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Mở đầu

Lịch sử vấn đề và lý do chọn đề tài
Lý thuyết ổn định các hệ động lực được nghiên cứu một cách hệ thống

từ những năm cuối thế kỷ XIX bởi nhà toán học người Nga A.M. Lyapunov.
Các kết quả của lý thuyết ổn định được ứng dụng rộng rãi trong nhiều lĩnh
vực như cơ học, vật lý toán, sinh thái học, kinh tế, vũ trụ, . . . . Vì thế, cho
đến nay lý thuyết ổn định vẫn thu hút được nhiều sự quan tâm của các nhà
khoa học. Để mô tả các hệ phức hợp trong tự nhiên, kinh tế, năng lượng,
hàng không, . . . khó có thể dùng các hệ đơn lẻ, mà phải kết hợp nhiều hệ
con kèm theo các ràng buộc. Một hệ chuyển mạch bao gồm một tập hữu hạn
các hệ con và quy luật chuyển mạch giữa chúng. Các hệ con có thể liên tục
hay rời rạc, không suy biến hay suy biến. Quy luật chuyển mạch là một hàm
hằng từng khúc phụ thuộc vào các biến thời gian, giá trị của nó trong quá
khứ, trạng thái x(t) của mỗi hệ con đơn lẻ hoặc chuyển mạch ngẫu nhiên với
hàm phân phối cho trước.

Trong thực tế, việc chuyển mạch có thể xảy ra do những thay đổi đột
ngột, không dự báo được của hệ thống, ví dụ do hỏng hóc một thành phần
nào đó của hệ thống hay do một hệ con nào đó tình cờ bị kích hoạt. Trong
những trường hợp này, để đảm bảo sự an toàn của hệ thống, người ta phải
thiết kế sao cho hệ ổn định với mọi quy tắc chuyển mạch. Tính ổn định của
hệ chuyển mạch thực chất là tính vững với mọi nhiễu động của chuyển mạch.
Một trong các bài toán quan trọng khi nghiên cứu hệ chuyển mạch là tìm
các điều kiện để hệ chuyển mạch ổn định với quy luật chuyển mạch bất kỳ.
Ngoài ra, trong thực tế có những hệ con không ổn định, ta cần thiết kế những
chuyển mạch để hệ chung thu được ổn định, bài toán này được gọi là bài
toán ổn định hóa hệ chuyển mạch.

Xét hệ chuyển mạch tuyến tính liên tục không suy biến dạng

ẋ(t) = Aσ(t)x(t)

và hệ chuyển mạch tuyến tính rời rạc không suy biến có dạng

x(k + 1) = Aσ(k)x(k),

trong đó σ là quy tắc chuyển mạch nhận các giá trị trong tậpN := {1, 2, . . . , N}.
Một số kết quả tiêu biểu về sự ổn định, ổn định hóa hệ chuyển mạch tuyến
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tính phải kể đến như: Ge, Sun & Lee, 2001 ([21]), Shorten & Narendra, 2002
([52]), Liberzon, 2003 ([37]), Gökcek, 2004 ([22]), Phat & Hien, 2009 ([44]),
. . . . Theo đó, điều kiện cần để hệ chuyển mạch tuyến tính không suy biến
ổn định với mọi quy tắc chuyển mạch σ là từng hệ con phải ổn định, tức là
Ai, i ∈ N là các ma trận Hurwitz với trường hợp hệ liên tục theo thời gian
và Ai, i ∈ N là các ma trận Schur với hệ rời rạc theo thời gian. Các điều
kiện cần và đủ để hệ chuyển mạch ổn định với mọi quy tắc chuyển mạch σ
được phát biểu thông qua sự tồn tại của hàm Lyapunov toàn phương chung.
Tuy nhiên, việc đưa ra điều kiện tồn tại cho hàm Lyapunov không đơn giản.
Các kết quả đầu tiên được Shorten và Narendra thu được trong [51, 52] cho
hệ chuyển mạch hai chiều, với hai ma trận Hurwitz A1, A2. Các kết quả này
được mở rộng cho hệ hai chiều với n ma trận A1, A2, . . . , An và hệ n chiều
với hai ma trận A1, A2. Ngoài ra, bằng việc đưa ra định nghĩa hàm Lyapunov
toàn phương chuyển mạch, Lin và các cộng sự đưa ra các điều kiện dưới dạng
bất đẳng thức ma trận tuyến tính để hệ chuyển mạch ổn định (xem [18]).
Trong [26], các tác giả Hespanha và Morse nghiên cứu tính ổn định hóa thông
qua các điều kiện cho thời gian dừng trung bình (average dwell-time) τa.

