thứ nhất ta có x1(ks) = x1(ks − 1) và với k = ks, từ trạng

thái thứ hai ta có 0 = x1(ks). Suy ra x(k) = 0 với mọi k < ks, từ đó cho thấy, thời

điểm chuyển mạch ks > 0 làm thay đổi toàn bộ nghiệm khác không trước đó (mất

đi tính nhân quả). Trong khi đó, thành phần thứ hai x2(ks) có thể nhận giá trị bất

kỳ, do đó hệ thu được không có nghiệm duy nhất (mất đi tính duy nhất nghiệm).

Để ý rằng, các cặp ma trận (Ei, Ai) là chính quy. Khi đó, hệ chuyển mạch liên tục

với các cặp ma trận (Ei, Ai) là nhân quả và bài toán giá trị ban đầu có nghiệm duy

nhất.

Như vậy, đối với trường hợp liên tục, chỉ cần giả thiết mỗi cặp ma trận (Ei, Ai)

chính quy để kết luận sự tồn tại và duy nhất nghiệm của hệ chuyển mạch tương

ứng. Tuy nhiên, kết quả này không còn đúng đối với trường hợp thời gian rời rạc.

Như vậy, giả thiết mỗi mode của hệ chuyển mạch là chỉ số 1 không đủ để đảm bảo

sự tồn tại nghiệm của hệ chuyển mạch tương ứng. Do đó, ta cần giả thiết chặt hơn

cho cặp ma trận (Ei, Ai) để kết luận được các tính chất của nghiệm. Dựa trên khái

niệm chỉ số linh hoạt của Griepentrog & Marz (xem [23]) và khái niệm chỉ số 1

dạng hình học cho hệ sai phân suy biến với hệ số biến thiên của Anh & Yen (xem

[8]), các tác giả trong [6] đã đưa ra khái niệm chỉ số 1 cho hệ chuyển mạch tổng

quát như sau.

Định nghĩa 2.1.2 (xem [5, 6]). Hệ (2.1) được gọi là hệ chuyển mạch tuyến tính

suy biến chỉ số 1 nếu

Si ∩ kerEj = {0}, với mọi i, j ∈ N, (2.3)

trong đó Si = A−1
i (imEi) := {ξ ∈ Rn : Aiξ ∈ imEi}.

Một số tính chất quan trọng của hệ chuyển mạch tuyến tính suy biến chỉ số 1 được

trình bày trong bổ đề sau.
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Bổ đề 2.1.1 (xem [5, 6]). Giả sử hệ chuyển mạch tuyến tính suy biến (2.1) có

chỉ số 1. Khi đó ta có các khẳng định

i) rankEi = const =: r (r < n),

ii) Si ⊕ kerEj = Rn, ∀i, j ∈ N .

2.1.2. Ánh xạ một bước cho hệ SDLS chỉ số 1

Trước tiên, chúng tôi trình bày tính chất hình học đơn giản của các không gian

con, cần thiết cho việc đưa ra công thức nghiệm của (2.1).

Xét hai không gian con V ,W ⊆ Rn thỏa mãn V ⊕ W = Rn. Khi đó, với mọi

x ∈ Rn ta có phân tích duy nhất dạng x = xV + xW với xV ∈ V , xW ∈ W. Khi

đó, {x} + W = {xV} + W và với bất kỳ w ∈ W \ {0} ta có xV + w /∈ V. Do đó,

V ∩ ({x}+W) = {xV}. Từ đây, ta có bổ đề sau.

Bổ đề 2.1.2 (xem [5]). Xét hai không gian con V ,W ⊆ Rn thỏa mãn V⊕W = Rn

và gọi ΠW
V là phép chiếu chính tắc lên V song song với W (tức là imΠW

V = V và

kerΠW
V = W). Khi đó, với mọi x ∈ Rn ta thu được

V ∩ ({x}+W) =
{
ΠW
V x

}
,

hay, với mọi x ∈ Rn tồn tại duy nhất vectơ y ∈ V, tương ứng tồn tại vectơ w ∈ W

sao cho y = x+ w và có công thức y = ΠW
V x.

Định nghĩa 2.1.3 (xem [5]). Xét hệ chuyển mạch rời rạc tuyến tính suy biến

chỉ số 1 dạng (2.1). Khi đó ánh xạ một bước từ mode j đến mode i được định

nghĩa bởi

Φi,j := Π
kerEj

Si
Φ(Ej ,Aj),

trong đó Π
kerEj

Si
là phép chiếu chính tắc lên Si song song với kerEj và Φ(Ej ,Aj) là

ánh xạ một bước tại mode j tương ứng như trong Bổ đề 1.2.3.

Định lý 2.1.2 (xem [5, 6]). Hệ chuyển mạch rời rạc tuyến tính chỉ số 1 có nghiệm

duy nhất khi và chỉ khi x(0) ∈ Sσ(0). Khi đó ta có công thức

x(k + 1) = Φσ(k+1),σ(k)x(k), ∀k ∈ N, (2.4)
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trong đó, Φi,j là ánh xạ một bước từ mode j đến mode i được xác định như trong

Định nghĩa 2.1.3.

Chứng minh. Theo Bổ đề 1.2.3 ta có x(0) ∈ Sσ(0) là điều kiện cần cho sự tồn

tại nghiệm. Để chứng minh điều kiện đủ ta giả sử x(m) thỏa mãn hệ (2.1) với

m = 0, 1, . . . , k và x(k) ∈ Sσ(k). Ta cần tìm x(k + 1) sao cho

Eσ(k)x(k + 1) = Aσ(k)x(k)

và

Eσ(k+1)ξ = Aσ(k+1)x(k + 1) với ξ ∈ Rn nào đó.

Điều kiện thứ nhất tương đương với

x(k + 1) ∈ {Φ(Eσ(k),Aσ(k))x(k)}+ kerEσ(k)

và điều kiện thứ hai tương đương với

x(k + 1) ∈ A−1
σ(k+1)

(
imEσ(k+1)

)
= Sσ(k+1).

Từ giả thiết Sσ(k+1) ∩ kerEσ(k) = {0}, Bổ đề 2.1.1 và Bổ đề 2.1.2 suy ra x(k + 1) là

duy nhất và được cho bởi công thức (2.4). ■

Sự tồn tại của ánh xạ một bước cho phép ta định nghĩa ma trận chuyển trạng thái

cho hệ chuyển mạch rời rạc tuyến tính suy biến (2.1).

Định nghĩa 2.1.4 (xem [5, 6]). Ma trận chuyển trạng thái Φσ(k, h) cho hệ (2.1)

được xác định bởi

Φσ(k, h) = Φσ(k),σ(k−1)Φσ(k−1),σ(k−2) . . .Φσ(h+1),σ(h),

với k > h và Φσ(h, h) = Π
kerEσ(h)

Sσ(h)
.

Khi đó, mọi nghiệm của hệ được cho bởi công thức

x(k) = Φσ(k, 0)x(0), (2.5)

Chú ý rằng, với x0 ∈ Rn ta có x(0) = x0 khi và chỉ khi x0 ∈ Sσ(0). Nói chung x(0)

phải thỏa mãn

x(0) = Π
kerEσ(0)

Sσ(0)
x0, x0 ∈ Rn. (2.6)
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Bổ đề 2.1.3 (xem [5, 6]). Xét hệ chuyển mạch rời rạc tuyến tính suy biến chỉ số

1 dạng (2.1). Với i ∈ N, gọi Vi := [s1i , . . . , s
r
i , h

r+1
i , . . . , hni ] là ma trận có các cột tương

ứng {s1i , . . . , sri} là các vectơ cơ sở của Si và {hr+1
i , . . . , hni } là các vectơ cơ sở của

kerEi. Ký hiệu P :=

Ir 0

0 0

 ∈ Rn×n, Q := In − P . Đặt Pi := ViPV
−1
i , Qi := I − Pi

và Qi,j := VjQV
−1
i , ta có Pi = ΠkerEi

Si
, Qi = ΠSi

kerEi
, với i, j ∈ N . Khi đó, với mọi

i, j ∈ N ta có các tính chất

i) Gi,j := Ei + AiQi,j là ma trận không

suy biến,

ii) Π
kerEj

Si
= I −Qi,jG

−1
i,j Ai,

iii) Φ(Ei,Ai) = PiG
−1
i,i Ai,

iv) Φi,j =
(
I −Qi,jG

−1
i,j Ai

)
PjG

−1
j,jAj,

v) PiΦi,j = Φi,j , Φi,jPj = Φi,j ,

vi) EiPi = Ei,

vii) Pi = G−1
i,j Ei,

viii) V −1
i G−1

i,j AiVjQ = Q.

Chứng minh.

i) Giả sử x ∈ kerGi,j, tức là AiQi,jx = −Eix ∈ imEi, suy ra Qi,jx ∈ Si. Ngoài ra,

Qi,jx = VjQV
−1
i x ∈ imVjQ = kerEj. Vì Si ∩ kerEj = {0}, ta có Qi,jx = 0, từ

đó, Eix = −AiQi,jx = 0, do đó x ∈ kerEi = imQi. Vì Qi là phép chiếu, ta có

x = Qix. Mặt khác Qix = ViV
−1
j Qi,jx = 0, nên x = Qix = 0. Điều này chứng tỏ

kerGi,j = {0}, hay ma trận Gi,j không suy biến.

ii) Ta chứng minh Qi,jG
−1
i,j Ai là phép chiếu dọc theo Si lên kerEj, từ đó kéo theo

I −Qi,jG
−1
i,j Ai = Π

kerEj

Si
. Trước tiên ta thấy rằng

Gi,jViQ = (Ei + AiQi,j)ViQ = AiVjQ.

Vì EiViQ = 0, từ đó(
Qi,jG

−1
i,j Ai

)2
= Qi,jG

−1
i,j AiVjQ︸ ︷︷ ︸V −1

i G−1
i,j Ai

= Qi,jG
−1
i,j Gi,jViQ︸ ︷︷ ︸V −1

i G−1
i,j Ai

= Qi,jG
−1
i,j Ai,

tức là Qi,jG
−1
i,j Ai là phép chiếu.
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Ta cần chứng tỏ rằng im Qi,jG
−1
i,j Ai = kerEj và kerQi,jGi,jAi = Si. Từ tính chất

EjVjQ = 0 kéo theo im Qi,jG
−1
i,j Ai ⊆ kerEj. Với x ∈ kerEj ⊆ imQj ta có x = Qjx

và từ đó

im Qi,jG
−1
i,j Ai ∋ Qi,jG

−1
i,j Aix = Qi,jG

−1
i,j AiVjQ︸ ︷︷ ︸V −1

j x

= Qi,jG
−1
i,j Aix

= Qi,jG
−1
i,j Gi,jViQ︸ ︷︷ ︸V −1

j x

= VjQV
−1
j x = x.

Do đó kerEj ⊆ imQi,jG
−1
i,j Ai. Cuối cùng ta thu được các đẳng thức tương đương

sau

x ∈ Si ⇐⇒ Aix = Eiξ với ξ nào đó

⇐⇒ G−1
i,j Aix = G−1

i,j Eiξ = Piξ

⇐⇒ V −1
i G−1

i,j Aix = PV −1
i ξ

⇐⇒ QV −1
i G−1

i,j Aix = 0

⇐⇒ Qi,jG
−1
i,j Aix = 0.

Từ đó ta thu được imSi = kerQi,jG
−1
i,j Ai.

iii) Từ Bổ đề 1.2.1 ta có

(EiViP + AiViQ)
−1AiVi =

 Ji 0r×(n−r)

0(n−r)×r I(n−r)


với ma trận Ji ∈ Rr×r. Từ đó,

Φ(Ei,Ai) = ViP (EiViP + AiViQ)
−1Ai.

Mặt khác

PiG
−1
i,i Ai = ViP (EiVi + AiViQ)

−1Ai

và vì EiViP = EiVi, đẳng thức được chứng minh.

iv) Đẳng thức này thu được trực tiếp từ mục (ii), (iii) của Bổ đề này và Bổ đề

2.1.2.

v) Ta có

Φi,jPj = Φi,j(I −Qj) = Φi,j − Φi,jQj = Φi,j − Π
kerEj

Si
PjG

−1
j,jAjQj = Φi,j .
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vi) Vì Qi là phép chiếu lên kerEi dọc theo Si, nên EiQi = 0.

Do đó, EiPi = Ei(Pi +Qi) = Ei.

vii) Ta thấy Gi,jPi = (Ei + AiVjQV
−1
i )ViPV

−1
i = EiPi + AiVjQPV

−1
i = EiPi.

Áp dụng khẳng định (vi) của Bổ đề này ta có Gi,jPi = Ei. Do đó Pi = G−1
i,j Ei.

viii) Ta có Gi,jViQV
−1
i = (Ei + AiVjQV

−1
i )ViQV

−1
i = EiQi + AiVjQV

−1
i = AiVjQV

−1
i ,

Suy ra V −1
i G−1

i,j AiVjQ = Q. ■

Mệnh đề 2.1.1 (xem [6]). Xét hệ chuyển mạch rời rạc tuyến tính suy biến có

chỉ số 1 dạng (2.1) và gọi Vi, Gi,j là các ma trận được cho trong Bổ đề 2.1.3. Khi

đó

Ai,j = V −1
i G−1

i,j AiVj =

A1
i,j 0

A
2
i,j In−r

 , (2.7)

với A
1
i,j ∈ Rr×r và A

2
i,j ∈ R(n−r)×r. Hơn nữa, ta thấy rằng x(·) là nghiệm của hệ

(2.1) khi và chỉ khi v(·) là nghiệm của hệ

v(k + 1) = Aσ(k),σ(k−1)v(k), (2.8)

trong đó

x(k) = Vσ(k−1)

 v(k)

−A2
σ(k),σ(k−1)v(k)

 .
Chứng minh. Theo khẳng định vii), viii) của Bổ đề 2.1.3 ta có Pi = G−1

i,j Ei,

V −1
i G−1

i,j AiVjQ = Q.

Từ đây ta thu được

Āi,j := V −1
i G−1

i,j AiVj =

Ā1
i,j 0r×(n−r)

Ā2
i,j In−r

 ,
Ēi,j := V −1

i G−1
i,j EiVi =

 Ir 0r×(n−r)

0(n−r)×r 0n−r

 .
Nhân bên trái hai vế của hệ (2.1) với V −1

σ(k)
G−1

σ(k),σ(k−1)
và dùng phép đổi biến

x̄(k) = V −1
σ(k−1)

x(k), ta có

Ēσ(k),σ(k−1)x̄(k + 1) = Āσ(k),σ(k−1)x̄(k). (2.9)
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Đặt x̄(k) := (v(k)⊤, w(k)⊤)⊤, ở đó v(k) ∈ Rr, w(k) ∈ Rn−r, ta chuyển hệ (2.1) thành

các hệ con (2.8) và

w(k) = −Ā2
σ(k),σ(k−1)v(k).

■

Dựa vào các kết quả nền tảng về tính giải được, công thức nghiệm cho hệ

chuyển mạch rời rạc tuyến tính suy biến (SDLS) chỉ số 1 dạng (2.1) đã được trình

bày ở mục 2.1. Chúng tôi đã nghiên cứu và đưa ra được một số kết quả cho tính

dương của hệ SDLS chỉ số 1, điều kiện đủ cho tính ổn định và một số đặc trưng

cho tính ổn định hóa được của hệ SDLS chỉ số 1 dương. Các kết quả này đã được

công bố trong [CT1] và được trình bày trong các mục dưới đây.

2.2. Tính dương và tính ổn định của hệ chuyển mạch rời rạc

tuyến tính suy biến chỉ số 1

Trong phần này, chúng tôi đưa ra một số kết quả về tính dương và sự ổn định của

hệ chuyển mạch rời rạc tuyến tính suy biến chỉ số 1. Đầu tiên, ta định nghĩa tính

dương của hệ SDLS (2.1).

Định nghĩa 2.2.1. Hệ chuyển mạch rời rạc tuyến tính suy biến (SDLS) dạng (2.1)

được gọi là dương nếu với mọi tín hiệu chuyển mạch σ và với mọi điều kiện ban

đầu chấp nhận được x(0) ∈ Sσ(0) ∩Rn
+, ta có x(k) ≥ 0 với mọi k ∈ N.

Tiếp theo, chúng tôi đưa ra một số đặc trưng cho tính dương của hệ (2.1). Các kết

quả ở đây, chúng tôi phát triển từ các kết quả nền tảng cho tính dương của hệ sai

phân suy biến (Định lý 1.2.2, 1.2.3).

Định lý 2.2.1. Giả sử rằng hệ SDLS (2.1) có chỉ số 1. Các khẳng định sau là

tương đương.

i) Hệ SDLS (2.1) là hệ dương.

ii) Tồn tại các ma trận Hi,j thỏa mãn điều kiện dưới đâyHi,j ≥ 0,

Φi,j = Hi,jPj ,

∀i, j ∈ N.
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iii) Tồn tại các ma trận Di,j sao cho

Φi,j +Di,j(I − Pj) ≥ 0, ∀i, j ∈ N.

Chứng minh. i) ⇒ ii). Với mỗi i, j ∈ N , lấy σ : N ∪ {0} → N thỏa mãn

σ(1) = i, σ(0) = j. Từ công thức (2.6) và Bổ đề 2.1.3, x(0) = Pσ(0)x0 ≥ 0, dẫn

đến x(1) = Φσ(1),σ(0)x(0) = Φσ(1),σ(0)Pσ(0)x0 ≥ 0. Do đó, từ Bổ đề 1.2.5, tồn tại ma

trận Hσ(1),σ(0) ≥ 0 sao cho Φσ(1),σ(0)Pσ(0) = Hσ(1),σ(0)Pσ(0).