Liberzon và Trenn [36] thu được những kết quả đầu tiên cho hệ chuyển
mạch suy biến tuyến tính liên tục có dạng

Eσẋ(t) = Aσx(t),

trong đó Eσ là các ma trận suy biến. Nếu chỉ giới hạn trong lớp hàm liên
tục tuyệt đối, thì phần lớn các hệ chuyển mạch suy biến dạng trên không
có lời giải nào khác ngoài nghiệm tầm thường. Để giải quyết bài toán này,
các tác giả đưa ra khái niệm nghiệm suy rộng là các hàm trơn từng khúc
và từ đó thiết lập công thức nghiệm cho hệ. Phát triển kết quả này, trong
[37], Liberzon và các cộng sự đã đưa ra các điều kiện đủ để hệ ổn định với
mọi quy tắc chuyển mạch σ thông qua các hàm Lyapunov Vp của từng hệ
con, đồng thời sử dụng biến đổi Kronecker đưa ra điều kiện giao hoán để hệ
chuyển mạch ổn định. Ngoài ra, trong [42], các tác giả Zhou, Ho và Zhai đã
đưa ra điều kiện cho hệ ổn định dựa trên thời gian dừng trung bình τa.

Ngày nay, với sự ra đời của nhiều hệ thống lấy mẫu hiện đại, cho ta dữ
liệu tại những thời điểm rời rạc; đây cũng là một trong nhiều lý do dẫn đến
sự cần thiết của việc nghiên cứu hệ suy biến rời rạc.

Xét hệ chuyển mạch rời rạc tuyến tính suy biến (SDLS) dạng

Eσ(k)x(k + 1) = Aσ(k)x(k), (1)

trong đó Ei, Ai ∈ Rn×n, x(k) ∈ Rn và σ : N ∪ {0} → N := {1, 2, . . . , N} là
quy tắc chuyển mạch, xác định mode j hoạt động tại thời gian k. Giả sử các
ma trận Ei suy biến với mọi i ∈ N .

Năm 2010, Zhai và Xu đưa ra điều kiện giao hoán để xét tính ổn định
của hệ chuyển mạch tuyến tính suy biến cho trường hợp hệ có dạng sau (xem
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[62])
Ex(k + 1) = A1x(k)
Ex(k + 1) = A2x(k).

(2)

Ngoài ra, trong [63], Zhai và các cộng sự xét hệ chuyển mạch tuyến tính suy
biến gồm hai hệ con dạng

E1x(k + 1) = A1x(k)
E2x(k + 1) = A2x(k).

(3)

Giả sử hai hệ con ứng với cặp ma trận (Ei, Ai) ổn định mũ. Khi đó, nếu các
ma trận E1, E2 có hạng bằng nhau và các ma trận E1, E2, A1, A2 từng đôi
một giao hoán, tức là

EiEj = EjEi, EiAj = AjEi, AiAj = AjAi, i, j ∈ {1, 2},

thì hệ (3) ổn định với mọi quy tắc chuyển mạch.

Gần đây, trong [5, 6], Anh và các cộng sự đã nghiên cứu hệ chuyển mạch
rời rạc tuyến tính suy biến (SDLS) chỉ số 1 dạng (1), đưa ra các tính chất của
hệ SDLS chỉ số 1 và đưa ra công thức nghiệm của hệ SDLS chỉ số 1 thông qua
ánh xạ một bước (one-step map). Sau đó, các tác giả nghiên cứu sự ổn định
của hệ chuyển mạch rời rạc tuyến tính suy biến chỉ số 1 dựa trên bán kính phổ

của một họ các cặp ma trận và phương pháp hàm Lyapunov. Ở đó, các tác giả
đã khẳng định giả thiết mỗi mode chỉ số 1 không đủ để đảm bảo sự tồn tại và
duy nhất nghiệm của hệ SDLS (1) và đưa ra điều cần và đủ mạnh hơn bằng
định nghĩa hệ chỉ số 1, cụ thể Si∩kerEj = {0}, với mọi i, j ∈ {1, 2, . . . , N},
trong đó Si = A−1

i (imEi) := {ξ ∈ Rn : Aiξ ∈ imEi}. Các kết quả trên
được đưa ra với giả thiết tín hiệu chuyển mạch bất kỳ. Năm 2024, các tác giả
Sutrisno và Trenn ([56]) đã mở rộng các kết quả quan trọng này cho trường
hợp tín hiệu chuyển mạch có ràng buộc. Cụ thể, các tác giả nghiên cứu hai
tình huống: 1) dãy mode cho trước, còn thời gian chuyển mạch bất kỳ và 2)
toàn bộ tín hiệu chuyển mạch đã cho trước (cả dãy mode và thời gian chuyển
mạch đã cho). Trong cả hai trường hợp, tác giả đưa ra điều kiện cho các ma
trận của hệ để đảm bảo sự tồn tại và duy nhất của nghiệm bằng các khái
niệm "chỉ số 1 tuần tự" và "chỉ số 1 chuyển mạch". Sau đó, các tác giả cũng
mở rộng ý tưởng ánh xạ một bước được giới thiệu bởi Anh và các cộng sự
(xem [5]) cho hai trường hợp này.

Bên cạnh các kết quả cho tính ổn định của hệ chuyển mạch suy biến,
còn có một số công trình nghiên cứu bài toán ổn định hóa hệ chuyển mạch
suy biến. Các tác giả Gu và Koenig đã đề xuất ổn định hóa hệ chuyển mạch
bằng cách thiết kế điều khiển phản hồi (xem ([24, 31]). Năm 2017, trong [7],
Anh và Linh đã nghiên cứu tính ổn định của hệ chuyển mạch tuần hoàn và
đề xuất ổn định hóa hệ chuyển mạch bằng cách chọn quy luật chuyển mạch
tuần hoàn phù hợp hoặc bằng các điều khiển phản hồi.
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Hệ chuyển mạch cũng được nhiều nhà khoa học trong nước đặc biệt quan
tâm. Chẳng hạn, nhóm nghiên cứu của GS. Vũ Ngọc Phát và các học trò
nghiên cứu bài toán điều khiển hệ chuyển mạch có trễ biến thiên bằng cách
sử dụng công cụ hàm Lyapunov-Krasovskii và bất đẳng thức ma trận tuyến
tính (xem [27, 57, 45], . . . ). Nhóm nghiên cứu của GS. Nguyễn Khoa Sơn và
các học trò nghiên cứu về tính ổn định vững và ổn định hóa được vững của
hệ chuyển mạch tuyến tính không suy biến (xem [53, 58], . . . ).

Nhìn chung, với hệ chuyển mạch tuyến tính suy biến, nếu không có điều
kiện tất cả các trạng thái đều dương, đã có nhiều kết quả về tính ổn định
và ổn định hóa của hệ, chẳng hạn các công trình của Meng & Zhang (2006),
Liberzon & Treen (2012), Zhou, Ho & Zhai (2013), Tawani & Treen (2017),
. . . cho trường hợp hệ liên tục theo thời gian; hay các công trình của Xia &
Zhang (2008), Zhai, Xu & Ho (2012), Darouch & Chadli (2013), Anh & Linh
(2017), . . . cho trường hợp hệ rời rạc theo thời gian.

Tuy nhiên, ta cần đến hệ với ràng buộc dương ở tất cả các trạng thái để
mô phỏng các hệ trong thực tế, chẳng hạn như hệ biểu diễn các đại lượng
vật lý như nồng độ, mật độ và khối lượng vật chất, kích thước quần thể, hay
các gói dữ liệu trong hệ thống mạng, . . . . Do vậy, việc nghiên cứu hệ chuyển
mạch rời rạc suy biến dương là cần thiết và có nhiều ý nghĩa trong thực tế.