Hơn nữa, do Φσ(1),σ(0)Pσ(0) = Φσ(1),σ(0), ta thu được Φσ(1),σ(0) = Hσ(1),σ(0)Pσ(0). Điều

này suy ra rằng Φi,j = Hi,jPj.

i) ⇐ ii). Vì x(k) ∈ Sσ(k) nên ta có Pσ(k)x(k) = x(k). Từ đây suy ra

x(k + 1) = Φσ(k+1),σ(k)x(k)

= Hσ(k+1),σ(k)Pσ(k)x(k)

= Hσ(k+1),σ(k)x(k)

= Hσ(k+1),σ(k)Hσ(k),σ(k−1) . . . Hσ(1),σ(0)x(0).

Do x(0) ∈ Sσ(0) ∩Rn
+ và Hi,j ≥ 0 với mọi i, j ∈ N , ta suy ra x(k + 1) ≥ 0.

ii) ⇒ iii). Giả sử rằng phương trình Φi,j = Hi,jPj giải được và có một nghiệm

Hi,j ≥ 0. Áp dụng Bổ đề 1.2.6 cho phương trình này, ta có tồn tại các ma trận Di,j

sao cho

Hi,j = Φi,jP
+
j +Di,j(I − PjP

+
j ).

Vì nghịch đảo Moore − Penrose của ma trận lũy đẳng Pj (Pj = P 2
j ) chính là Pj

(tức là, P+
j = Pj, Φi,jPj = Φi,j và PjP

+
j = P 2

j = Pj), nên ta thu được

Hi,j = Φi,j +Di,j(I − Pj) ≥ 0, ∀i, j ∈ N.

ii) ⇐ iii). Giả sử rằng tồn tại các ma trận Di,j sao cho

Φi,j +Di,j(I − Pj) ≥ 0,∀i, j ∈ N.

Ta định nghĩa Hi,j := Φi,j +Di,j(I − Pj) ≥ 0. Áp dụng Bổ đề 2.1.3, ta có

Hi,jPj = Φi,jPj +Di,j(I − Pj)Pj = Φi,j .

Vậy tồn tại ma trận Hi,j ≥ 0 sao cho Φi,j = Hi,jPj với mọi i, j ∈ N. ■

38



Nhận xét 2.2.1. Sự tồn tại của ma trận Hi,j không âm và thỏa mãn bất đẳng

thức tuyến tính trong điều kiện ii) của Định lý 2.2.1 có thể được kiểm tra thông

qua dạng quy hoạch tuyến tính, bất đẳng thức ma trận tuyến tính. Hơn nữa, điều

kiện iii) có thể được biểu diễn lại theo dạng

[(P⊤
i,j − I)⊗ I)]xi,j ≤ bi,j ,

với xi,j = vec(Di,j) và bi,j = vec(Φi,j).

Tiếp theo, ta đưa ra định nghĩa tính ổn định (tiệm cận) của hệ SDLS (2.1).

Định nghĩa 2.2.2. Hệ chuyển mạch rời rạc tuyến tính suy biến (2.1) được gọi

là ổn định (tiệm cận) nếu với mọi tín hiệu chuyển mạch σ và điều kiện ban đầu

x(0) ∈ Sσ(0), ta có x(k) → 0 khi k → ∞.

Bằng cách sử dụng nguyên lý so sánh và các đặc trưng cho tính dương của hệ SDLS

(2.1) ở trên, ta thu được định lý cho tính ổn định của hệ như sau.

Định lý 2.2.2. Giả sử rằng hệ SDLS (2.1) có chỉ số 1 và với mọi i, j ∈ N tồn tại

ma trận Di,j sao cho

Hi,j := Φi,j +Di,j(I − Pj)

là ma trận không âm và Hi,j ≤ H với H là ma trận Schur. Khi đó, hệ SDLS (2.1)

là hệ dương và ổn định.

Chứng minh. Do Pσ(k)x(k) = x(k),

Dσ(k+1),σ(k)

(
I − Pσ(k)

)
x(k) = Dσ(k+1),σ(k)

(
I − Pσ(k)

)
Pσ(k)x(k) = 0,

nên ta thu được

Hσ(k+1),σ(k)x(k)=[Φσ(k+1),σ(k)+Dσ(k+1),σ(k)(I−Pσ(k))]x(k)

=Φσ(k+1),σ(k)x(k) = x(k + 1).

Sử dụng giả thiết Hσ(k+1),σ(k) ≥ 0, ta suy ra hệ (2.1) là hệ dương. Bây giờ, ta xét

hệ y(k + 1) = Hy(k),

y(0) = x(0).

(2.10)
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Ta sẽ chứng minh rằng

0 ≤ x(k) ≤ y(k), với mọi k ∈ N. (2.11)

Thật vậy, ta chứng minh bằng quy nạp. Giả sử rằng (2.11) đúng với i = k. Vì

0 ≤ Hσ(k+1),σ(k) ≤ H, nên suy ra

x(k + 1) = Hσ(k+1),σ(k)x(k) ≤ Hx(k) ≤ Hy(k) = y(k + 1).

Do đó, (2.11) đúng với i = k + 1 và ta có điều phải chứng minh. Vì H là ma trận

Schur nên hệ (2.10) là ổn định, dẫn đến hệ SDLS (2.1) ổn định. Định lý được chứng

minh. ■

Tính dương và tính ổn định của hệ SDLS (2.1) có thể kiểm tra đồng thời thông

qua dạng bất đẳng thức ma trận tuyến tính, được phát biểu trong định lý dưới

đây.

Định lý 2.2.3. Giả sử rằng hệ SDLS (2.1) có chỉ số 1 và tồn tại vectơ v ∈ Rn,

v > 0 và các ma trận Zi,j ∈ Rn×n sao chov⊤(Φi,j − I) + 1
⊤
nZi,j(I − Pj) < 0,

diag(v)Φi,j + Zi,j(I − Pj) ≥ 0,

(2.12)

với mọi i, j ∈ N , trong đó 1n = [1 . . . 1]⊤. Khi đó, hệ SDLS (2.1) là hệ dương và ổn

định.

Chứng minh. Nhân vào bên trái hai vế của phương trình thứ hai trong (3.24) với

diag(v)−1 ta được

Φi,j + diag(v)−1Zi,j(I − Pj) ≥ 0.

Đặt Di,j := diag(v)−1Zi,j và ta có

Hi,j := Φi,j +Di,j(I − Pj) ≥ 0.

Điều kiện này suy ra hệ SDLS (2.1) là hệ dương. Dov⊤ = 1
⊤
n diag(v),

Zσ(k+1),σ(k) = diag(v)Dσ(k+1),σ(k),
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nên ta có

v⊤(Φσ(k+1),σ(k) − I) + 1
⊤
nZσ(k+1),σ(k)(I − Pσ(k))

= v⊤(Φσ(k+1),σ(k) − I) + v⊤Dσ(k+1),σ(k)(I − Pσ(k))

= v⊤
(
Φσ(k+1),σ(k) − I +Dσ(k+1),σ(k)(I − Pσ(k))

)
= v⊤

(
Φσ(k+1),σ(k) +Dσ(k+1),σ(k)(I − Pσ(k))− I

)
= v⊤

(
Hσ(k+1),σ(k) − I

)
< 0.

Áp dụng Mệnh đề 1.3.1, ta suy ra phương trình x(k+ 1) = Hσ(k+1),σ(k)x(k) ổn định

và do đó hệ SDLS (2.1) ổn định. Định lý được chứng minh. ■

Bằng cách lập luận tương tự như Định lý 1.3.2, ta thu được điều kiện ổn định

với thời gian dừng nhỏ nhất cho hệ SDLS (2.1) như sau.

Định lý 2.2.4. Giả sử rằng hệ SDLS (2.1) có chỉ số 1. Với hằng số 1 ≤ τ ∈ N cho

trước, các khẳng định sau là tương đương:

i) Tồn tại ma trận Di,j ∈ Rn×n và một tập các vectơ vi,j ∈ Rn, vi,j > 0, i, j ∈ N

sao cho 
Hi,j := Φi,j +Di,j(I − Pj) ≥ 0, ∀i, j ∈ N,

v⊤i,j(Hi,j − I) < 0, ∀i, j ∈ N,

v⊤i,jH
τ
i,j − v⊤h,k < 0, ∀i, j, h, k ∈ N ;

ii) Tồn tại ma trận Di,j ∈ Rn×n và một tập các vectơ vi,j,l ∈ Rn, vi,j,τ > 0,

i, j ∈ N, l = 0, 1, . . . τ sao cho

Hi,j := Φi,j +Di,j(I − Pj) ≥ 0, ∀i, j ∈ N,

vh,k,0 − vi,j,τ < 0, ∀i, j, h, k ∈ N,

v⊤i,j,τ (Hi,j − I) < 0, ∀i, j ∈ N,

v⊤i,j,l+1Hi,j − v⊤i,j,l ≤ 0, ∀i, j ∈ N, 0 ≤ l ≤ τ − 1.

Hơn nữa, khi một trong các khẳng định trên đúng, hệ SDLS (2.1) là hệ dương và

ổn định với dãy thời điểm chuyển mạch {kq}q thỏa mãn τq ≥ τ .
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2.3. Tính ổn định hóa được của hệ chuyển mạch rời rạc tuyến

tính suy biến chỉ số 1 dương

Ta định nghĩa tập điều kiện ban đầu không âm chấp nhận được S = ∪i∈NSi ∩Rn
+.

Định nghĩa 2.3.1. i) Hệ SDLS dương (2.1) được gọi là ổn định hóa được nếu

với mỗi điều kiện ban đầu dương x(0) ∈ S tồn tại một dãy chuyển mạch

σ : N ∪ {0} → N sao cho quỹ đạo trạng thái x(k) hội tụ về 0.

ii) Hệ SDLS dương (2.1) được gọi là ổn định hóa được nhất quán nếu tồn tại dãy

chuyển mạch σ : N ∪ {0} → N sao cho với mỗi i ∈ N , với mọi điều kiện ban

đầu dương x(0) ∈ Si ∩Rn
+, quỹ đạo trạng thái tương ứng x(k) hội tụ về 0.

Nhận xét 2.3.1. Trong định nghĩa ổn định hóa được, việc chọn dãy chuyển mạch

σ có thể phụ thuộc vào điều kiện ban đầu x(0) ∈ S còn trong định nghĩa ổn định

hóa được nhất quán, dãy chuyển mạch σ không phụ thuộc vào điều kiện ban đầu

x(0) ∈ Si ∩Rn
+ với mỗi i ∈ N , nhưng nó có thể phụ thuộc vào Si.

Theo định nghĩa, hệ ổn định hóa được nhất quán suy ra hệ ổn định hóa được,

điều ngược lại chưa chắc đúng. Tuy nhiên, chúng tôi chỉ ra với hệ SDLS chỉ số 1

dương dạng (2.1), hai định nghĩa trên tương đương với nhau và chúng tương đương

với khả năng ổn định hóa được hệ bằng một dãy chuyển mạch tuần hoàn không

phụ thuộc vào điều kiện ban đầu dương, trong định lý dưới đây.

Định lý 2.3.1. Giả sử hệ chuyển mạch rời rạc tuyến tính suy biến chỉ số 1 dạng

(2.1) là hệ dương. Khi đó, các khẳng định sau tương đương:

i) hệ ổn định hóa được;

ii) hệ ổn định hóa được nhất quán;

iii) tồn tại M > 0 và bộ chỉ số i0, i1, . . . , iM ∈ N thỏa mãn iM = i0 sao cho

∥ΦiM ,iM−1ΦiM−1,iM−2 . . .Φi1,i0∥ < 1;

iv) với mỗi p ∈ N và điều kiện ban đầu dương x(0) ∈ Sp ∩Rn
+, tồn tại một quy tắc

chuyển mạch tuần hoàn để hệ ổn định.
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Chứng minh. i) =⇒ ii). Giả sử rằng, tồn tại một quy tắc chuyển mạch σ đưa

quỹ đạo trạng thái tiệm cận về 0 từ trạng thái ban đầu x̂(0) ∈ Si ∩ Ṙn
+, x̂(0) có các

thành phần dương chặt. Ta sẽ chứng minh rằng, quy tắc chuyển mạch này cũng

đưa quỹ đạo trạng thái tiệm cận về 0 từ bất kỳ trạng thái ban đầu dương khác

x(0) ∈ Si∩Rn
+. Gọi x̂(k) và x(k) là các trạng thái tương ứng bắt đầu từ x̂(0) ∈ Si∩Ṙn

+

và x(0) ∈ Si ∩Rn
+ và ứng với quy tắc chuyển mạch σ. Khi đó, tồn tại một số dương

α sao cho 0 < x(0) ≤ αx̂(0). Do hệ SDLS (2.1) là hệ dương nên từ Định lý 2.2.1 ta

có, với k bất kỳ, luôn tồn tại ma trận Hσ(k+1),σ(k) ≥ 0 thỏa mãn

x(k + 1) = Hσ(k+1),σ(k)Pσ(k)x(k) = Hσ(k+1),σ(k)x(k).

Do đó, sử dụng phương pháp quy nạp và nguyên lý so sánh, ta suy ra, với mọi

k ∈ N ta có 0 ≤ x(k) ≤ αx̂(k) → 0 khi k → +∞. Điều này dẫn đến x(k) hội tụ về 0

khi k → +∞. Vậy hệ SDLS (2.1) ổn định hóa được nhất quán.

ii) =⇒ iii). Giả sử rằng, hệ (2.1) là ổn định hóa được nhất quán. Gọi σ là quy

tắc chuyển mạch làm cho quỹ đạo trạng thái hội tụ về 0 và σ không phụ thuộc vào

trạng thái ban đầu x(0). Lấy x(0) ∈ Sσ(0) ∩ Ṙn
+, với chú ý x(0) có các thành phần

dương chặt và ε ∈ (0, 1) đủ nhỏ. Khi đó, tồn tại một số nguyên p > 0 sao cho với

mọi k ≥ p ta có

x(k) = Φσ(k, 0)x(0)

= Φσ(k),σ(k−1)Φσ(k−1),σ(k−2) . . .Φσ(1),σ(0)x(0)

< εx(0).

Do hệ SDLS (2.1) là hệ dương nên từ Định lý 2.2.1 ta có, tồn tại các ma trận

Hi,j ≥ 0 sao cho

x(p) = Hσ(p),σ(p−1)Pσ(p−1)x(p− 1) = Hσ(k),σ(k−1)x(p− 1)

= Hσ(p),σ(p−1)Hσ(p−1),σ(p−2) . . . Hσ(1),σ(0)x(0)

< εx(0).

Nhân cả hai vế của bất phương trình trên từ bên trái với Hσ(0),σ(p), ta suy ra

Hσ(0),σ(p)Hσ(p),σ(p−1)Hσ(p−1),σ(p−2) . . . Hσ(1),σ(0)x(0)

≤ εHσ(0),σ(p)x(0).
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Ta định nghĩa

Hσ(p) := Hσ(0),σ(p)Hσ(p),σ(p−1)Hσ(p−1),σ(p−2) . . . Hσ(1),σ(0).

Với 0 < ε2 < 1, ta có thể chọn ε đủ nhỏ sao cho

Hσ(p)x(0) ≤ εHσ(0),σ(p)x(0) < (1− ε2)x(0).

Áp dụng Hệ quả 1.1.2, ta suy ra được bán kính phổ của ma trận dương Hσ(p) nhỏ

hơn (1− ε2). Điều này dẫn đến, tồn tại số nguyên dương k0 sao cho

∥Hk
σ(p)∥ < (1− ε2)

k, ∀k ≥ k0.

Ta chọn q ≥ k0 sao cho (1− ε2)
q max

i∈N
∥Pi∥ < 1 và đặt M = q(p + 1). Với 0 ≤ k ≤ M,

ta chọn dãy

ik =



σ(k), k = 0, 1, . . . , p;

σ(0), k = p+ 1;

il, k = l + s(p+ 1), 0 ≤ l ≤ p, 1 ≤ s ≤ q − 1;

σ(0), k = q(p+ 1).

Khi đó, sử dụng tính chất PiΦi,j = Φi,j, ta có

∥ΦiM ,iM−1ΦiM−1,iM−2 . . .Φi1,i0∥

=∥HiM ,iM−1PiM−1ΦiM−1,iM−2 . . .Φi1,i0∥

=∥HiM ,iM−1ΦiM−1,iM−2 . . .Φi1,i0∥

= . . .

=∥HiM ,iM−1HiM−1,iM−2HiM−2,iM−3 . . . Hi1,i0Pi0∥

≤∥HiM ,iM−1HiM−1,iM−2HiM−2,iM−3 . . . Hi1,i0∥∥Pi0∥

=∥Hq
σ(p)∥∥Pi0∥ < (1− ε2)

q max
i∈N

∥Pi∥ < 1.

Vậy (ii) =⇒ (iii) được chứng minh.

iii) =⇒ iv). Giả sử rằng, tồn tạiM > 0 và các chỉ số i0, i1, . . . , iM ∈ N với iM = i0

sao cho

∥ΦiM ,iM−1ΦiM−1,iM−2 . . .Φi1,i0∥ < 1.
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Đặt Φ := ΦiM ,iM−1 .ΦiM−1,iM−2 . . .Φi1,i0. Do ∥Φ∥ < 1 nên với mỗi p ∈ N , tồn tại k ∈ N

sao cho ∥Φp,i0Φ
kΦi0,p∥ < 1. Điều này suy ra rằng, tồn tại bộ chỉ số î0, î1, . . . , îM̃ ∈ N

với M̃ = kM + 2, î
M̃

= î0 = p sao cho

∥Φî
M̃
,̂i
M̃−1

Φî
M̃−1

,̂i
M̃−2

. . .Φî1 ,̂i0
∥ < 1.

Ta định nghĩa quy tắc chuyển mạch tuần hoàn

σ(k) = îl nếu k = l + sM̃, 0 ≤ l ≤ M̃ − 1.

Khi đó, ta dễ thấy rằng dãy chuyển mạch tuần hoàn này đưa quỹ đạo trạng thái

x(k) từ mọi trạng thái ban đầu dương x(0) ∈ Sp ∩Rn
+ hội tụ về 0.

iv) =⇒ i). là hiển nhiên. ■

Nhận xét 2.3.2. Định lý 2.3.1 tổng quát hóa kết quả cho tính ổn định hóa được

của hệ chuyển mạch rời rạc tuyến tính không suy biến khi Ei = I với mọi i ∈ N

được đưa ra trong Mệnh đề 1.3.2.

Tiếp theo, chúng tôi đưa ra định nghĩa dưới bán kính phổ của một họ các cặp

ma trận {(E1, A1), (E2, A2), . . . , (EN , AN )}. Từ đó, đưa ra đặc trưng cho tính ổn

định hóa được của hệ chuyển mạch rời rạc tuyến tính suy biến chỉ số 1 dương dạng

(2.1).

Định nghĩa 2.3.2. Dưới bán kính phổ của một họ các cặp ma trận {(Ei, Ai)}N1
cho hệ chuyển mạch rời rạc tuyến tính suy biến chỉ số 1 dạng (2.1) được định nghĩa

như sau

ρ̌
(
{(Ei, Ai)}N1

)
:= lim

k→∞
min

i0,i1,...,ik∈N
∥Φik,ik−1Φik−1,ik−2 . . .Φi1,i0∥

1
k , (2.13)

trong đó Φi,j là ánh xạ một bước từ mode j đến mode i.

Để chứng minh sự tồn tại của giới hạn trong định nghĩa trên, ta cần mở rộng

Bổ đề Fekete (xem [19]).

Bổ đề 2.3.1. (Bổ đề Fekete mở rộng) Cho {ak}∞k=0 là dãy số thực sao cho

ai+j+1 ≤ c+ ai + aj , ∀i, j ≥ 1,

trong đó c là hằng số. Khi đó, giới hạn lim
k→∞

ak
k

tồn tại và bằng inf
k≥1

{
ak + c

k

}
.
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Chứng minh. Đặt bk := ak + c và L = inf
k≥1

bk
k
. Theo giả thiết, ta có bi+j+1 ≤ bi + bj

với mọi i, j ≥ 1. Với ε > 0 bất kỳ, từ định nghĩa của cận dưới đúng, ta có thể chọn

n0 sao cho bn0 < n0(L + ε). Gọi b := max
0≤i≤n0

bi. Với m ≥ n0 + 1, ta lấy q ∈ N sao cho

q(n0 + 1) ≤ m ≤ q(n0 + 1) + n0. Đặt m = qn0 + r, ta suy ra được 0 ≤ r − q ≤ n0. Từ

tính chất dưới cộng tính (subaddivity property), ta có

bm = bqn0+r = bn0 + n0 + · · ·+ n0︸ ︷︷ ︸
q số hạng

+r

≤ bn0 + bn0 + n0 + · · ·+ n0︸ ︷︷ ︸
q−1 số hạng

+r−1

≤ · · · ≤ qbn0 + br−q ≤ qbn0 + b.

Vì vậy,

L ≤ bm
m

≤ qbn0

m
+

b

m
≤ n0(L+ ε)

n0 + 1
+

b

m
< L+ 2ε,

với mọi m ≥ |b|
ε
, điều này dẫn đến lim

k→∞

ak
k

= lim
k→∞

bk
k

= L. ■

Từ Bổ đề Fekete mở rộng trên, ta có hệ quả dưới đây.

Hệ quả 2.3.1. Cho {ak}∞k=0 là dãy số dương và c > 0 sao cho

ai+j+1 ≤ caiaj , với mọi i, j ≥ 1.

Khi đó, giới hạn lim
k→∞

(ak)
1
k tồn tại.

Bây giờ, ta chứng minh định nghĩa dưới bán kính phổ là định nghĩa tốt, nghĩa là

giới hạn ở vế phải của (2.13) tồn tại hữu hạn .

Đặt

ak := min
i0,i1,...,ik∈N

∥Φik,ik−1Φik−1,ik−2 . . .Φi1,i0∥.

Ta chọn îk+m+1, îk+m, . . . , îm+1 và îm, îm−1, . . . , î0 sao cho

ak = ∥Φîk+m+1 ,̂ik+m
Φîk+m ,̂ik+m−1

. . .Φîm+2 ,̂im+1
∥,

am = ∥Φîm ,̂im−1
Φîm−1 ,̂im−2

. . .Φî1 ,̂i0
∥.
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Ta có đánh giá

ak+m+1 = min
ik+m+1,ik+m,...,i1,i0∈N

∥Φik+m+1,ik+m . . .Φi1,i0∥

≤ ∥Φîk+m+1 ,̂ik+m
. . .Φîm+2 ,̂im+1

Φîm+1 ,̂im
Φîm ,̂im−1

. . .Φî1 ,̂i0
∥

≤∥Φîk+m+1,̂ik+m
. . .Φîm+2,̂im+1

∥∥Φîm+1,̂im
∥∥Φîm,̂im−1

. . .Φî1,̂i0
∥

≤ cakam,

trong đó c = max
i,j∈N

∥Φi,j∥. Từ Hệ quả 2.3.1 ta suy ra giới hạn trong Định nghĩa 2.3.2

tồn tại và hữu hạn.

Nhận xét 2.3.3. i) Trong không gian hữu hạn chiều Rn, các chuẩn tương đương

với nhau nên định nghĩa dưới bán kính phổ (Định nghĩa 2.3.2) không phụ thuộc

vào chuẩn được sử dụng.

ii) Trường hợp cặp ma trận (Ei, Ai) có chỉ số 0 với i = 1, 2, . . . , N , tức là

Ei = In, i = 1, 2, . . . , N , ta có P = In và Q = 0n thì Gi,j = Ei = In, i = 1, 2, . . . , N .

Chọn Vi = In, ta tìm được Φik,ik−1Φik−1,ik−2 . . .Φi1,i0 = Aik−1Aik−2 . . . Ai0. Từ đó,

dưới bán kính phổ của một họ các ma trận {(In, Ai)}Ni=1 chính là dưới bán kính

phổ của một họ các ma trận {Ai}Ni=1 được đưa ra bởi Gurvits như Định nghĩa

1.1.2.

Tiếp theo, chúng tôi đưa ra điều kiện cần và đủ để hệ chuyển mạch rời rạc

tuyến tính suy biến chỉ số 1 dương có dạng (2.1) ổn định hóa được dựa vào dưới

bán kính phổ của một họ các cặp ma trận {(Ei, Ai)}N1 .

Định lý 2.3.2. Hệ chuyển mạch rời rạc tuyến tính suy biến chỉ số 1 dương dạng

(2.1) ổn định hóa được khi và chỉ khi

ρ̌
(
{(Ei, Ai)}N1

)
< 1.

Chứng minh. Điều kiện đủ. Giả sử ρ̌
(
{(Ei, Ai)}N1

)
< 1. Ta sẽ chứng minh rằng

hệ SDLS dương (2.1) ổn định hóa được. Vì ρ̌
(
{(Ei, Ai)}N1

)
< 1 nên tồn tại K > 0

và λ ∈ (0, 1) sao cho với mọi k > K ta có

min
i0,i1,...,ik∈N

∥Φik,ik−1 .Φik−1,ik−2 . . .Φi1,i0∥1/k < λ

⇔ min
i0,i1,...,ik∈N

∥Φik,ik−1 .Φik−1,ik−2 . . .Φi1,i0∥ < λk < 1.
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Do đó, tồn tại M > K + 1 và î0, î1, . . . , îM−1 ∈ N sao cho

∥Φî0 ,̂iM−1
ΦîM−1 ,̂iM−2

ΦîM−2 ,̂iM−3
. . .Φî1 ,̂i0

∥ < cλM < 1,

với c = max
i,j∈N

∥Φi,j∥. Áp dụng Định lý 2.3.1, hệ SDLS dương (2.1) là ổn định hóa

được.

Điều kiện cần. Vì hệ SDLS dương (2.1) là ổn định hóa được nên theo Định lý

2.3.1, tồn tại M > 0 và bộ chỉ số î0, î1, . . . îM ∈ N với î0 = îM sao cho

∥ΦîM ,̂iM−1
ΦîM−1 ,̂iM−2

. . .Φî1 ,̂i0
∥ < 1,

điều này dẫn đến

∥ΦîM ,̂iM−1
ΦîM−1 ,̂iM−2

. . .Φî1 ,̂i0
∥

1
M < 1.

Ta định nghĩa dãy tuần hoàn îk = îl với k = l + sM ; 0 ≤ l ≤M − 1; s ∈ N. Khi đó,

ta có

∥ΦîsM ,̂isM−1
ΦîsM−1 ,̂isM−2

. . .Φî1 ,̂i0
∥

1
sM≤∥ΦîM ,̂iM−1

. . .Φî1 ,̂i0
∥

1
M .

Từ đây suy ra

ρ̌
(
{(Ei, Ai)}N1

)
= lim
k→∞

min
i0,i1,...,ik∈N

∥Φik,ik−1Φik−1,ik−2 . . .Φi1,i0∥
1
k

≤ lim
s→∞

∥ΦîsM,̂isM−1
ΦîsM−1,̂isM−2

. . .Φî1,̂i0
∥

1
sM <1.

Định lý được chứng minh. ■

Mặc dù hoàn toàn có thể xác định dưới bán kính phổ của một họ các cặp ma

trận {(Ei, Ai)}N1 thông qua các ánh xạ một bước Φi,j, chúng tôi đưa ra một cách

tiếp cận hiệu quả khác để xác định dưới bán kính phổ, bằng cách đưa hệ chuyển

mạch tuyến tính suy biến n chiều ban đầu về hệ chuyển mạch tuyến tính không

suy biến r chiều như trong Mệnh đề 2.1.1. Phần chứng minh của hệ quả dưới đây

tương tự như chứng minh Định lý 5.7 trong [6].

Hệ quả 2.3.2. Giả sử hệ SDLS dạng (2.1) là hệ dương và có chỉ số 1. Xét hệ giản

lược (2.8). Khi đó

ρ̌
(
{(Ei, Ai)}Ni=1

)
= lim

k→∞
min

i−1,i0,...,ik−1∈N
∥A1

ik−1,ik−2
. . . A

1
i0,i−1

∥
1
k ,

trong đó A
1
ik−1,ik−2

, . . . , A
1
i0,i−1

xác định như trong Mệnh đề 2.1.1 và hệ (2.1) là ổn

định hóa được khi và chỉ khi dưới bán kính phổ này nhỏ hơn 1.
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Ví dụ 2.3.1. Xét hệ SDLS (2.1) với quy tắc chuyển mạch σ : N∪{0} → {1, 2} = N

và

E1 =


−1 −3 1

−1 −3 1

1 −1 −1

 ; E2 =


−3 6 3

0 3 0

6 9 −6

 ;

A1 =


−1 −2 0

0 −1 1

0 −1 −1

 ; A2 =


−1 2 1

1 2 1

1 2 −3

 .

Ta tìm được

kerE1 = kerE2 = span{(1, 0, 1)⊤},

S1 = S2 = span{(1,−1, 0)⊤, (0, 1,−1)⊤},

Do đó Si ∩ kerEj = {0},∀i, j ∈ N và rankEi = 2 < 3. Điều này chứng tỏ hệ SDLS

với các ma trận hệ số đã cho có chỉ số 1. Ta có

P =


1 0 0

0 1 0

0 0 0

 ; Q =


0 0 0

0 0 0

0 0 1

 ; Vi =


1 0 1

−1 1 0

0 −1 1

 ;

Qi = ViQV
−1
i =


1/2 1/2 1/2

0 0 0

1/2 1/2 1/2

 ; Qi,j = VjQV
−1
i = Qi.

Do Gi,j = Ei + AiQi,j ,∀i, j ∈ N , nên ta tính được

G1,j =


−3/2 −7/2 1/2

−1/2 −5/2 3/2

1/2 −3/2 −3/2

 ; G−1
1,j =


−3/4 3/4 1/2

0 −1/4 −1/4

−1/4 1/2 −1/4

 ;

G2,j =


−3 6 3

1 4 1

5 8 −7

 ; G−1
2,j =


−1/4 1, 1/24 −1/4

1/1, 2 1/24 1/24

−1/1, 2 3/8 −1/8

 ;
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và Π
kerEj

Si
= I −Qi,jG

−1
i,j Ai = Pi. Từ Φ(Ei,Ai) = PiG

−1
i,i Ai, ta có

Φ(E1,A1) =


1/4 −1/4 −1/4

0 1/2 0

−1/4 −1/4 1/4

 ; Φ(E2,A2) =


1/6 −1/6 −1/6

0 1/3 0

−1/6 −1/6 1/6

 .

Vì Φi,j = Π
kerEj

Si
Φ(Ej ,Aj) = PiΦ(Ej ,Aj), nên Φi,1 = Φ(E1,A1),Φi2 = Φ(E2,A2) và ta tìm

được

Φ1,1 = Φ2,1 =


1/4 −1/4 −1/4

0 1/2 0

−1/4 −1/4 1/4

 ; Φ1,2 = Φ2,2 =


1/6 −1/6 −1/6

0 1/3 0

−1/6 −1/6 1/6

 .

Ta chọn

H1,1 = H2,1 =


1/2 0 0

0 1/2 0

1/2 1/2 1

 ; H1,2 = H2,2 =


1/3 0 0

0 1/3 0

2/3 2/3 1

 ,

khi đó, điều kiện

Hi,j ≥ 0,

Φi,j = Hi,jPj ,

đúng với mọi i, j ∈ N. Theo Định lý 2.2.1, hệ

chuyển mạch rời rạc tuyến tính với các ma trận ở trên là hệ dương.

Do Ai,j = V −1
i G−1

i,j AiVj, nên ta tính được

A1,j =


1/2 0 0

0 1/2 0

0 0 1

 ; A
1
1,1 = A

1
1,2 =

1/2 0

0 1/2

 ;

A2,j =


1/3 0 0

0 1/3 0

0 0 1

 ; A
1
2,1 = A

1
2,2 =

1/3 0

0 1/3

 .

Áp dụng Hệ quả 2.3.2, ta thu được ρ̌
(
{(Ei, Ai)}2i=1

)
=

1

3
< 1. Vậy hệ SDLS (2.1)

với các cặp {(Ei, Ai)}i=1,2 đã cho là hệ dương và ổn định hóa được. Hơn nữa, do

∥Φ1,1∥∞ < 1 và ∥Φ2,2∥∞ < 1, nên ta có thể ổn định hóa hệ bằng tín hiệu chuyển

mạch hằng tương ứng với trạng thái ban đầu dương.
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Nhận xét 2.3.4. Trong thực tế có những hệ chuyển mạch gồm những hệ con

không ổn định, thậm chí tất cả các hệ con không ổn định; người ta có thể thiết kế

quy luật chuyển mạch tuần hoàn phù hợp để hệ chuyển mạch là ổn định. Chẳng

hạn, xét hệ chuyển mạch tuần hoàn, khi có ít nhất một trong các hệ con, giả sử

(Ei, Ai), ổn định thì bằng cách lựa chọn khoảng kích hoạt ∆i = ki − ki−1 đủ lớn so

với các hệ con còn lại, ta sẽ thu được hệ chuyển mạch tuần hoàn ổn định. Phương

án thiết kế quy tắc chuyển σ(k) để ổn định hóa hệ hầu hết là chuyển mạch tuần

hoàn. Trong chương này, chúng tôi đưa ra các điều kiện ổn định cho hệ chuyển

mạch rời rạc tuyến tính suy biến chỉ số 1 dương dạng (2.1), không phụ thuộc vào

quy tắc chuyển mạch, tuy nhiên các điều kiện đưa ra khá chặt, chẳng hạn Định lý

2.2.2 đưa ra điều kiện để hệ SDLS (2.1) là dương và ổn định là tồn tại ma trận

Di,j sao cho Hi,j := Φi,j + Di,j(I − Pj) là ma trận không âm và Hi,j ≤ H với H là

ma trận Schur; các điều kiện này phải đúng với mọi i, j ∈ N . Bên cạnh đó, chúng

tôi cũng đưa ra kết quả ổn định hóa hệ nếu hệ chuyển mạch không ổn định bằng

một dãy chuyển mạch tuần hoàn như Định lý 2.3.1.

Mặc dù điều kiện để hệ chuyển mạch ổn định với mọi quy tắc chuyển mạch là rất

chặt, song nó cần thiết trong nhiều tình huống thực tế, khi hệ thống (trong an

toàn hàng không, an toàn hạt nhân, . . . ) bắt buộc phải ổn định với mọi quy tắc

chuyển mạch.

Kết luận chương

Trong chương này chúng tôi đã đưa ra một số kết quả về tính ổn định và ổn định

hóa được cho một lớp hệ chuyển mạch rời rạc tuyến tính suy biến chỉ số 1 dương.

Tính dương của hệ SDLS chỉ số 1 được nghiên cứu thông qua ánh xạ một bước.

Sau đó, chúng tôi thiết lập được các điều kiện đủ cho tính ổn định của hệ SDLS

chỉ số 1 dương dựa vào nguyên lý so sánh, các đặc trưng cho tính dương của hệ

SDLS chỉ số 1 cũng như sử dụng hàm Lyapunov chung dạng đồng dương tuyến

tính. Cuối cùng, chúng tôi định nghĩa dưới bán kính phổ của một họ các cặp ma

trận, từ đó đưa ra đặc trưng cho tính ổn định hóa được của hệ.
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Chương 3

Hệ chuyển mạch rời rạc tuyến tính

suy biến chỉ số 1 có nhiễu

Trong chương này, chúng tôi nghiên cứu tính giải được và tính ổn định của hệ

chuyển mạch rời rạc tuyến tính suy biến chỉ số 1 có nhiễu trong hai trường hợp:

cặp ma trận hệ số có quy tắc chuyển mạch giống nhau và khác nhau. Nội dung

của chương được viết dựa trên các bài báo [CT2 – CT3].