Trong [20], các tác giả Fornasini và Valcher đã đưa ra một số kết quả
nền tảng cho hệ chuyển mạch rời rạc dương không suy biến dạng x(k+1) =
Aσ(k)x(k), trong đó σ(k) là quy tắc chuyển mạch bất kỳ, nhận giá trị trong

tập hữu hạn N , x(k) ∈ Rn
+ là biến trạng thái tại thời gian k, Ai ∈ Rn×n là

ma trận dương với mọi i ∈ N . Đầu tiên, các tác giả nghiên cứu các điều kiện
đủ để kiểm tra tính ổn định của hệ dựa vào sự tồn tại của lớp hàm Lyapunov
chung. Sau đó, các tác giả giới thiệu khái niệm tính ổn định hóa của hệ và
chứng minh được rằng, nếu hệ là ổn định hóa được, thì có thể ổn định hóa
được hệ bằng một dãy chuyển mạch tuần hoàn, dãy chuyển mạch này sẽ đưa
quỹ đạo nghiệm về 0 từ mọi trạng thái ban đầu dương.

Một số kết quả được đưa ra cho hệ chuyển mạch suy biến dương với ràng
buộc lên ma trận E là hằng và nghiên cứu cho trường hợp thời gian liên tục,
như công trình của Li & Xiang (xem [35]).

Theo hiểu biết của chúng tôi, các kết quả cho hệ chuyển mạch rời rạc
tuyến tính suy biến dương dạng (1) còn khá ít. Do đó, như một sự tiếp tục,
chúng tôi mong muốn nghiên cứu được tính dương, tính ổn định và ổn định
hóa được của hệ chuyển mạch rời rạc tuyến tính suy biến dạng (1). Chúng
tôi vẫn đặt thêm điều kiện chỉ số 1 cho hệ (1), giả thiết này liên quan đến
tính nhân quả tương ứng với tín hiệu chuyển mạch, tức là: sự thay đổi tín
hiệu chuyển mạch trong tương lai không làm thay đổi nghiệm tại thời điểm
hiện tại (hay trong quá khứ). Phát triển cách tiếp cận trong [6] và [48], chúng
tôi sử dụng ánh xạ một bước và điều kiện ổn định dạng Lyapunov để nghiên
cứu tính dương và sự ổn định của hệ SDLS chỉ số 1. Sau đó bằng cách mở
rộng bổ đề Fekete, chúng tôi định nghĩa dưới bán kính phổ cho một họ các
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cặp ma trận {(Ei, Ai)}Ni=1 và từ đó đưa ra các đặc trưng cho tính ổn định
hóa được của hệ SDLS dương.

Ở khía cạnh khác, ta thấy các tác giả trong [5, 6] đã nghiên cứu tính giải
được và ổn định của hệ SDLS dạng (1), ở đó quy tắc chuyển mạch trong ma
trận E và A là giống nhau. Trong thực tế, hệ có thể chịu các nhiễu không
mong muốn. Do vậy, chúng tôi mong muốn nghiên cứu tính giải được và ổn
định của hệ chuyển mạch rời rạc tuyến tính suy biến có nhiễu. Hơn nữa, nếu
quy tắc chuyển mạch trong các ma trận E và A khác nhau thì bài toán sẽ
phức tạp hơn. Điều này xảy ra khi động lực học của xk+1 phụ thuộc vào ma
trận dẫn E tại thời điểm k + 1, chẳng hạn trong trường hợp ta rời rạc hóa
hệ liên tục bằng phương pháp Euler ẩn. Trong [38], Linh đã đề xuất một
số kết quả cho trường hợp này với hệ SDLS không có nhiễu. Theo hiểu biết
của chúng tôi, chưa có kết quả nào về tính giải được của hệ SDLS có nhiễu
Lipschitz fσ(k)(x(k)). Do vậy, chúng tôi nghiên cứu tính giải được và ổn định

của hệ chuyển mạch rời rạc tuyến tính suy biến có nhiễu trong hai trường
hợp: trường hợp 1 với quy tắc chuyển mạch ở ma trận E và A giống nhau
dạng