3.1. Hệ chuyển mạch suy biến có nhiễu với cặp ma trận hệ số có

quy tắc chuyển mạch giống nhau

Xét hệ chuyển mạch rời rạc tuyến tính suy biến chỉ số 1 có nhiễu dạng

Eσ(k)x(k + 1) = Aσ(k)x(k) + fσ(k)(x(k)), (3.1)

trong đó σ : N ∪ {0} → N, là quy tắc chuyển mạch lấy giá trị trong tập hữu hạn

N , Ei, Ai ∈ Rn×n và fi : Rn → Rn, i ∈ N, là nhiễu, x(k) ∈ Rn là vectơ trạng thái tại

thời điểm k ∈ N. Giả sử rằng, Ei là các ma trận suy biến với mọi i ∈ N .

Ta liên kết hệ SDLS chỉ số 1 có nhiễu (3.1) với điều kiện ban đầu

Pσ(k0−1)x(k0) = Pσ(k0−1)γ, (3.2)

với γ là vectơ bất kỳ trong Rn và k0 là số nguyên không âm cố định.
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3.1.1. Tính giải được

Tính giải được của bài toán giá trị ban đầu (3.1) − (3.2) được khẳng định trong

định lý dưới đây.

Định lý 3.1.1. Cho fσ(k)(x) là hàm liên tục Lipschitz với hệ số Lipschitz đủ nhỏ,

tức là,

∥fi(x)− fi(x̃)∥ ≤ Li∥x− x̃∥, ∀x, x̃ ∈ Rn, i ∈ N (3.3)

và

ωi := Limax{∥Qi,jG
−1
i,j ∥ : j ∈ N} < 1, ∀i ∈ N. (3.4)

Khi đó, bài toán giá trị ban đầu (3.1)− (3.2) có nghiệm duy nhất.

Chứng minh. Nhân cả hai vế của phương trình (3.1) từ bên trái với Pσ(k)G
−1
σ(k),σ(k−1)

và Qσ(k)G
−1
σ(k),σ(k−1)

tương ứng và chú ý rằng

G−1
σ(k),σ(k−1)

Eσ(k) = Pσ(k), Pσ(k)Qσ(k) = Qσ(k)Pσ(k) = 0,

ta được

Pσ(k)x(k + 1) = Pσ(k)G
−1
σ(k),σ(k−1)

Aσ(k)x(k) + Pσ(k)G
−1
σ(k),σ(k−1)

fσ(k)(x(k)), (3.5)

Qσ(k)G
−1
σ(k),σ(k−1)

Aσ(k)x(k) = −Qσ(k)G
−1
σ(k),σ(k−1)

fσ(k)(x(k)). (3.6)

Đặt u(k) = Pσ(k−1)x(k), v(k) = Qσ(k−1)x(k), (k ∈ N) ta có

Pσ(k)G
−1
σ(k),σ(k−1)

Aσ(k)v(k)

= Pσ(k)G
−1
σ(k),σ(k−1)

Aσ(k)Qσ(k−1)x(k)

= Pσ(k)G
−1
σ(k),σ(k−1)

Aσ(k)Qσ(k),σ(k−1)Vσ(k)QV
−1
σ(k−1)

x(k)

= Pσ(k)G
−1
σ(k),σ(k−1)

(Gσ(k),σ(k−1) − Eσ(k))Vσ(k)QV
−1
σ(k−1)

x(k)

= (Pσ(k) − Pσ(k)Pσ(k))Vσ(k)QV
−1
σ(k−1)

x(k)

= 0

và từ (3.5)

u(k + 1) = Pσ(k)G
−1
σ(k),σ(k−1)

Aσ(k)u(k) + Pσ(k)G
−1
σ(k),σ(k−1)

fσ(k)(u(k) + v(k)). (3.7)
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Từ khẳng định (viii) của Bổ đề 2.1.3, ta có

G−1
σ(k),σ(k−1)

Aσ(k)Qσ(k),σ(k−1) = Vσ(k)QV
−1
σ(k)

= Qσ(k).

Hơn nữa, ta có Qj = Qi,j .Qj,i, Qi.Qj,i = Qj,i nên vế trái của (3.6) có thể viết lại

dưới dạng

Qσ(k)G
−1
σ(k),σ(k−1)

Aσ(k)x(k) = Qσ(k)G
−1
σ(k),σ(k−1)

Aσ(k)(u(k) + v(k))

= Qσ(k)G
−1
σ(k),σ(k−1)

Aσ(k)u(k) +Qσ(k)G
−1
σ(k),σ(k−1)

Aσ(k)Qσ(k),σ(k−1)Qσ(k−1),σ(k)x(k)

= Qσ(k)G
−1
σ(k),σ(k−1)

Aσ(k)u(k) +Qσ(k−1),σ(k)x(k).

Khi đó, từ (3.6) suy ra rằng

Qσ(k−1),σ(k)x(k) = −Qσ(k)G
−1
σ(k),σ(k−1)

Aσ(k)u(k)−Qσ(k)G
−1
σ(k),σ(k−1)

fσ(k)(x(k)).

Nhân hai vế của đẳng thức trên với Qσ(k),σ(k−1) từ bên trái ta được

v(k) = Qσ(k−1)x(k) = −Qσ(k),σ(k−1)G
−1
σ(k),σ(k−1)

[fσ(k)(u(k) + v(k)) + Aσ(k)u(k)]. (3.8)

Từ (3.7), giả sử đã biết u := u(k) (k ≥ k0), với u(k0) cho trước dạng

u(k0) = Pσ(k0−1)x(k0) = Pσ(k0−1)γ.

Ta xét toán tử Ti,j : imQi,j → imQi,j định nghĩa bởi

Ti,j(v) := −Qi,jG
−1
i,j [fi(u+ v) + Aiu].

Do

∥Ti,j(v)− Ti,j(ṽ)∥ = ∥Qi,jG
−1
i,j [fi(u+ v)− fi(u+ ṽ)∥

≤ ∥Qi,jG
−1
i,j ∥∥fi(u+ v)− fi(u+ ṽ)∥

≤ ∥Qi,jG
−1
i,j ∥Li∥v − ṽ∥ ≤ ωi∥v − ṽ∥ < ∥v − ṽ∥,

nên Ti,j là toán tử co. Do đó, theo nguyên lý ánh xạ co, phương trình (3.8) có nghiệm

duy nhất được xác định bởi ánh xạ gσ(k) : imPσ(k−1) → imQσ(k−1), gσ(k)(u(k)) = v(k).

Hơn nữa, ta thấy gσ(k) là hàm liên tục Lipschitz với hệ số Lipschitz

Kσ(k) := ωσ(k)(Lσ(k) + ∥Aσ(k)∥)L−1
σ(k)

(1− ωσ(k))
−1. (3.9)
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Từ đó, bài toán giá trị ban đầu (3.1)− (3.2) có nghiệm duy nhất được xác định bởi

x(k) = u(k) + gσ(k)(u(k)), (3.10)

với u(k0) = Pσ(k0−1)γ. Định lý được chứng minh. ■

Không mất tính tổng quát, ta giả sử rằng fi(0) = 0,∀i ∈ N . Khi đó, gσ(k)(0) = 0

và hệ SDLS chỉ số 1 có nhiễu (3.1) luôn có nghiệm tầm thường x(k) = 0. Từ

(3.10), ta thấy mỗi nghiệm x(k) của bài toán giá trị ban đầu (3.1)− (3.2) thỏa mãn

x(k) = Pσ(k−1)x(k) + gσ(k)(Pσ(k−1)x(k)) hoặc tương đương x(k) thỏa mãn

Qσ(k−1)x(k) = −Qσ(k),σ(k−1)G
−1
σ(k),σ(k−1)

[fσ(k)x(k)) + Aσ(k)Pσ(k−1)x(k)].

Với i ∈ N , ta đặt

∆i := {x ∈ Rn : Qjx = −Qi,jG
−1
i,j (fi(x) + AiPjx), với j ∈ N}. (3.11)

Nếu x = x(k) là một nghiệm của bài toán giá trị ban đầu (3.1) − (3.2), thì chắc

chắn x(k) ∈ ∆σ(k)(k ≥ k0). Ngược lại, với mỗi θ ∈ ∆i, luôn tồn tại nghiệm của

(3.1) phụ thuộc vào θ. Thật vậy, gọi σ là quy tắc chuyển mạch bất kỳ thỏa mãn

σ(k) = i và x(m, k; θ)(m ≥ k) là một nghiệm của (3.1) thỏa mãn điều kiện ban đầu

Pσ(k−1)x(k) = Pσ(k−1)θ. Rõ ràng,

x(k, k; θ) = Pσ(k−1)x(k) + gσ(k)(Pσ(k−1)x(k))

= Pσ(k−1)θ + gσ(k)(Pσ(k−1)θ)

= Pσ(k−1)θ +Qσ(k−1)θ = θ.

(3.12)

Ta sẽ chứng minh rằng tập ∆i không phụ thuộc vào cách chọn các phép chiếu

trong mệnh đề dưới đây.

Mệnh đề 3.1.1. Xét đa tạp nghiệm ∆i được định nghĩa trong (3.11). Khi đó, các

khẳng định sau là đúng:

i) ∆i = {x ∈ Rn : fi(x) + Aix ∈ imEi}.

ii) ∆i ∩ kerEj = {0}.

Chứng minh.

55



i) Lấy x ∈ ∆i, khi đó tồn tại j ∈ N sao cho

Qjx = −Qi,jG
−1
i,j (fi(x) + AiPjx),

do đó

x = Pjx+Qjx = −Qi,jG
−1
i,j fi(x) +

(
I −Qi,jG

−1
i,j Ai

)
Pjx.

Từ đó, ta thu được

fi(x) + Aix =
(
I − AiQi,jG

−1
i,j

)
fi(x) + Ai

(
I −Qi,jG

−1
i,j Ai

)
Pjx.

Ta thấy rằng

Ai

(
I −Qi,jG

−1
i,j Ai

)
Pjx =

(
I − AiQi,jG

−1
i,j

)
AiPjx,

nên

fi(x) + Ai(x) =
(
I − AiQi,jG

−1
i,j

)
(fi(x) + AiPj(x)) .

Vì

AiQi,jG
−1
i,j = (Gi,j − Ei)G

−1
i,j = I − EiG

−1
i,j ,

nên suy ra

fi(x) + Ai(x) = EiG
−1
i,j (fi(x) + AiPj(x)) ∈ imEi.

Do đó x ∈ {x ∈ Rn : fi(x) + Aix ∈ imEi}.

Ngược lại, lấy x ∈ Rn sao cho fi(x) + Aix ∈ imEi, tức là, tồn tại ξ ∈ Rn thỏa

mãn fi(x) + Aix = Eiξ. Ta sẽ chứng minh rằng

Qjx = −Qi,jG
−1
i,j (fi(x) + AiPjx),

hoặc tương đương,

x = −Qi,jG
−1
i,j (fi(x) + Aix) +Qi,jG

−1
i,j AiQjx+ Pjx.

Gọi vế phải của đẳng thức trên là ωi và chú ý rằng

Qi,jG
−1
i,j (fi(x) + Aix) = Qi,jG

−1
i,j Eiξ = Qi,jPiξ = VjQV

−1
i ViPV

−1
i ξ = 0.
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Áp dụng Bổ đề 2.1.3 ta có

ωi = Qi,jG
−1
i,j AiQjx+ Pjx

= Qi,jG
−1
i,j AiVjQV

−1
i ViQV

−1
j x+ Pjx

= Qi,jG
−1
i,j (Gi,j − Ei)ViQV

−1
j x+ Pjx

= Qi,jViQV
−1
j x−Qi,jG

−1
i,j EiViQV

−1
j x+ Pjx

= VjQV
−1
i ViQV

−1
j x− VjQV

−1
i PiViQV

−1
j x+ Pjx

= Qjx− VjQPQV
−1
j x+ Pjx

= Qjx+ Pjx = x.

Vậy x ∈ ∆i.

ii) Lấy x ∈ ∆i ∩ kerEj. Khi đó, Pjx = 0 và x ∈ ∆i, do đó x = Pjx+ gi(Pjx) = 0.

Mệnh đề 3.1.1 được chứng minh. ■

Nghiệm duy nhất của bài toán giá trị ban đầu (3.1) − (3.2) được định nghĩa

bởi x(k) = x(k, k0; γ).

3.1.2. Tính ổn định

Trong phần này, chúng tôi đưa ra các khái niệm ổn định, ổn định đều của hệ và

thiết lập điều kiện cần và đủ cho tính ổn định của hệ SDLS chỉ số 1 có nhiễu dạng

(3.1).

Định nghĩa 3.1.1. Hệ chuyển mạch rời rạc tuyến tính suy biến chỉ số 1 có nhiễu

dạng (3.1) được gọi là

i) ổn định nếu với mỗi ε > 0, k0 ≥ 0 bất kỳ và với mọi quy tắc chuyển mạch σ,

luôn tồn tại δ = δ(ε, k0) ∈ (0, ε] sao cho ∥Pσ(k0−1)γ∥ < δ thì ta có ∥x(k, k0; γ)∥ < ε

với mọi k ≥ k0;

ii) ổn định đều nếu hệ ổn định và δ không phụ thuộc vào k0.

Ta định nghĩa K là lớp các hàm tăng ψ : [0,∞) → [0,∞) sao cho ψ(0) = 0,

ψ(x) > 0 với x ̸= 0 và lim
x→0+

ψ(x) = 0.
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Bổ đề 3.1.1. Hệ SDLS chỉ số 1 có nhiễu (3.1) là ổn định nếu và chỉ nếu tồn tại

hàm ψ ∈ K, sao cho với mỗi số nguyên không âm k0 và với mọi quy tắc chuyển

mạch, bất đẳng thức sau đúng

∥x(k)∥ ≤ ψ(∥x(k0)∥), ∀k ≥ k0. (3.13)

Chứng minh. Đầu tiên, ta giả sử với mọi quy tắc chuyển mạch và với mỗi số

nguyên không âm k0, tồn tại hàm ψ ∈ K thỏa mãn điều kiện (3.13). Vì ψ là hàm

tăng và liên tục tại 0 nên với mỗi ε > 0 tồn tại δ = δ(ε) ∈ (0, ε] sao cho ψ(δ) < ε.

Đặt K := max
i∈N

Ki, trong đó Ki được cho bởi (3.28). Nếu x(k) là nghiệm bất kỳ của

(3.1) thỏa mãn ∥Pσ(k0−1)x(k0)∥ < δ1 :=
δ

K + 1
thì

∥x(k0)∥ = ∥Pσ(k0−1)x(k0) + gσ(k0)(Pσ(k0−1)x(k0))∥

≤ ∥Pσ(k0−1)x(k0)∥+ ∥gσ(k0)(Pσ(k0−1)x(k0))∥

≤ ∥Pσ(k0−1)x(k0)∥(1 +Kσ(k0)) ≤ ∥Pσ(k0−1)x(k0)∥(1 +K) < δ.

(3.14)

Điều này dẫn đến

∥x(k)∥ ≤ ψ(∥x(k0)∥) ≤ ψ(δ) < ε, ∀k ≥ k0,∀σ,

từ đó ta suy ra rằng hệ SDLS chỉ số 1 có nhiễu (3.1) là ổn định.

Ngược lại, giả sử rằng hệ SDLS chỉ số 1 có nhiễu (3.1) là ổn định, tức là, với

mỗi ε > 0 tồn tại δ = δ(ε) ∈ (0, ε], sao cho nếu x(k) là nghiệm bất kỳ của (3.1)

thỏa mãn ∥Pσ(k0−1)x(k0)∥ < δ với mọi quy tắc chuyển mạch thì ∥x(k)∥ < ε với mọi

k ≥ k0. Gọi α(ε) là cận trên đúng của δ(ε). Rõ ràng, nếu ∥Pσ(k0−1)x(k0)∥ < α(ε) với

k0 và với mọi σ, thì ∥x(k)∥ < ε với mọi k ≥ k0. Hơn nữa, hàm α(ε) là hàm dương,

tăng và α(ε) ≤ ε. Đặt β(ε) :=
εα(ε)

(ε+ 1)H
với ε ≥ 0, trong đó H := max{∥Pi∥ : i ∈ N}.

Dễ thấy rằng 0 < β(ε) <
α(ε)

H
≤ ε

H
, β là hàm tăng chặt và liên tục tại 0. Khi

đó, tồn tại hàm ngược tăng chặt của β từ im β vào [0,∞), hàm này có thể được

mở rộng từ hàm ψ ∈ K. Gọi x(k) là một nghiệm của (3.1) và k0 là số nguyên

không âm cố định. Đặt εk := ∥x(k)∥ và xét hai trường hợp sau. Nếu ∥x(k)∥ = 0

thì ∥x(k)∥ = 0 ≤ ψ(∥x(k0)∥) do ψ là hàm không âm. Tiếp theo, ta giả sử rằng

εk := ∥x(k)∥ > 0. Nếu ∥x(k0)∥ < β(εk) thì

∥Pσ(k0−1)x(k0)∥ ≤ Hβ(εk) < α(εk).
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Điều này suy ra rằng ∥x(k)∥ < εk = ∥x(k)∥,∀k ≥ k0, dẫn đến mâu thuẫn. Do đó

∥x(k0)∥ ≥ β(εk), hay

∥x(k)∥ = εk ≤ β−1(∥x(k0)∥) = ψ(∥x(k0)∥).

Bổ đề 3.1.1 được chứng minh. ■

Nhận xét 3.1.1. Bổ đề 3.1.1 được phát triển từ Bổ đề 3.3 trong [4]. Trong [4], ψ

là hàm của ∥x(k0)∥, không phụ thuộc và việc chọn các phép chiếu và ψ ∈ K, với K

là lớp các hàm liên tục và tăng chặt ψ̂ : [0,∞) → [0,∞) sao cho ψ̂(0) = 0. Hơn nữa,

để chứng minh chiều ngược lại của Bổ đề 3.4.1 chúng tôi đã xây dựng hàm β đơn

giản hơn ở Bổ đề 3.3 trong [4].

Định lý 3.1.2. Hệ SDLS chỉ số 1 có nhiễu (3.1) là ổn định nếu và chỉ nếu tồn tại

hàm Lyapunov Vσ : N × Rn → R+ liên tục theo biến thứ hai tại γ = 0 và các hàm

a, ψk ∈ K, sao cho

i) a(∥y∥) ≤ Vσ(k, y) ≤ ψk(∥y∥), ∀k ≥ 0,∀y ∈ ∆σ(k),∀σ,

ii) ∆Vσ(k, y(k)) := Vσ(k+1, y(k+1))−Vσ(k, y(k)) ≤ 0,∀k ≥ 0,∀σ, với y(k) là nghiệm

của (3.1) tương ứng với σ.

Chứng minh. Điều kiện cần. Giả sử rằng hệ SDLS (3.1) là ổn định. Với mỗi k0,

theo Bổ đề 3.1.1, tồn tại hàm ψk0 ∈ K (k0 ≥ 0), sao cho với bất kỳ nghiệm x(k) của

(3.20), ta có

∥x(k)∥ ≤ ψk0(∥x(k0)∥), ∀k ≥ k0,∀σ. (3.15)

Ta định nghĩa hàm Lyapunov

Vσ(k0, γ) := sup
m∈N

∥xσ(k0 +m, k0; γ)∥, với mỗi γ ∈ Rn, k0 ∈ N, (3.16)

trong đó xσ(k0 + m, k0; γ) là nghiệm duy nhất của (3.1) tương ứng với quy tắc

chuyển mạch σ thỏa mãn điều kiện ban đầu Pσ(k0−1)xσ(k0) = Pσ(k0−1)γ. Bất đẳng

thức (3.15) đảm bảo tính đúng đắn của định nghĩa hàm Lyapunov (3.16). Từ

(3.14), ta có

∥xσ(k0)∥ ≤ (K + 1)∥Pσ(k0−1)xσ(k0)∥ = (K + 1)∥Pσ(k0−1)γ∥ ≤ (K + 1)H∥γ∥,
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với các hằng số K,H được cho trong Bổ đề 3.1.1. Đặt ψ̂k0(t) := ψk0 [(K + 1)Ht] với

t ≥ 0. Khi đó, ta suy ra rằng

Vσ(k0, γ) ≤ ψk0(∥xσ(k0)∥) ≤ ψk0((K + 1)H∥γ∥) = ψ̂k0(∥γ∥),∀k0 ≥ 0,∀γ ∈ Rn,∀σ.

Điều này dẫn đến Vσ(k0, 0) = 0 và tính liên tục của hàm V theo biến thứ hai tại

γ = 0. Với mỗi y ∈ ∆σ(k0), theo (3.12), ta có

Vσ(k0, y) = sup
l∈N

∥xσ(k0 + l, k0; y)∥ ≥ ∥xσ(k0, k0; y)∥ = ∥y∥ := a(∥y∥). (3.17)

Mặt khác, với mỗi k0 ≥ 0, vì bài toán giá trị ban đầu (3.1) − (3.2) có duy nhất

nghiệm nên ta dễ thấy rằng

{xσ(k0 + l, k0; y(k0)) : l ≥ 0} = {y(k0 + l) : l ≥ 0)}

⊃ {y(k0 + l) : l ≥ 1)} ⊃ {xσ(k0 + 1 + l, k0 + 1; y(k0 + 1)) : l ≥ 0},
(3.18)

trong đó σy(k) là quy tắc chuyển mạch tương ứng với y(k). Do vậy

Vσ(k + 1, y(k + 1)) = sup
l≥0

∥xσ(k + 1 + l, k + 1; y(k + 1))∥

≤ sup
l≥0

∥xσ(k + l, k; y(k))∥ = Vσ(k, y(k)),

điều này suy ra rằng ∆Vσ(k, y(k)) ≤ 0. Điều kiện cần được chứng minh.

Điều kiện đủ. Ta chứng minh phản chứng, giả sử rằng hệ SDLS chỉ số 1 có

nhiễu (3.1) không ổn định, tức là, tồn tại ε0 > 0, tồn tại số không âm k0 và một

quy tắc chuyển mạch σ, sao cho với mọi δ ∈ (0, ε0], tồn tại nghiệm xσ(k) của (3.1)

thỏa mãn bất đẳng thức ∥Pσ(k0−1)xσ(k0)∥ < δ và ∥xσ(k1)∥ ≥ ε0 với k1 ≥ k0.

Vì Vσ(k0, 0) = 0 và Vσ(k0, γ) là hàm liên tục tại γ = 0, nên tồn tại δ
′

0 = δ
′

0(ε, k0) > 0,

sao cho với mọi ξ ∈ Rn, ∥ξ∥ < δ
′

0 và với mọi σ ta có Vσ(k0, ξ) < ε1 := a(ε0).

Chọn δ0 ≤ min{ δ
′
0

K+1 , ε0}, ta có thể thấy nghiệm xσ(k) của (3.1) thỏa mãn

∥Pσ(k0−1)xσ(k0)∥ < δ0, tuy nhiên ∥xσ(k1)∥ ≥ ε0 với k1 ≥ k0.

Do ∥Pσ(k0−1)xσ(k0)∥ < δ0 ≤ δ
′
0

K+1 , ∥xσ(k0)∥ < δ
′

0 nên ta thu được Vσ(k0, xσ(k0)) < ε1.

Mặt khác, sử dụng tính chất của hàm V , ta thu được

Vσ(k0, xσ(k0)) ≥ Vσ(k1, xσ(k1)) ≥ a(∥xσ(k1)∥) ≥ a(ε0) = ε1,

điều này dẫn đến mâu thuẫn. Định lý 3.1.2 được chứng minh. ■
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Nếu hệ SDLS chỉ số 1 có nhiễu (3.1) là ổn định đều thì hàm ψk ở Định lý 3.1.2

có thể được chọn không phụ thuộc vào k. Do đó, bằng cách lập luận tương tự như

phần chứng minh ở trên ta thu được kết quả sau.

Định lý 3.1.3. Hệ SDLS chỉ số 1 có nhiễu (3.1) là ổn định đều nếu và chỉ nếu

tồn tại các hàm a, b ∈ K và hàm Lyapunov Vσ : N×Rn → R+, sao cho

i) a(∥y∥) ≤ Vσ(k, y) ≤ b(∥y∥), ∀k ≥ 0, ∀y ∈ ∆σ(k), ∀σ,

ii) ∆Vσ(k, y(k)) := Vσ(k+1, y(k+1))−Vσ(k, y(k)) ≤ 0,∀k ≥ 0,∀σ, với y(k) là nghiệm

của (3.1) tương ứng với σ.

Ví dụ 3.1.1. Trong ví dụ này ta sử dụng chuẩn Euclid cho vectơ và ma trận.

Xét hệ SDLS (3.1) với quy tắc chuyển mạch σ : N ∪ {0} → N và

Ei = (i+ 1)


1 1 0

1 0 0

0 0 0

 ; Ai =


i+ 1 0 0

1 1 0

0 0 1


và

fi(x) =
sin(x1)

i+ 1
(0, 0, 1)⊤; x = (x1, x2, x3)

⊤ ∈ R3, i ∈ N.

Ta tìm được kerEi = span{(0, 0, 1)⊤} và Si = span{(1,−1, 0)⊤, (1, i, 0)⊤}.

Rõ ràng, Si ∩ kerEi = {0} và rankEi = 2 < 3, do đó hệ SDLS thuần nhất tương ứng

với (3.1) có chỉ số 1.

Ta có Vi =


1 1 0

−1 i 0

0 0 1

 ,∀i, j ∈ N ; Q =


0 0 0

0 0 0

0 0 1

, từ đó ta tính toán được

V −1
i =

1

i+ 1


i −1 0

1 1 0

0 0 i+ 1

, Qi = Q; Pi = In −Qi =


1 0 0

0 1 0

0 0 0

 .

Tính toán đơn giản, ta cũng chỉ ra được Qi,j = VjQV
−1
i = Q,∀i, j ∈ N và

Gi,j = Ei + AiQi,j =


i+ 1 i+ 1 0

i+ 1 0 0

0 0 1

 ; G−1
i,j =

1

i+ 1


0 1 0

1 −1 0

0 0 i+ 1

 .
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Hơn nữa, hàm fi(x) liên tục Lipschitz với hệ số Li =
1

i+ 1
. Ngoài ra, fi(0) = 0 và

ωi = Limax ∥Qi,jG
−1
i,j : j ∈ N∥ =

1

(i+ 1)
< 1,∀i ∈ N. Theo Định lý 3.1.1, bài toán giá

trị ban đầu (3.1)− (3.2) với dữ liệu đã cho có duy nhất nghiệm.

Từ định nghĩa của ∆i, ta có x ∈ ∆i nếu và chỉ nếu

Qjx = −Qi,jG
−1
i,j (fi(x) + AiPjx) ,

Từ đây ta có x3 = − sinx1
(i+ 1)

. Do vậy,

∆i = Ωi =
{
x = (x1, x2, x3)

T : x3 = − sinx1
(i+ 1)

}
,∀i ∈ N.

Xét hàm Lyapunov Vσ(k, γ) := 3∥Pσ(k−1)γ∥ với mọi γ ∈ R3. Với mỗi y ∈ ∆i, ta có

∥y∥ =

√
y21 + y22 + y23 =

√
y21 + y22 +

sin2 y1
(i+ 1)2

≤
√

2y21 + y22 ≤ 3

√
y21 + y22 = 3∥Pσ(k−1)y∥.

Hơn nữa, Vσ(k, y) = 3∥Pσ(k−1)y∥ ≤ 3∥y∥. Do đó, khẳng định (i) của Định lý (3.1.3)

được thỏa mãn.

Giả sử rằng y(k) là nghiệm của (3.1) và đặt y(k) = u(k) + v(k), ở đó

u(k) = Pσ(k−1)y(k); v(k) = Qσ(k−1)y(k), ta có

∆Vσ(k, y(k)) = V (k + 1, y(k + 1))− V (k, y(k))

= 3(∥Pσ(k−1)y(k + 1)∥ − ∥Pσ(k−1)y(k)∥) = 3(∥u(k + 1)∥ − ∥u(k)∥).

Sử dụng (3.7) ta tìm được

u(k + 1) = PjG
−1
i,j Aiu(k) + PjG

−1
i,j fi(x(k)) =

1

(i+ 1)


1 1 0

1 −1 0

0 0 0

u(k),

do đó, ∥u(k + 1)∥ ≤ 2

(i+ 1)
∥u(k)∥ và dẫn đến ∥u(k + 1)∥ − ∥u(k)∥ ≤ 0. Theo Định lý

3.1.3, hệ SDLS (3.1) là ổn định đều.

Ta mô phỏng quỹ đạo nghiệm của hệ SDLS cho trường hợp N = 2 với quy tắc chuyển

mạch cụ thể σ(k) = (k mod 2) + 1. Chọn trạng thái ban đầu x(0) = (2, 1,−2)⊤. Ở

đây, ta xét quy tắc chuyển mạch dạng tuần hoàn đơn giản: nếu k chẵn, ta xét hệ

E1x(k + 1) = A1x(k) + f1(x(k)), ngược lại, xét hệ E2x(k + 1) = A2x(k) + f2(x(k)). Ở
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mỗi hệ con, tại bước thứ k, ta tìm được x1(k) và x2(k) dựa vào x1(k − 1), x2(k − 1),

trong khi đó x3(k) được xác định thông qua x1(k). Quỹ đạo nghiệm của hệ được

mô tả như Hình 3.1. Thuật toán 1 cung cấp một mã giả cho hình vẽ mô tả nghiệm

ổn định của bài toán. Ta thấy rằng, thuật toán phụ thuộc vào N và quy tắc chuyển

mạch σ.

Hình 3.1: Mô phỏng nghiệm ổn định X(x1, x2, x3) với N = 2 và σ(k) = (k

mod 2) + 1.

Thuật toán 1

Khởi tạo x(0)

for k = 0 to 20 do

if k chẵn then

Giải hệ E1x(k + 1) = A1x(k) + f1(x(k))

else if k lẻ then

Giải hệ E2x(k + 1) = A2x(k) + f2(x(k))

end if

end for
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Trong các mục tiếp theo của chương này, chúng tôi nghiên cứu hệ chuyển mạch

rời rạc tuyến tính suy biến chỉ số 1 có nhiễu với quy tắc chuyển mạch ở cặp ma

trận hệ số lệch nhau. Một số kết quả được phát triển từ các kết quả của hệ chuyển

mạch rời rạc chuyển mạch rời rạc suy biến chỉ số 1 có nhiễu với quy tắc chuyển

mạch ở ma trận hệ số giống nhau (mục 3.1). Trước hết, chúng tôi trình bày một

số tính chất của hệ chuyển mạch rời rạc tuyến tính suy biến thuần nhất với cặp

ma trận hệ số có quy tắc chuyển mạch lệch nhau.

3.2. Hệ chuyển mạch rời rạc tuyến tính suy biến thuần nhất với

cặp ma trận hệ số có quy tắc chuyển mạch lệch nhau

Xét hệ chuyển mạch rời rạc tuyến tính suy biến thuần nhất với cặp ma trận hệ số

có quy tắc chuyển mạch lệch nhau dạng

Eσ(k+1)x(k + 1) = Aσ(k)x(k), (3.19)

trong đó σ : N∪{0} → N, là quy tắc chuyển mạch lấy giá trị trong tập hữu hạn N ,

Ei, Ai ∈ Rn×n. Giả sử rằng Ei là các ma trận suy biến với mọi i ∈ N .

Ta giả sử (3.19) là hệ có chỉ số 1 (xem [8, 38]), tức là, các giả thiết sau được

thỏa mãn

(i) rankEi = r < n,∀i ∈ N ,

(ii) Si,j ∩ kerEi = {0},∀i, j ∈ N ,

trong đó Si,j = A−1
i (imEj) = {ξ ∈ Rn : Aiξ ∈ imEj}.

Trong [38], tác giả chứng minh được rằng, từ giả thiết (ii) suy ra

Si,j ⊕ kerEi = Rn,∀i, j ∈ N.

Gọi Vi,j = {s1i,j , . . . , sri,j , h
r+1
i , . . . , hni } là ma trận gồm các cột tương ứng là các vectơ

cơ sở của Si,j và kerEi và Q = diag(0r, In−r), P = In−Q, với 0r là ma trận không cỡ

r × r và In−r là ma trận đơn vị cỡ (n− r)× (n− r).

Khi đó, ma trận Qi,j := Vi,jQV
−1
i,j xác định một phép chiếu lên kerEi dọc theo Si,j

(tức là, Q2
i,j = Qi,j và imQi,j = kerEi) và Pi,j := In −Qi,j là phép chiếu lên Si,j dọc

theo kerEi. Hơn nữa, ta xác định toán tử nối Qi,j,k := Vi,jQV
−1
j,k .
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Định lý 3.2.1 (xem [38]). Xét hệ chuyển mạch rời rạc tuyến tính suy biến thuần

nhất chỉ số 1 dạng (3.19), với mọi i, j,m ∈ N , các khẳng định sau là đúng:

(i) Gi,j,m = Ej + AiQi,j,m là ma trận không suy biến;

(ii) EjPj,m = Ej;

(iii) Pj,m = G−1
i,j,mEj;

(iv) V −1
j,mG

−1
i,j,mAiVi,jQ = Q.

Nhận xét 3.2.1. Các tính chất trên được chứng minh bằng cách phát triển các

kĩ thuật chứng minh Bổ đề 2.1.3 cho hệ chuyển mạch rời rạc tuyến tính suy biến

chỉ số 1 với quy tắc chuyển mạch ở cặp ma trận hệ số giống nhau. Tuy nhiên, hệ

chuyển mạch tuyến tính suy biến chỉ số 1 với quy tắc chuyển mạch ở cặp ma trận

hệ số lệch nhau dạng (3.19), mỗi trạng thái x(k) phụ thuộc vào dữ liệu ở ba thời

điểm k − 1, k, k + 1 và các quy tắc chuyển mạch σ(k − 1), σ(k), σ(k + 1) ∈ N .

3.3. Tính giải được của hệ chuyển mạch rời rạc tuyến tính suy

biến chỉ số 1 có nhiễu

Xét hệ chuyển mạch rời rạc tuyến tính suy biến chỉ số 1 có nhiễu dạng

Eσ(k+1)x(k + 1) = Aσ(k)x(k) + fσ(k)(x(k)), (3.20)

trong đó σ : N ∪ {0} → N, là quy tắc chuyển mạch lấy giá trị trong tập hữu hạn

N , Ei, Ai ∈ Rn×n và fi : Rn → Rn, i ∈ N, là nhiễu, x(k) ∈ Rn là vectơ trạng thái

tại thời điểm k ∈ N. Giả sử rằng Ei là các ma trận suy biến với mọi i ∈ N và hệ

chuyển mạch rời rạc tuyến tính suy biến thuần nhất tương ứng có chỉ số 1.

Ta liên kết hệ (3.20) với điều kiện ban đầu

Pσ(k0),σ(k0+1)x(k0) = Pσ(k0),σ(k0+1)γ, (3.21)

với γ là vectơ bất kỳ trong Rn và k0 là số nguyên không âm cố định.

Tính giải được của hệ chuyển mạch tuyến tính rời rạc suy biến có nhiễu được

chỉ ra trong định lý sau.
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Định lý 3.3.1. Cho fσ(k)(x) là hàm liên tục Lipschitz với hệ số Lipschitz đủ nhỏ,

tức là,

∥fi(x)− fi(x̃)∥ ≤ Li∥x− x̃∥, ∀x, x̃ ∈ Rn, i ∈ N, (3.22)

và

ωi := Limax{∥Qi,j,mG
−1
i,j,m∥ : j,m ∈ N} < 1, ∀i ∈ N. (3.23)

Khi đó bài toán giá trị ban đầu (3.20)− (3.21) có nghiệm duy nhất.