Eσ(k)x(k + 1) = Aσ(k)x(k) + fσ(k)(x(k)), (4)

và trường hợp 2 với quy tắc chuyển mạch ở ma trận E và A khác nhau dạng

Eσ(k+1)x(k + 1) = Aσ(k)x(k) + fσ(k)(x(k)), (5)

trong đó σ : N∪{0} → N := {1, 2, . . . , N}, N ∈ N, là tín hiệu chuyển mạch
xác định mode n ∈ N hoạt động tại thời điểm k. Quy tắc chuyển mạch khác
nhau trong các ma trận hệ số E và A trong (5) cùng với động lực học của (5)
bị ràng buộc và kết hợp giữa các hệ con suy biến gây nên một số khó khăn
trong việc nghiên cứu tính giải được cũng như sự ổn định của hệ. Chúng tôi
sẽ mở rộng và phát triển cách tiếp cận trong [4, 6, 38] để nghiên cứu tính
giải được của hệ SDLS có nhiễu Lipschitz. Sự tồn tại duy nhất nghiệm của
(5) sẽ được chứng minh dựa vào nguyên lý ánh xạ co. Sau đó, các đặc trưng
về tính ổn định của (5) sẽ được đề xuất bằng cách sử dụng phương pháp
hàm Lyapunov, đánh giá nghiệm và sử dụng bất đẳng thức Gronwall dạng
rời rạc.

Đối tượng và phạm vi nghiên cứu
Luận án tập trung nghiên cứu hai bài toán của hệ chuyển mạch suy biến.

� Bài toán 1 nghiên cứu hệ chuyển mạch rời rạc tuyến tính suy biến chỉ số
1 dương, nghiên cứu tính ổn định của hệ, xây dựng dưới bán kính phổ
của một họ các cặp ma trận, từ đó đưa ra các đặc trưng cho tính ổn định
hóa được của hệ, cũng như điều kiện để hệ ổn định hóa được.

� Bài toán 2 nghiên cứu tính giải được và ổn định của hệ chuyển mạch rời
rạc tuyến tính suy biến chỉ số 1 có nhiễu Lipschitz trong hai trường hợp:
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quy tắc chuyển mạch ở các ma trận hệ số giống nhau dạng

Eσ(k)x(k + 1) = Aσ(k)x(k) + fσ(k)(x(k)),

và quy tắc chuyển mạch ở các ma trận hệ số khác nhau dạng

Eσ(k+1)x(k + 1) = Aσ(k)x(k) + fσ(k)(x(k)).

Phương pháp nghiên cứu
Để nghiên cứu tính giải được, ổn định và ổn định hóa được của hệ chuyển

mạch rời rạc tuyến tính suy biến, ngoài việc sử dụng các tính chất cơ bản của
giải tích, giải tích hàm, đại số tuyến tính như nguyên lý ánh xạ co, nguyên lý
so sánh, tính chất của chuẩn ma trận, tính chất dãy số, dãy hàm, . . . chúng
tôi sử dụng các phương pháp chiếu, phương pháp hàm Lyapunov, bán kính
phổ, dưới bán kính phổ của một họ các cặp ma trận, . . . . Tất cả các ví dụ
minh họa được tính toán, mô phỏng quỹ đạo nghiệm bằng phần mềm Matlab
trên máy tính cá nhân có cấu hình Core i5, RAM 8GB.

Bố cục của luận án
Luận án được viết dựa trên các kết quả của ba bài báo [CT1, CT2, CT3].

Luận án gồm phần mở đầu, kết luận chung và ba chương lần lượt như sau:

� Chương 1. Kiến thức chuẩn bị. Trong chương này, chúng tôi trình
bày lại một số khái niệm cơ bản về các ma trận đặc biệt, tích Kronecker,
toán tử vec, nghịch đảo Drazin, nghịch đảo Moore – Penrose, hệ chuyển
mạch tuyến tính thường cùng với các điều kiện để hệ ổn định. Tiếp theo
chúng tôi trình bày lại các kết quả về phương trình sai phân suy biến
tuyến tính với các khái niệm chỉ số, bài toán giá trị ban đầu cho phương
trình sai phân suy biến tuyến tính chỉ số 1 và hệ chuyển mạch rời rạc
tuyến tính dương.

� Chương 2. Tính ổn định và ổn định hóa được của hệ chuyển
mạch rời rạc tuyến tính suy biến chỉ số 1 dương. Đầu tiên chúng
tôi trình bày lại định nghĩa hệ chuyển mạch rời rạc tuyến tính suy biến
chỉ số 1, công thức nghiệm và một số tính chất quan trọng của hệ suy
biến chỉ số 1 thông qua ánh xạ một bước và phép chiếu. Sau đó, chúng
tôi nghiên cứu tính dương và tính ổn định của hệ chuyển mạch rời rạc
tuyến tính suy biến dương có chỉ số 1. Chúng tôi định nghĩa dưới bán
kính phổ cho một họ các cặp ma trận, từ đó đưa ra một số đặc trưng
cho tính ổn định hóa được của hệ SDLS dương có chỉ số 1. Cuối cùng
chúng tôi đưa ra một số ví dụ minh họa cho các kết quả lý thuyết.

� Chương 3. Tính giải được và tính ổn định của hệ chuyển mạch
rời rạc tuyến tính suy biến chỉ số 1 có nhiễu Lipschitz. Chúng tôi
nghiên cứu tính giải được và ổn định của chuyển mạch rời rạc tuyến tính
suy biến chỉ số 1 có nhiễu Lipschitz với quy tắc chuyển mạch giống nhau
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ở ma trận hệ số. Sau đó, chúng tôi xét hệ chuyển mạch rời rạc tuyến tính
suy biến chỉ số 1 với quy tắc chuyển mạch khác nhau ở ma trận hệ số,
nghiên cứu tính giải được của hệ, thiết lập các điều kiện cần và đủ cho
tính ổn định của hệ. Cuối cùng chúng tôi đưa ra một số ví dụ minh họa
cho các kết quả lý thuyết.

Các kết quả chính của luận án được công bố trong ba bài báo [CT1–CT3]
trên các tạp chí Systems & Control Letters ([CT1]), Journal of Difference
Equations and Applications ([CT2]), VNU Journal of Science: Mathematics
– Physics ([CT3]). Ngoài ra, nội dung của luận án đã được trình bày tại các
hội nghị, hội thảo:

1. Hội nghị Toán học toàn quốc lần thứ 10, Đà Nẵng, 08− 2023.

2. Hội thảo Tối ưu và tính toán khoa học, Ba Vì, 04− 2024.

3. Hội thảo Gặp gỡ Toán học, Đại học Sư phạm Hà Nội 2, Vĩnh Phúc,
09− 2024.

4. Hội nghị Toán học, Khoa Toán – Cơ – Tin học, Trường Đại học Khoa
học Tự nhiên, Đại học Quốc gia Hà Nội, 10− 2024.
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Chương 1

Kiến thức chuẩn bị

1.1. Một số khái niệm cơ bản

1.2. Hệ phương trình sai phân suy biến tuyến tính hệ số hằng

Xét hệ rời rạc tuyến tính suy biến dạng

Ex(k + 1) = Ax(k), (1.1)

trong đó, các ma trận E,A ∈ Rn×n cho trước, E là ma trận suy biến và
x(k) ∈ Rn.

1.2.1. Tính giải được của hệ suy biến tuyến tính chỉ số 1

Định nghĩa 1.2.1 (xem [61]). Cặp ma trận (E,A) ∈ (Rn×n,Rn×n) được
gọi là chính quy nếu đa thức đặc trưng det(sE − A) không đồng nhất 0.