Chứng minh. Nhân cả hai vế của phương trình (3.20) từ bên trái với

Pσ(k+1),σ(k+2)G
−1
σ(k),σ(k+1),σ(k+2)

và Qσ(k+1),σ(k+2)G
−1
σ(k),σ(k+1),σ(k+2)

,

tương ứng và chú ý rằng

G−1
σ(k),σ(k+1),σ(k+2)

Eσ(k+1) = Pσ(k+1),σ(k+2),

Pσ(k+1),σ(k+2)Qσ(k+1),σ(k+2) = Qσ(k+1),σ(k+2)Pσ(k+1),σ(k+2) = 0,

ta thu được

Pσ(k+1),σ(k+2)x(k + 1) =Pσ(k+1),σ(k+2)G
−1
σ(k),σ(k+1),σ(k+2)

Aσ(k)x(k)

+ Pσ(k+1),σ(k+2)G
−1
σ(k),σ(k+1),σ(k+2)

fσ(k)(x(k)), (3.24)

Qσ(k+1),σ(k+2)G
−1
σ(k),σ(k+1),σ(k+2)

Aσ(k)x(k) = −Qσ(k+1),σ(k+2)G
−1
σ(k),σ(k+1),σ(k+2)

fσ(k)(x(k)).

(3.25)

Đặt u(k) = Pσ(k),σ(k+1)x(k), v(k) = Qσ(k),σ(k+1)x(k), (k ∈ N) ta có

Pσ(k+1),σ(k+2)G
−1
σ(k),σ(k+1),σ(k+2)

Aσ(k)v(k)

=Pσ(k+1),σ(k+2)G
−1
σ(k),σ(k+1),σ(k+2)

Aσ(k)Qσ(k),σ(k+1)x(k)

=Pσ(k+1),σ(k+2)G
−1
σ(k),σ(k+1),σ(k+2)

Aσ(k)Qσ(k),σ(k+1),σ(k+2)Vσ(k+1),σ(k+2)QV
−1
σ(k),σ(k+1)

x(k)

=Pσ(k+1),σ(k+2)G
−1
σ(k),σ(k+1),σ(k+2)

(Gσ(k),σ(k+1),σ(k+2) − Eσ(k+1))×

× Vσ(k+1),σ(k+2)QV
−1
σ(k),σ(k+1)

x(k)

=(Pσ(k+1),σ(k+2) − Pσ(k+1),σ(k+2)Pσ(k+1),σ(k+2))Vσ(k+1),σ(k+2)QV
−1
σ(k),σ(k+1)

x(k)

=0,
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và từ (3.24) ta được

u(k + 1) = Pσ(k+1),σ(k+2)G
−1
σ(k),σ(k+1),σ(k+2)

Aσ(k)(u(k) + v(k))

+ Pσ(k+1),σ(k+2)G
−1
σ(k),σ(k+1),σ(k+2)

fσ(k)(u(k) + v(k))

= Pσ(k+1),σ(k+2)G
−1
σ(k),σ(k+1),σ(k+2)

Aσ(k)u(k)

+ Pσ(k+1),σ(k+2)G
−1
σ(k),σ(k+1),σ(k+2)

fσ(k)(u(k) + v(k)).

(3.26)

Sử dụng (iv) của Định lý 3.2.1, ta có

Qσ(k+1),σ(k+2)G
−1
σ(k),σ(k+1),σ(k+2)

Aσ(k)Qσ(k),σ(k+1) = Vσ(k+1),σ(k+2)QV
−1
σ(k),σ(k+1)

.

Do đó, vế trái của (3.25) có thể viết lại dưới dạng

Qσ(k+1),σ(k+2)G
−1
σ(k),σ(k+1),σ(k+2)

Aσ(k)x(k)

=Qσ(k+1),σ(k+2)G
−1
σ(k),σ(k+1),σ(k+2)

Aσ(k)(u(k) + v(k))

=Qσ(k+1),σ(k+2)G
−1
σ(k),σ(k+1),σ(k+2)

Aσ(k)u(k) + Vσ(k+1),σ(k+2)QV
−1
σ(k),σ(k+1)

x(k).

Khi đó, từ (3.25) suy ra rằng

Vσ(k+1),σ(k+2)QV
−1
σ(k),σ(k+1)

x(k) =−Qσ(k+1),σ(k+2)G
−1
σ(k),σ(k+1),σ(k+2)

Aσ(k)u(k)

−Qσ(k+1),σ(k+2)G
−1
σ(k),σ(k+1),σ(k+2)

fσ(k)(x(k)).

Nhân hai vế của đẳng thức trên với Qσ(k),σ(k+1),σ(k+2) từ bên trái ta thu được

v(k) = Qσ(k),σ(k+1)x(k) = Qσ(k),σ(k+1),σ(k+2)Vσ(k+1),σ(k+2)QV
−1
σ(k),σ(k+1)

x(k)

= −Qσ(k),σ(k+1),σ(k+2)Qσ(k+1),σ(k+2)G
−1
σ(k),σ(k+1),σ(k+2)

Aσ(k)u(k)

−Qσ(k),σ(k+1),σ(k+2)Qσ(k+1),σ(k+2)G
−1
σ(k),σ(k+1),σ(k+2)

fσ(k)(x(k))

= −Qσ(k),σ(k+1),σ(k+2)G
−1
σ(k),σ(k+1),σ(k+2)

Aσ(k)u(k)

−Qσ(k),σ(k+1),σ(k+2)G
−1
σ(k),σ(k+1),σ(k+2)

fσ(k)(x(k))

= −Qσ(k),σ(k+1),σ(k+2)G
−1
σ(k),σ(k+1),σ(k+2)

(fσ(k)(u(k) + v(k)) + Aσ(k)u(k)). (3.27)

Sử dụng phương trình (3.26), giả sử đã biết u := u(k)(k ≥ k0), trong đó

u(k0) = Pσ(k0),σ(k0+1)x(k0) = Pσ(k0),σ(k0+1)γ
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cho trước. Ta xét toán tử Ti,j,m : imQi,j → imQi,j được định nghĩa bởi

Ti,j,m(v) := −Qi,j,mG
−1
i,j,m[fi(u+ v) + Aiu].

Do

∥Ti,j,m(v)− Ti,j,m(ṽ)∥ = ∥Qi,j,mG
−1
i,j,m[fi(u+ v)− fi(u+ ṽ)∥

≤ ∥Qi,j,mG
−1
i,j,m∥∥fi(u+ v)− fi(u+ ṽ)∥

≤ ∥Qi,j,mG
−1
i,j,m∥Li∥v − ṽ∥ ≤ ωi∥v − ṽ∥ < ∥v − ṽ∥,

nên toán tử Ti,j,m là toán tử co. Do đó, theo nguyên lý ánh xạ co, phương trình

(3.27) có nghiệm duy nhất được xác định bởi ánh xạ

gσ(k),σ(k+1) : imPσ(k),σ(k+1) → imQσ(k),σ(k+1), gσ(k),σ(k+1)(u(k)) = v(k).

Hơn nữa, dễ thấy rằng gσ(k),σ(k+1) là hàm liên tục Lipschitz với hệ số Lipschitz

Kσ(k) := ωσ(k)(Lσ(k) + ∥Aσ(k)∥)L−1
σ(k)

(1− ωσ(k))
−1. (3.28)

Vậy bài toán giá trị ban đầu (3.20)− (3.21) có nghiệm duy nhất được xác định bởi

x(k) = u(k) + gσ(k),σ(k+1)(u(k)), (3.29)

với u(k0) = Pσ(k0),σ(k0+1)γ. Định lý được chứng minh. ■

Ta định nghĩa toán tử Cauchy liên kết với hệ (3.20)

Φσ(k, h) =

k∏
l=h+1

Pσ(l),σ(l+1)G
−1
σ(l−1),σ(l),σ(l+1)

Aσ(l−1) và Φσ(h, h) = Pσ(h),σ(h+1). (3.30)

Khi đó, dễ thấy rằng Φσ(k, h) thỏa mãn

Φσ(k, h) = Φσ(k, l)Φσ(l, h), ∀k ≥ l ≥ h.

Công thức biến thiên hằng số cho nghiệm của hệ (3.20) được đưa ra trong hệ

quả dưới đây.

Hệ quả 3.3.1. Nghiệm duy nhất của hệ (3.20) với điều kiện ban đầu (3.21) thỏa

mãn phương trình

x(k) =Φσ(k, k0)Pσ(k0),σ(k0+1)γ +

k−1∑
i=k0

Φσ(k, i+ 1)Pσ(i+1),σ(i+2)G
−1
σ(i),σ(i+1),σ(i+2)

fσ(i)(x(i))

−Qσ(k),σ(k+1),σ(k+2)G
−1
σ(k),σ(k+1),σ(k+2)

(fσ(k)(x(k)) + Aσ(k)Pσ(k),σ(k+1)x(k)).

(3.31)
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Chứng minh. Từ phương trình (3.26), ta suy ra nghiệm u(k) được cho bởi công

thức

u(k) = Φσ(k, k0)Pσ(k0),σ(k0+1)γ +

k−1∑
i=k0

Φσ(k, i+1)Pσ(i+1),σ(i+2)G
−1
σ(i),σ(i+1),σ(i+2)

fσ(i)(x(i))

và từ phương trình (3.27), ta có

v(k) = −Qσ(k),σ(k+1),σ(k+2)G
−1
σ(k),σ(k+1),σ(k+2)

(fσ(k)(x(k)) + Aσ(k)Pσ(k),σ(k+1)x(k)).

Vì x(k) = u(k) + v(k) nên ta thu được công thức (3.31). ■

Không mất tính tổng quát, ta giả sử rằng fi(0) = 0,∀i ∈ N . Khi đó, gσ(k),σ(k+1)(0) = 0

và hệ (3.20) luôn có nghiệm tầm thường x(k) = 0. Từ (3.29) suy ra rằng mỗi nghiệm

x(k) của bài toán giá trị ban đầu (3.20)− (3.21) thỏa mãn

x(k) = Pσ(k),σ(k+1)x(k) + gσ(k),σ(k+1)(Pσ(k),σ(k+1)x(k)),

hoặc tương đương x(k) thỏa mãn

Qσ(k),σ(k+1)x(k)=−Qσ(k),σ(k+1),σ(k+2)G
−1
σ(k),σ(k+1),σ(k+2)

(fσ(k)(x(k))+Aσ(k)Pσ(k),σ(k+1)x(k)).

Đặt

∆i := {x ∈ Rn : Qi,jx = −Qi,j,mG
−1
i,j,m(fi(x) + AiPi,jx), với j,m ∈ N}. (3.32)

Nếu x = x(k) là nghiệm của bài toán giá trị ban đầu (3.20)− (3.21), thì chắc chắn

x(k) ∈ ∆σ(k)(k ≥ k0). Ngược lại, với mỗi θ ∈ ∆i, tồn tại nghiệm của (3.20) phụ

thuộc vào θ. Thật vậy, gọi σ là một quy tắc chuyển mạch thỏa mãn σ(k) = i và

x(m, k; θ) với m ≥ k là một nghiệm của (3.20) thỏa mãn điều kiện ban đầu

Pσ(k),σ(k+1)x(k) = Pσ(k),σ(k+1)θ. Rõ ràng,

x(k, k; θ) = Pσ(k),σ(k+1)x(k) + gσ(k),σ(k+1)(Pσ(k),σ(k+1)x(k))

= Pσ(k),σ(k+1)θ + gσ(k),σ(k+1)(Pσ(k),σ(k+1)θ)

= Pσ(k),σ(k+1)θ +Qσ(k),σ(k+1)θ = θ.

(3.33)

Ta sẽ chứng minh rằng tập ∆i không phụ thuộc vào cách chọn các phép chiếu

trong mệnh đề dưới đây.
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Mệnh đề 3.3.1. Xét đa tạp nghiệm ∆i được định nghĩa trong (3.32). Khi đó, các

khẳng định sau là đúng:

i) ∆i = {x ∈ Rn : fi(x) + Aix ∈ imEj , với j ∈ N}.

ii) ∆i ∩ kerEi = {0}.

Chứng minh. i) Lấy x ∈ ∆i, khi đó tồn tại j,m ∈ N sao cho

Qi,jx = −Qi,j,mG
−1
i,j,m(fi(x) + AiPi,jx),

từ đó

x = Pi,jx+Qi,jx = −Qi,j,mG
−1
i,j,mfi(x) + (I −Qi,j,mG

−1
i,j,mAi)Pi,jx.

Từ mối quan hệ này ta có

fi(x) + Aix = (I − AiQi,j,mG
−1
i,j,m)fi(x) + Ai(I −Qi,j,mG

−1
i,j,mAi)Pi,jx.

Chú ý rằng

Ai(I −Qi,j,mG
−1
i,j,mAi)Pi,jx = (I − AiQi,j,mG

−1
i,j,m)AiPi,jx.

Do đó

fi(x) + Aix = (I − AiQi,j,mG
−1
i,j,m)(fi(x) + AiPi,jx).

Vì

AiQi,j,mG
−1
i,j,m = (Gi,j,m − Ej)G

−1
i,j,m = I − EjG

−1
i,j,m,

nên ta được

fi(x) + Aix = EjG
−1
i,j,m{fi(x) + AiPi,jx} ∈ imEj .

Do đó x ∈ {x ∈ Rn : fi(x) + Aix ∈ imEj , với j ∈ N}.

Ngược lại, lấy x ∈ Rn sao cho fi(x) + Aix ∈ imEj với j ∈ N . Khi đó, tồn tại

ξ ∈ Rn, j ∈ N sao cho fi(x) + Aix = Ejξ. Với m ∈ N, ta sẽ chứng minh rằng

Qi,jx = −Qi,j,mG
−1
i,j,m(fi(x) + AiPi,jx),
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hoặc tương đương

x =−Qi,j,mG
−1
i,j,m(fi(x) + Aix) +Qi,j,mG

−1
i,j,mAiQi,jx+ Pi,jx.

Gọi vế phải của đẳng thức trên là wi,j và chú ý rằng

Qi,j,mG
−1
i,j,m(fi(x) + Aix) = Qi,j,mG

−1
i,j,mEjξ = Qi,j,mPj,mξ

= Vi,jQV
−1
j,mVj,mPV

−1
j,mξ = Vi,jQPV

−1
j,mξ = 0,

áp dụng Định lý 3.2.1 ta được

wi,j = Qi,j,mG
−1
i,j,mAiQi,jx+ Pi,jx

= Qi,j,mG
−1
i,j,mAiVi,jQV

−1
j,mVj,mQV

−1
i,j x+ Pi,jx

= Qi,j,mG
−1
i,j,m(Gi,j,m − Ej)Vj,mQV

−1
i,j x+ Pi,jx

= Qi,j,mVj,mQV
−1
i,j x−Qi,j,mG

−1
i,j,mEjVj,mQV

−1
i,j x+ Pi,jx

= Vi,jQV
−1
j,mVj,mQV

−1
i,j x− Vi,jQV

−1
j,mPj,mVj,mQV

−1
i,j x+ Pi,jx

= Vi,jQQV
−1
i,j x− Vi,jQPQV

−1
i,j x+ Pi,jx

= Qi,jx+ Pi,jx = x.

Vì vậy x ∈ ∆i và khẳng định (i) của Mệnh đề 3.3.1 được chứng minh.

ii) Lấy x ∈ ∆i ∩ kerEi. Khi đó, ta có x ∈ ∆i và Pi,jx = 0 với mọi j ∈ N .

Vì x ∈ ∆i nên ta suy ra

Qi,jx = gi,j(Pi,jx) = 0

và do đó

x = Pi,jx+Qi,jx = 0.

Ta có điều phải chứng minh. ■

Nghiệm duy nhất của bài toán giá trị ban đầu (3.20)− (3.21) được định nghĩa

bởi x(k) = x(k, k0; γ).

3.4. Tính ổn định của hệ chuyển mạch rời rạc tuyến tính suy biến

chỉ số 1 có nhiễu

Trong phần này, chúng tôi đưa ra khái niệm tính ổn định và thiết lập điều kiện cần

và đủ cho tính ổn định của hệ chuyển mạch rời rạc tuyến tính suy biến chỉ số 1 có
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nhiễu. Ta gặp khó khăn khi sử dụng cách tiếp cận dựa vào bán kính phổ chung như

trong [6] hay [CT1] để nghiên cứu các đặc trưng cho tính ổn định của hệ SDLS có

nhiễu Lipschitz với quy tắc chuyển mạch khác nhau ở hai ma trận E và A. Chúng

tôi sử dụng phương pháp hàm Lyapunov và đánh giá nghiệm để nghiên cứu tính

ổn định, ổn định tiệm cận, ổn định mũ của hệ.

Định nghĩa 3.4.1. Hệ SDLS chỉ số 1 có nhiễu dạng (3.20) được gọi là

i) ổn định nếu với mỗi ε > 0, k0 ≥ 0 bất kỳ và với mọi quy tắc chuyển mạch, luôn

tồn tại δ = δ(ε, k0) ∈ (0, ε] sao cho ∥Pσ(k0),σ(k0+1)γ∥ < δ thì ta có ∥x(k, k0; γ)∥ < ε

với mọi k ≥ k0, ổn định đều nếu nghiệm ổn định và δ không phụ thuộc vào k0;

ii) ổn định tiệm cận nếu nghiệm ổn định và với bất kỳ k0 ≥ 0, với mọi quy tắc

chuyển mạch, tồn tại δ = δ(k0) > 0 sao cho ∥Pσ(k0),σ(k0+1)γ∥ < δ thì ta có

∥x(k, k0; γ)∥ → 0 khi k → +∞;

iii) ổn định mũ nếu tồn tại M > 0, 0 < λ < 1 sao cho với mọi k ≥ k0 và mọi quy

tắc chuyển mạch ta có ∥x(k, k0; γ)∥ ≤Mλk−k0∥Pσ(k0),σ(k0+1)γ∥.

Ta định nghĩa K là lớp các hàm tăng ψ : [0,∞) → [0,∞) sao cho ψ(0) = 0,

ψ(x) > 0 với x ̸= 0 và lim
x→0+

ψ(x) = 0.

Bổ đề 3.4.1. Hệ SDLS chỉ số 1 có nhiễu (3.20) là ổn định nếu và chỉ nếu tồn tại

hàm ψ ∈ K, sao cho với mỗi số nguyên không âm k0 và với mọi quy tắc chuyển

mạch, bất đẳng thức sau đúng

∥x(k)∥ ≤ ψ(∥x(k0)∥), ∀k ≥ k0. (3.34)

Chứng minh. Đầu tiên, ta giả sử với mọi quy tắc chuyển mạch và với mỗi số

nguyên không âm k0, tồn tại hàm ψ ∈ K thỏa mãn điều kiện (3.34). Vì ψ là hàm

tăng và liên tục tại 0 nên với mỗi ε > 0 tồn tại δ = δ(ε) ∈ (0, ε] sao cho ψ(δ) < ε.

Lấy K = max
i∈N

Ki, trong đó Ki được cho bởi (3.28). Nếu x(k) là nghiệm bất kỳ của

(3.20) thỏa mãn ∥Pσ(k0),σ(k0+1)x(k0)∥ < δ1 :=
δ

K + 1
thì

∥x(k0)∥ = ∥Pσ(k0),σ(k0+1)x(k0) + gσ(k0),σ(k0+1)(Pσ(k0),σ(k0+1)x(k0))∥

≤ ∥Pσ(k0),σ(k0+1)x(k0)∥+ ∥gσ(k0),σ(k0+1)(Pσ(k0),σ(k0+1)x(k0))∥

≤ ∥Pσ(k0),σ(k0+1)x(k0)∥(1 +Kσ(k0)) ≤ ∥Pσ(k0),σ(k0+1)x(k0)∥(1 +K) < δ.

(3.35)
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Điều này dẫn đến

∥x(k)∥ ≤ ψ(∥x(k0)∥) ≤ ψ(δ) < ε, ∀k ≥ k0,∀σ,

từ đó ta suy ra rằng hệ (3.20) là ổn định.

Ngược lại, giả sử rằng hệ (3.20) là ổn định, tức là, với mỗi ε > 0 tồn tại

δ = δ(ε) ∈ (0, ε], sao cho nếu x(k) là nghiệm bất kỳ của (3.20) thỏa mãn bất đẳng

thức ∥Pσ(k0),σ(k0+1)x(k0)∥ < δ với mọi quy tắc chuyển mạch thì ∥x(k)∥ < ε với mọi

k ≥ k0. Gọi α(ε) là cận trên đúng của δ(ε). Rõ ràng, nếu ∥Pσ(k0),σ(k0+1)x(k0)∥ < α(ε)

với k0 và với mọi σ, thì ∥x(k)∥ < ε với mọi k ≥ k0. Hơn nữa, hàm α(ε) là hàm dương,

tăng và α(ε) ≤ ε. Đặt β(ε) :=
εα(ε)

(ε+ 1)H
với ε ≥ 0, ở đó H := max{∥Pi,j∥ : i, j ∈ N}.

Dễ thấy rằng 0 < β(ε) <
α(ε)

H
≤ ε

H
, β là hàm tăng chặt và liên tục tại 0. Khi đó,

tồn tại hàm ngược tăng chặt của β từ im β vào [0,∞) hàm này có thể được mở

rộng từ hàm ψ ∈ K. Gọi x(k) là một nghiệm của (3.20) và k0 là một số nguyên

không âm cố định. Đặt εk := ∥x(k)∥ và xét hai khả năng sau. Nếu ∥x(k)∥ = 0

thì ∥x(k)∥ = 0 ≤ ψ(∥x(k0)∥) do ψ là hàm không âm. Bây giờ, ta giả sử rằng

εk := ∥x(k)∥ > 0. Nếu ∥x(k0)∥ < β(εk) thì

∥Pσ(k0),σ(k0+1)x(k0)∥ ≤ Hβ(εk) < α(εk).

Điều này suy ra rằng ∥x(k)∥ < εk = ∥x(k)∥,∀k ≥ k0, mâu thuẫn.

Do đó ∥x(k0)∥ ≥ β(εk), điều này tương đương với

∥x(k)∥ = εk ≤ β−1(∥x(k0)∥) = ψ(∥x(k0)∥).

Bổ đề 3.4.1 được chứng minh. ■

Nhận xét 3.4.1. Bổ đề 3.4.1 được phát triển từ Bổ đề 3.1.1 cho hệ chuyển mạch

rời rạc tuyến tính suy biến chỉ số 1 có nhiễu với quy tắc chuyển mạch ở cặp ma

trận hệ số giống nhau.

Định lý 3.4.1. Hệ SDLS (3.20) là ổn định nếu và chỉ nếu tồn tại của hàm Lya-

punov Vσ : N×Rn → R+ liên tục theo biến thứ hai tại γ = 0 và các hàm a, ψk ∈ K,

sao cho

i) a(∥y∥) ≤ Vσ(k, y) ≤ ψk(∥y∥), ∀k ≥ 0,∀y ∈ ∆σ(k),∀σ,
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ii) ∆Vσ(k, y(k)) := Vσ(k+1, y(k+1))−Vσ(k, y(k)) ≤ 0, ∀k ≥ 0,∀σ, với y(k) là nghiệm

của (3.20) tương ứng với σ.

Chứng minh. Điều kiện cần. Giả sử rằng hệ SDLS (3.20) là ổn định. Với mỗi k0,

theo Bổ đề 3.4.1, tồn tại hàm ψk0 ∈ K (k0 ≥ 0), sao cho với nghiệm x(k) bất kỳ của

(3.20), ta có

∥x(k)∥ ≤ ψk0(∥x(k0)∥), ∀k ≥ k0,∀σ. (3.36)

Ta định nghĩa hàm Lyapunov

Vσ(k0, γ) := sup
m∈N

∥xσ(k0 +m, k0; γ)∥, với mỗi γ ∈ Rn, k0 ∈ N, (3.37)

trong đó xσ(k0 + m, k0; γ) là nghiệm duy nhất của (3.20) tương ứng với quy tắc

chuyển mạch σ thỏa mãn điều kiện ban đầu Pσ(k0),σ(k0+1)xσ(k0) = Pσ(k0),σ(k0+1)γ. Bất

đẳng thức (3.36) đảm bảo tính đúng đắn của định nghĩa hàm Lyapunov (3.37). Từ

(3.35), ta có

∥xσ(k0)∥ ≤ (K + 1)∥Pσ(k0),σ(k0+1)xσ(k0)∥ = (K + 1)∥Pσ(k0),σ(k0+1)γ∥ ≤ (K + 1)H∥γ∥,

với các hằng số K,H được cho trong Bổ đề 3.4.1. Định nghĩa ψ̂k0(t) := ψk0((K+1)Ht)

với t ≥ 0. Khi đó, ta suy ra rằng

Vσ(k0, γ) ≤ ψk0(∥xσ(k0)∥) ≤ ψk0((K + 1)H∥γ∥) = ψ̂k0(∥γ∥),∀k0 ≥ 0,∀γ ∈ Rn,∀σ.

Điều này dẫn đến Vσ(k0, 0) = 0 và tính liên tục của hàm V theo biến thứ hai tại

γ = 0. Với mỗi y ∈ ∆σ(k0), theo (3.33), ta có

Vσ(k0, y) = sup
l∈N

∥xσ(k0 + l, k0; y)∥ ≥ ∥xσ(k0, k0; y)∥ = ∥y∥ := a(∥y∥). (3.38)

Mặt khác, với mỗi k0 ≥ 0, vì bài toán giá trị ban đầu (3.20) − (3.21) có duy nhất

nghiệm nên ta dễ thấy rằng

{xσ(k0 + l, k0; y(k0)) : l ≥ 0} = {y(k0 + l) : l ≥ 0)}

⊃ {y(k0 + l) : l ≥ 1)} ⊃ {xσ(k0 + 1 + l, k0 + 1; y(k0 + 1)) : l ≥ 0},
(3.39)

ở đó σy(k) là quy tắc chuyển mạch tương ứng với y(k). Do vậy

Vσ(k + 1, y(k + 1)) = sup
l≥0

∥xσ(k + 1 + l, k + 1; y(k + 1))∥

≤ sup
l≥0

∥xσ(k + l, k; y(k))∥ = Vσ(k, y(k)),
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điều này suy ra rằng ∆Vσ(k, y(k)) ≤ 0. Điều kiện cần được chứng minh.

Điều kiện đủ. Ta chứng minh phản chứng, giả sử rằng hệ (3.20) không ổn định,

tức là, tồn tại ε0 > 0, tồn tại số không âm k0 và một quy tắc chuyển mạch σ, sao

cho với mọi δ ∈ (0, ε0], tồn tại nghiệm xσ(k) của (3.20) thỏa mãn bất đẳng thức

∥Pσ(k0),σ(k0+1)xσ(k0)∥ < δ và ∥xσ(k1)∥ ≥ ε0 với k1 ≥ k0.

Vì Vσ(k0, 0) = 0 và Vσ(k0, γ) là hàm liên tục tại γ = 0 nên tồn tại δ
′

0 = δ
′

0(ε, k0) > 0,

sao cho với mọi ξ ∈ Rn, ∥ξ∥ < δ
′

0 và với mọi σ ta có Vσ(k0, ξ) < ε1 := a(ε0).

Chọn δ0 ≤ min{ δ
′
0

K+1 , ε0}, ta có thể thấy nghiệm xσ(k) của (3.20) thỏa mãn

∥Pσ(k0),σ(k0+1)xσ(k0)∥ < δ0, tuy nhiên ∥xσ(k1)∥ ≥ ε0 với k1 ≥ k0.

Do ∥Pσ(k0),σ(k0+1)xσ(k0)∥ < δ0 ≤ δ
′
0

K+1 , ∥xσ(k0)∥ < δ
′

0 nên ta thu được

Vσ(k0, xσ(k0)) < ε1.

Mặt khác, sử dụng tính chất của hàm V , ta có

Vσ(k0, xσ(k0)) ≥ Vσ(k1, xσ(k1)) ≥ a(∥xσ(k1)∥) ≥ a(ε0) = ε1,

điều này dẫn đến mâu thuẫn. Định lý 3.4.1 được chứng minh. ■

Nếu hệ (3.20) là ổn định đều thì hàm ψk ở định lý trên có thể được chọn không

phụ thuộc vào k. Do đó, bằng cách lập luận tương tự như chứng minh trên ta được

kết quả sau.

Định lý 3.4.2. Hệ SDLS chỉ số 1 có nhiễu (3.20) là ổn định đều nếu và chỉ nếu

tồn tại hai hàm a, b ∈ K và hàm Lyapunov Vσ : N×Rn → R+, sao cho

i) a(∥y∥) ≤ Vσ(k, y) ≤ b(∥y∥), ∀k ≥ 0,∀y ∈ ∆σ(k),∀σ,

ii) ∆Vσ(k, y(k)) := Vσ(k+1, y(k+1))−Vσ(k, y(k)) ≤ 0, ∀k ≥ 0,∀σ, với y(k) là nghiệm

của (3.20) ứng với σ.

Bây giờ, ta đưa ra định lý về tính ổn định tiệm cận của hệ SDLS chỉ số 1 có

nhiễu (3.20).

Định lý 3.4.3. Giả sử rằng tồn tại hàm Lyapunov Vσ : Z+×Rn → R+ và các hàm

a, c, ψk ∈ K sao cho

i) a(∥y∥) ≤ Vσ(k, y) ≤ ψk(∥y∥), ∀k ≥ 0,∀y ∈ ∆σ(k),∀σ,
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ii) ∆Vσ(k, y(k)) := Vσ(k+ 1, y(k+ 1))− Vσ(k, y(k)) ≤ −c(∥y(k)∥), ∀k ≥ 0,∀σ, với y(k)

là nghiệm của (3.20) ứng với σ.

Khi đó, hệ SDLS chỉ số 1 có nhiễu (3.20) là ổn định tiệm cận.

Chứng minh. Từ Định lý 3.4.1, ta có hệ SDLS (3.20) là ổn định. Từ mục (ii),

{Vσ(k, y(k))} là một dãy giảm và bị chặn dưới bởi 0. Do đó, tồn tại giới hạn

lim
k→∞

Vσ(k, y(k)). Điều này suy ra rằng

lim
k→∞

Vσ(k + 1, y(k + 1))− Vσ(k, y(k)) = 0

và do đó lim
k→∞

c(∥y(k)∥) = 0. Vì c ∈ K nên lim
k→∞

∥y(k)∥ = 0. Thật vậy, giả sử rằng

lim
k→∞

∥y(k)∥ ≠ 0. Khi đó, với ε > 0, tồn tại dãy {km} ⊂ N sao cho km → ∞ và

∥y(km)∥ > ε. Điều này suy ra c(∥y(km)∥) ≥ c(ε) > 0, mâu thuẫn.

Định lý 3.4.3 được chứng minh. ■

Ta định nghĩa

µ = max{Li(1 +Ki)∥Pj,mG
−1
i,j,m∥ : i, j,m ∈ N}.

Định lý 3.4.4. Xét hệ SDLS chỉ số 1 có nhiễu (3.20). Giả sử các điều kiện của

Định lý 3.3.1 được thỏa mãn. Nếu tồn tại M > 0, 0 < λ < 1 sao cho

∥Φσ(k, h)∥ ≤Mλk−h, ∀k ≥ h ≥ k0,

và Mµ < 1− λ, thì hệ SDLS chỉ số 1 có nhiễu (3.20) là ổn định mũ.

Chứng minh. Từ công thức (3.26), ta có

u(k) = Φσ(k, k0)u(k0) +

k−1∑
i=k0

Φσ(k, i+ 1)Pσ(i+1),σ(i+2)G
−1
σ(i),σ(i+1),σ(i+2)

fσ(i)(u(i) + v(i)).

Ta suy ra được

∥u(k)∥=Mλk−k0∥u(k0)∥+
k−1∑
i=k0

Mλk−i−1∥Pσ(i+1),σ(i+2)G
−1
σ(i),σ(i+1),σ(i+2)

∥Lσ(i)∥u(i)+v(i)∥

=Mλk−k0∥u(k0)∥+
k−1∑
i=k0

Mλk−i−1∥Pσ(i+1),σ(i+2)G
−1
σ(i),σ(i+1),σ(i+2)

∥Lσ(i)(1 +Kσ(i))∥u(i)∥

≤Mλk−k0∥u(k0)∥+
k−1∑
i=k0

Mλk−i−1µ∥u(i)∥.
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Điều này tương đương với

∥u(k)∥
λk−k0

≤M∥u(k0)∥+
k−1∑
i=k0

Mµ

λ

∥u(i)∥
λi−k0

, ∀k ≥ k0.

Do đó, nếu ta đặt ym =
∥um+k0∥
λm

, fm = M∥u(k0)∥, gm =
Mµ

λ
với mọi m ≥ 0, thì ta

có

ym ≤ fm +
∑

0≤i<m

giyi,∀m ≥ 0.

Áp dụng Định lý 1.1.1, ta được

ym ≤ fm +
∑

0≤i<m

figi
∏

i<j<m

(1 + gj)

≤M∥u(k0)∥+
∑

0≤i<m

M∥u(k0)∥
Mµ

λ

(
1 +

Mµ

λ

)m−i−1

=M∥u(k0)∥+M∥u(k0)∥
((

1 +
Mµ

λ

)m

− 1

)
=M∥u(k0)∥

(
1 +

Mµ

λ

)m

.

(3.40)

Điều này dẫn đến

∥u(k)∥ ≤M∥u(k0)∥
(
1 +

Mµ

λ

)k−k0

λk−k0 =M∥u(k0)∥(λ+Mµ)k−k0 , ∀k ≥ k0.

Do đó

∥x(k)∥ = ∥u(k) + v(k)∥ ≤ (1 +K)∥u(k)∥ ≤ (1 +K)M∥u(k0)∥(λ+Mµ)k−k0 ,∀k ≥ k0.

Vì λ+Mµ < 1 nên hệ SDLS (3.20) là ổn định mũ.

Định lý 3.4.4 được chứng minh. ■

Nhận xét 3.4.2. Hàm Lyapunov trong các Định lý 3.4.1, 3.4.2, 3.4.3 có thể phụ

thuộc vào quy tắc chuyển mạch σ. Các điều kiện trong Định lý 3.4.4 đúng nếu hệ

số Lipschitz của hàm f đủ nhỏ.

Nhận xét 3.4.3. Các kết quả ở trên có thể ứng dụng trong hệ động lực chuyển

mạch Leontief, hệ này được phát triển từ hệ động lực Leontief trong [39, 40].
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Xét mô hình kinh tế N thành phần (N ngành), mỗi ngành sản xuất một loại

sản phẩm. Với mỗi ngành j ∈ {1, 2, . . . , N}, để sản xuất ra sản phẩm j cần đầu

vào từ các ngành khác, bao gồm cả ngành j. Mô hình kinh tế đa thành phần của

Leontief có dạng sau

x(k) = Bσ(k)x(k) + Cσ(k+1) (x(k + 1)− x(k)) + dσ(k)(x(k)), (3.41)

trong đó, thành phần thứ i của vectơ N chiều x(k) là mức độ sản xuất của ngành

i tại thời điểm k. Quá trình sản xuất này được chia thành ba phần, tương ứng

với ba hạng tử ở vế phải của (3.41). Hạng tử thứ nhất, Bσ(k)x(k) là lượng hàng

hóa ngành i cần để đưa vào sản xuất từ các ngành j. Ma trận chuyển Bσ(k) cỡ

N × N là ma trận đầu vào − đầu ra có các phần tử không âm tại thời điểm k.

Hạng tử thứ hai là lượng hàng hóa i cần để mở rộng sản xuất để tạo ra x(k + 1)

trong bước tiếp theo. Ma trận chuyển Cσ(k+1) được gọi là ma trận hệ số vốn và

cũng có các phần tử không âm. Hạng tử cuối cùng dσ(k)(x(k)) là lượng hàng hóa

i dành cho tiêu dùng. Trong mô hình kinh tế đa thành phần, sản xuất của ngành

i không nhất thiết cần sản phẩm của ngành khác vì thế ma trận Cσ(k+1) thường

suy biến. Do vậy, hệ động lực Leontief có thể được viết lại theo hệ SDLS (3.20) với

Eσ(k+1) = −Cσ(k+1), Aσ(k) = Bσ(k) − Cσ(k+1) − IN , fσ(k) = dσ(k) với k ∈ N .