Bổ đề 1.2.1 (xem [61]). Cặp ma trận (E,A) ∈ (Rn×n,Rn×n) là chính quy
khi và chỉ khi tồn tại các ma trận khả nghịch U, V ∈ Rn×n sao cho

(UEV,UAV ) =

([
Ir 0r×(n−r)

0(n−r)×r N

]
,

[
J 0r×(n−r)

0(n−r)×r In−r

])
, (1.2)

trong đó J ∈ Rr×r là ma trận chuẩn Jordan và N ∈ R(n−r)×(n−r) là ma trận
lũy linh cũng có dạng chuẩn Jordan.

Nhận xét 1.2.1. Chỉ số lũy linh của N là số ν ∈ N bé nhất sao cho N ν =
0n−r. Chỉ số này không phụ thuộc vào việc chọn các ma trận U, V và gọi là
chỉ số của cặp (E,A).
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Khi N = 0n−r thì cặp ma trận (E,A) có chỉ số 1. Trong trường hợp này,
ta chọn các ma trận V = [V1, V2] và U = [EV1, AV2] với

imV1 = S := A−1(imE) := {ξ ∈ Rn : Aξ ∈ imE},
imV2 = kerE.

Bổ đề 1.2.2 (xem [23]). Các khẳng định sau là tương đương với E,A ∈
Rn×n và S := A−1(imE).

i) Cặp ma trận (E,A) là chính quy và có chỉ số 1.

ii) S ∩ kerE = {0}.

iii) S ⊕ kerE = Rn.

Bổ đề 1.2.3 (xem [61]). Giả sử cặp ma trận (E,A) là chính quy chỉ số 1.
Khi đó, hệ rời rạc tuyến tính suy biến (1.1) với điều kiện đầu x(0) = x0 ∈ Rn

có nghiệm duy nhất khi và chỉ khi x0 ∈ S và nghiệm được cho bởi công thức

x(k) = Φk
(E,A)x0, với Φ(E,A) := V

[
J 0
0 0

]
V −1,

trong đó V và J là các ma trận trong khai triển dạng (1.2) và Φ(E,A) không

phụ thuộc vào các ma trận V và J .

1.2.2. Tính giải được của hệ sai phân suy biến tổng quát

Kết quả dưới đây trình bày tính giải được của hệ (1.1) được Campbel đưa
ra năm 1980.

Định lý 1.2.1 (xem [11]). Hệ suy biến (1.1) có nghiệm duy nhất với mỗi
điều kiện ban đầu chấp nhận được nếu và chỉ nếu cặp ma trận (E,A) là chính

quy (tức là, tồn tại λ ∈ C sao cho (λE − A)−1 tồn tại). Hơn nữa, tập điều

kiện ban đầu chấp nhận được cho bởi im
(
ÊDÊ

)
và các nghiệm của hệ (1.1)

có dạng

x(k) =
(
ÊDÂ

)k
ÊDÊv,

trong đó v là vectơ bất kỳ trong Rn, các ma trận Â và Ê được xác định bởi

Ê = (λE − A)−1E, Â = (λE − A)−1A, (1.3)

với λ ∈ C sao cho (λE − A)−1 tồn tại và ÊD là nghịch đảo Drazin của Ê.
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Nhận xét 1.2.2. Nghiệm của hệ (1.1) không phụ thuộc vào λ và nó thỏa
mãn phương trình sai phân{

x(k + 1) = ÊDÂx(k),

x(0) = ÊDÊv ∈ im(ÊDÊ).

Từ đây ta luôn giả thiết cặp ma trận (E,A) chính quy.

Đặt P := ÊDÊ và A := ÊDÂ. Bổ đề dưới đây trình bày một số tính chất
quan trọng cho các ma trận này.

Bổ đề 1.2.4 (xem [47]). Các tính chất sau là đúng.

i) P là một phép chiếu (P 2 = P ).

ii) PA = AP = A.

iii) Với mọi nghiệm x(k) của hệ (1.1) ta có Px(k) = x(k).

1.2.3. Tính dương của hệ suy biến

Định nghĩa 1.2.2 (xem [48]). Ta nói hệ (1.1) là dương nếu với mọi điều
kiện ban đầu chấp nhận được không âm x(0) ∈ X0 = im(P ) ∩ Rn

+ ta có

x(k) ≥ 0 với mọi k ≥ 0.