Nhận xét 3.4.4. Xét hệ chuyển mạch rời rạc tuyến tính suy biến có nhiễu với quy

tắc chuyển mạch ở ma trận hệ số E và A khác nhau dạng (3.20), quy tắc chuyển

mạch khác nhau trong các ma trận hệ số E và A, cùng với động lực học của hệ

bị ràng buộc và kết hợp giữa các hệ con suy biến gây nên một số khó khăn trong

việc nghiên cứu tính giải được cũng như sự ổn định của hệ. Mỗi trạng thái x(k)

phụ thuộc vào dữ liệu ở ba thời điểm k− 1, k, k+1. Chúng tôi đưa ra các đặc trưng

về tính ổn định của hệ (3.20) bằng cách sử dụng phương pháp hàm Lyapunov, và

thiết lập điều kiện ổn định mũ cho hệ bằng cách sử dụng công thức biến thiên hằng

số cho nghiệm, đánh giá nghiệm và sử dụng bất đẳng thức Gronwall dạng rời rạc.

Còn hệ chuyển mạch rời rạc tuyến tính suy biến có nhiễu với quy tắc chuyển mạch

ở ma trận E và A giống nhau dạng (3.1) như một trường hợp đơn giản hơn của hệ

(3.20) nên các kết quả được suy ra một cách tương tự, chúng tôi viết ra kết quả

cho trường hợp này để có thể áp dụng trực tiếp khi cần.
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Ví dụ 3.4.1. Trong ví dụ này, ta sử dụng chuẩn Euclid của vectơ.

Xét hệ SDLS có nhiễu dạng (3.20) với quy tắc chuyển mạch σ : N ∪ {0} → N và

Ei =

0 i

0 i+ 1

 ; Ai =

 i+ 1 1

−i− 1 1

 ,

và

fi(x) =
sinx2
i

(1,−1)⊤; x = (x1, x2)
⊤ ∈ R2, i ∈ N.

Ta có kerEi = span{(1, 0)⊤}, imEi = span{(0, 1)⊤} và Si,j = span{(0, 1)⊤}. Suy ra,

Si,j ∩ kerEi = {0} và rankEi = 1 < 2, do đó hệ SDLS thuần nhất tương ứng với hệ

(3.20) có chỉ số 1. Rõ ràng,

Vi,j =

0 1

1 0

 ,∀i, j ∈ N ; Q =

0 0

0 1

 .

Điều này suy ra rằng

Qi,j = Vi,jQV
−1
i,j =

1 0

0 0

 = P ; Pi,j = In −Qi,j =

0 0

0 1

 .

Ta tính được Qi,j,m = Vi,jQV
−1
j,m = Qi,j = P, ∀i, j,m ∈ N và

Gi,j,m = Ej+AiQi,j,m =

 i+ 1 j

−i− 1 j + 1

 ; G−1
i,j,m =

1

(i+ 1)(2j + 1)

j + 1 −j

i+ 1 i+ 1

 .

Hơn nữa, hàm fi(x) là liên tục Lipschitz với hệ số Lipschitz Li =

√
2

i
. Thật vậy, ta

có

∥fi(x)− fi(y)∥ =

∥∥∥∥sinx2i
(1,−1)⊤ − sin y2

i
(1,−1)⊤

∥∥∥∥
≤ 1

i+ 1
|x2 − y2|∥(1,−1)T∥ =

√
2

i
|x2 − y2|

≤
√
2

i

√
(x1 − y1)2 + (x2 − y2)2 =

√
2

i
∥x− y∥,

Hơn nữa, fi(0) = 0 và

ωi = Limax{∥Qi,j,mG
−1
i,j,m∥ : j,m ∈ N}

= max

{√
4j2 + 4j + 2

2j + 1
: j ∈ N

}
× 1

i(i+ 1)

<

√
10

3i(i+ 1)
< 1, ∀i ∈ N.
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Theo Định lý 3.3.1, bài toán giá trị ban đầu (3.20), (3.21) với dữ liệu đã cho có duy

nhất nghiệm. Từ định nghĩa của ∆i, ta có x ∈ ∆i nếu và chỉ nếu

Qi,jx = −Vi,jQV −1
j,mG

−1
i,j,m[fi(x) + AiPi,jx].

Từ đây dẫn đến x1 = − sinx2
i(i+ 1)

− x2
(i+ 1)(2j + 1)

. Do đó,

∆i =
{
x = (x1, x2)

⊤ : x1 = − sinx2
i(i+ 1)

− x2
(i+ 1)(2j + 1)

, j ∈ N
}
.

Xét hàm Vσ(k, γ) := 2∥Pσ(k),σ(k+1)γ∥ với mọi γ ∈ R2. Ta có, với mỗi y ∈ ∆i,

∥y∥ =

√
y21 + y22 =

√(
sin y2
i(i+ 1)

+
y2

(i+ 1)(2j + 1)

)2

+ y22

≤

√(
1

i(i+ 1)
+

1

(i+ 1)(2j + 1)

)2

y22 + y22

≤ 2|y2| = 2∥Pσ(k),σ(k+1)y∥ = Vσ(k, y).

Ngoài ra, Vσ(k, y) = 2∥Pσ(k),σ(k+1)y∥ = 2|y2| ≤ 2∥y∥. Do đó, mục (i) của Định lý 3.4.2

được thỏa mãn. Giả sử rằng y(k) là một nghiệm của hệ (3.20) và đặt

y(k) = u(k) + v(k), trong đó u(k) = Pσ(k),σ(k+1)y(k); v(k) = Qσ(k),σ(k+1)y(k), ta có

∆Vσ(k, y(k)) = 2(∥Pσ(k+1),σ(k+2)y(k + 1)∥ − ∥Pσ(k),σ(k+1)y(k)∥) = 2(∥u(k + 1)∥ − ∥u(k)∥).

Sử dụng phương trình (3.26) ta được

u(k + 1) = Pj,mG
−1
i,j,mAiu(k) + Pj,mG

−1
i,j,mfi(x(k)) =

0 0

0 2
2j+1

u(k),

suy ra, ∥u(k + 1)∥ =
2

2j + 1
∥u(k)∥ và từ đó dẫn đến∥u(k + 1)∥ − ∥u(k)∥ ≤ 0. Theo

Định lý 3.4.2, hệ SDLS (3.20) là ổn định đều. Hơn nữa, vì

∥u(k + 1)∥ − ∥u(k)∥ ≤ 1− 2j

2j + 1
∥u(k)∥ ≤ 1− 2j

2(2j + 1)
∥y(k)∥ ≤ −1

2(2N + 1)
∥y(k)∥,

nên theo Định lý 3.4.3, hệ SDLS chỉ số 1 có nhiễu (3.20) là ổn định tiệm cận.

Ta sẽ mô tả nghiệm của hệ SDLS này trong trường hợp N = 2 với quy tắc chuyển

mạch cụ thể σ1(k) = (k mod 2)+1. Chọn giá trị ban đầu x(0) = (2, 1)⊤. Ở đậy, ta xét

quy tắc chuyển mạch dạng đơn giản đó là chuyển mạch tuần hoàn: nếu k chẵn, xét
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ta hệ E2x(k+1) = A1x(k)+f1(x(k)), ngược lại, ta lấy hệ E1x(k+1) = A2x(k)+f2(x(k)).

Ở mỗi hệ, tại thời điểm k, ta suy ra được mối quan hệ giữa x1(k) và x2(k) và x2(k)

được tìm dựa vào x1(k−1), x2(k−1). Ta thấy, nghiệm của hệ hội tụ về 0, xem Hình

3.2.

Ngoài ra, chúng tôi cũng minh họa nghiệm ổn định của hệ khi xét quy tắc chuyển

mạch σ2(k) =

2, nếu k
... 3

1, nếu k ̸ ... 3
và chọn giá trị ban đầu x(0) = (2, 1)⊤ như Hình 3.3.

Giả thuật toán cho các hình vẽ minh họa nghiệm ổn định của hệ tương tự như

Thuật toán 1 trong Ví dụ 3.1.1.

Hình 3.2: Minh họa nghiệm ổn định X(x1, x2) với N = 2 và σ1(k).

Hình 3.3: Minh họa nghiệm ổn định X(x1, x2) với N = 2 và σ2(k).
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Ví dụ 3.4.2. Ở ví dụ này, chúng ta sử dụng chuẩn vô cùng của ma trận.

Xét hệ chuyển mạch rời rạc tuyến tính suy biến (SDLS) có nhiễu dạng (3.20)

với quy tắc chuyển mạch σ : N ∪ {0} → {1, 2} = N và

E1 =


3 −2 0

0 3 0

0 0 0

 ; E2 =


4 3 0

1 6 0

0 0 0

 ;

A1 =


1 −1 0

0 1 0

0 0 1

 ; A2 =


−1 0 0

1 1 0

0 0 1

 ;

và fi(x) =
2x1 + 3 sin x2

4

3(i+ 1)(i+ 2)
(0, 0, 1)⊤, x = (x1, x2, x3)

⊤ ∈ R3, i ∈ N.

Ta tìm được

kerE1 = kerE2 = span{(0, 0, 1)⊤},

S11 = span{(1, 0, 0)⊤, (0, 1, 0)⊤},S12 = span{(3, 2, 0)⊤, (0, 1, 0)⊤},

S21 = span{(−1, 1, 0)⊤, (0, 1, 0)⊤},S22 = span{(−1, 3, 0)⊤, (0, 1, 0)⊤}.

Rõ ràng Si,j ∩ kerEi = {0},∀i, j ∈ N và rankEi = 2 < 3, do đó hệ SDLS thuần nhất

tương ứng với hệ (3.20) với dữ liệu ở trên có chỉ số 1. Ta có

V11 =


1 0 0

0 1 0

0 0 1

 ; V12 =


3 0 0

2 1 0

0 0 1

 ; V21 =


−1 0 0

1 1 0

0 0 1

 ; V22 =


−1 0 0

3 1 0

0 0 1

 ;

Q =


0 0 0

0 0 0

0 0 1

 ; Qi,j = Q; Pi,j = I3 −Qi,j =


1 0 0

1 0 0

0 0 0

 ; Qi,j,m = Q,∀i, j,m ∈ N.
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Ta tính toán được

Gi,1,m =


3 −2 0

0 3 0

0 0 1

 ; G−1
i,1,m =


1/3 2/9 0

0 1/3 0

0 0 1

 ;

Gi,2,m =


4 3 0

1 6 0

0 0 1

 ; G−1
i,2,m =


2/7 −1/7 0

−1/21 4/21 0

0 0 1

 ;∀i,m ∈ N.

Hơn nữa, hàm fi(x) liên tục Lipschitz với hệ số Lipschitz Li =
11

12(i+ 1)(i+ 2)
, i ∈ N .

Ta thấy

ωi := Limax{∥Qi,j,mG
−1
i,j,m∥} = Li, Ki := ωi(Li + ∥Ai∥)L−1

i (1− ωi)
−1,

do đó K1 =
25

11
, K2 =

49

23
; ∥P1mG

−1
i,1,m∥ =

5

9
, ∥P2mG

−1
i,2,m∥ =

3

7
.

Suy ra µ = max{Li(1 +Ki)∥Pj,mG
−1
i,j,m∥ : i, j,m ∈ N} = max

{
5

18
;
3

14
;
55

414
;
33

322

}
=

5

18
.

Đặt

Φi,j,m := Pj,mG
−1
i,j,mAi = Pσ(l),σ(l+1).G

−1
σ(l−1),σ(l),σ(l+1)

Aσ(l−1),

ta có

Φ1,1,m =


1/3 −1/9 0

0 1/3 0

0 0 0

 ; Φ2,1,m =


−1/9 2/9 0

1/3 1/3 0

0 0 0

 ;

Φ1,2,m =


2/7 −3/7 0

−1/21 5/21 0

0 0 0

 ; Φ2,2,m =


−3/7 −1/7 0

5/21 4/21 0

0 0 0

 ;

∥Φ1,1,m∥ =
4

9
; ∥Φ2,1,m∥ =

2

3
; ∥Φ1,2,m∥ =

5

7
; ∥Φ2,2,m∥ =

4

7
.

Do vậy, nếu ta chọn λ = max{∥Φi,j,m∥ : i, j,m ∈ N} =
5

7
và M = 1 thì

∥Φσ(k, h)∥ ≤
k∏

l=h+1

∥Pσ(l),σ(l+1)G
−1
σ(l−1),σ(l),σ(l+1)

Aσ(l−1)∥ ≤
(
5

7

)k−h

=Mλk−h,

với mọi k ≥ h ≥ k0. Hơn nữa ta có

Mµ =
5

18
< 1− λ =

2

7
.
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Theo Định lý 3.4.4, hệ SDLS có nhiễu với dữ liệu {(Ei, Ai, fi)}i=1,2 đã cho là ổn

định mũ.

Để minh họa, ta xét quy tắc chuyển mạch cụ thể σ1(k) = (k mod 2)+1 và chọn giá

trị ban đầu x(0) = (4, 5, 6)⊤. Nếu k chẵn thì ta giải hệ E2x(k+1) = A1x(k)+f1(x(k)),

ngược lại ta xét hệ E1x(k + 1) = A2x(k) + f2(x(k)). Ta thấy, nghiệm của hệ hội tụ

về 0, xem Hình 3.4.

Ngoài ra, chúng tôi cũng minh họa nghiệm ổn định của hệ khi xét quy tắc chuyển

mạch σ2(k) =

2, nếu k
... 3

1, nếu k ̸ ... 3
và chọn giá trị ban đầu x(0) = (4, 5, 6)⊤, như Hình

3.5.

Hình 3.4: Minh họa nghiệm ổn định X(x1, x2, x3) với σ1(k).

Hình 3.5: Minh họa nghiệm ổn định X(x1, x2, x3) với σ2(k).

84



Kết luận chương

Trong chương này chúng tôi đã nghiên cứu hệ chuyển mạch rời rạc tuyến tính suy

biến chỉ số 1 có nhiễu Lipschitz trong hai trường hợp: quy tắc chuyển mạch ở cặp

ma trận hệ số giống nhau và khác nhau ứng với dạng (3.1) và (3.20). Hệ SDLS

chỉ số 1 có nhiễu dạng (3.1) như một trường hợp riêng của hệ với quy tắc chuyển

mạch ở cặp ma trận hệ số khác nhau dạng (3.20). Chúng tôi đã chỉ ra tính giải

được của hệ với điều kiện hệ số Lipschitz của nhiễu fσ(k)(x(k)) đủ nhỏ, việc xây

dựng công thức nghiệm của hệ SDLS có nhiễu là không dễ, chúng tôi đưa ra công

thức biến thiên hằng số cho nghiệm cũng như chỉ ra đa tạp nghiệm của hệ. Sau đó,

sử dụng phương pháp hàm Lyapunov cũng như đánh giá nghiệm chúng tôi nghiên

cứu được tính ổn định, ổn định tiệm cận, ổn định mũ của hệ. Phần cuối, luận án

cũng đã đưa ra các ví dụ minh họa cho các kết quả lý thuyết.
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Kết luận và kiến nghị

Kết quả đạt được của luận án

Trong luận án này, chúng tôi đã nghiên cứu và giải được hai bài toán của hệ

chuyển mạch rời rạc suy biến.

� Bài toán 1 nghiên cứu hệ chuyển mạch rời rạc tuyến tính suy biến chỉ số 1

dương. Chúng tôi đã nghiên cứu tính ổn định của hệ này thông qua phương

pháp LP (linear programing) cùng với các tính chất của hệ có chỉ số 1, thiết

lập điều kiện ổn định với thời gian dừng nhỏ nhất. Sau đó, luận án đưa ra

định nghĩa về dưới bán kính phổ của một họ các cặp ma trận, từ đó thiết lập

điều kiện cần và đủ cho tính ổn định hóa được của hệ chuyển mạch rời rạc

tuyến tính suy biến chỉ số 1.

� Bài toán 2 nghiên cứu tính giải được và ổn định của lớp hệ chuyển mạch rời

rạc tuyến tính suy biến có nhiễu với phần tuyến tính có chỉ số 1 trong hai

trường hợp: quy tắc chuyển mạch ở cặp ma trận hệ số giống nhau và khác

nhau. Chúng tôi đưa ra kết quả cho tính giải được của lớp hệ này bằng cách

sử dụng các tính chất của phép chiếu, tính chất của hệ chỉ số 1 của hệ thuần

nhất và nguyên lý ánh xạ co. Sau đó, luận án thiết lập điều kiện ổn định, ổn

định đều, ổn định tiệm cận của hệ dựa vào phương pháp hàm Lyapunov. Cuối

cùng, chúng tôi đề xuất điều kiện ổn định mũ của hệ bằng cách sử dụng công

thức biến thiên hằng số cho nghiệm, đánh giá nghiệm và sử dụng bất đẳng

thức Gronwall dạng rời rạc.

Các kết quả nhận được là kết quả mới, có ý nghĩa khoa học, được các nhà toán

học quan tâm. Trong luận án, ở mỗi chương, chúng tôi cũng đưa ra các ví dụ minh

họa cho các kết quả lý thuyết.
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Một số vấn đề có thể tiếp tục nghiên cứu:

� Nghiên cứu tính giải được và ổn định của hệ chuyển mạch rời rạc suy biến phi

tuyến dạng Eσ(k)x(k + 1) = Fσ(k)(x(k)).

� Ổn định hóa hệ chuyển mạch rời rạc suy biến chỉ số 1 bằng quy luật chuyển

mạch thích hợp hoặc bằng điều khiển phản hồi.

� Nghiên cứu tính ổn định, ổn định hóa được của hệ chuyển mạch rời rạc suy

biến không có chỉ số 1.
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