Để đưa ra các kết quả về tính dương của hệ (1.1) ta sử dụng kết quả trong
bổ đề dưới đây.

Bổ đề 1.2.5 (xem [41]). Cho M,N là các ma trận có cỡ thích hợp. Các
khẳng định dưới đây là tương đương:

i) Mx ≥ 0 suy ra Nx ≥ 0, với x có cỡ thích hợp;

ii) Tồn tại H ≥ 0 thỏa mãn phương trình ma trận N = HM .

Bây giờ, chúng ta xét hệ {
x(k + 1) = Ax(k),

x(0) ∈ imP
(1.4)

Định lý 1.2.2 (xem [48]). Các khẳng định dưới đây là tương đương.

i) Hệ (1.1) (hoặc hệ (1.4)) là dương với tập điều kiện ban đầu chấp nhận
được không âm X0 = im(P ) ∩ Rn

+.
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ii) Tồn tại một ma trận H sao cho{
H ≥ 0,

A = HP.
(1.5)

Bổ đề 1.2.6 (xem [47, 48]). Hệ phương trình ma trậnXM = N có nghiệm
theo biến X nếu và chỉ nếu N(I − M+M) = 0, trong đó M+ là nghịch
đảo Moore – Penrose. Hơn nữa, tất cả các nghiệm được xác định bởi X =
NM+ +D(I −MM+), với D là một ma trận bất kỳ.

Kết quả đơn giản hóa tính dương được phát biểu trong định lý dưới đây.

Định lý 1.2.3 (xem [48]). Các khẳng định dưới đây là tương đương.

i) Hệ (1.1) (hoặc hệ (1.4)) là dương với tập điều kiện ban đầu chấp nhận
được không âm X0 = imP ∩ Rn

+.

ii) Tồn tại một ma trận D sao cho

A+D(I − P ) ≥ 0.

Bất đẳng thức ma trận theo biến ma trận D ∈ Rn×n

A+D(I − P ) ≥ 0, (1.6)

có thể viết lại thành bất đẳng thức tuyến tính

[
(
P⊤ − I

)
⊗ I]x ≤ b, (1.7)

ở đó x = vec(D) và b = vec(A).

1.2.4. Tính ổn định của hệ suy biến dương

Định nghĩa 1.2.3 (xem [48]). Ta nói hệ (1.1) là ổn định nếu với bất kì
điều kiện ban đầu x(0) ∈ X0 ta có x(k) → 0 khi k → ∞.

Chúng tôi trình bày lại một số điều kiện ổn định cho hệ rời rạc tuyến
tính không suy biến dương.

Mệnh đề 1.2.1 (xem [48]). Cho N là ma trận không âm và xét hệ tuyến
tính không suy biến dạng

z(k + 1) = Nz(k). (1.8)

Khi đó, các khẳng định sau là tương đương.
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i) N là ma trận Schur, hay hệ (1.8) là ổn định với mọi điều kiện ban đầu.

ii) Tồn tại vectơ ν ∈ Rn sao cho

ν > 0 và (N − I)ν < 0.

iii) Tồn tại vectơ γ ∈ Rn sao cho

γ > 0 và γ⊤(N − I) < 0.

Định lý 1.2.4 (xem [48]). Giả sử rằng, tồn tại vectơ v ∈ Rn sao cho Pv >
0. Khi đó, các khẳng định sau là tương đương.

i) Hệ (1.1) (hay (1.4)) là dương và ổn định với tập điều kiện ban đầu chấp
nhận được X0 = imP ∩ Rn

+.

ii) Tồn tại một ma trận D sao cho

H := A+D(I − P ) là ma trận Schur không âm. (1.9)

iii) Tồn tại véc tơ γ ∈ Rn, γ > 0 và ma trận Z ∈ Rn×n sao cho{
γ⊤(A− I) + 1

⊤
nZ(I − P ) < 0,

diag(γ)A+ Z(I − P ) ≥ 0,
(1.10)

trong đó 1n = [1 . . . 1]⊤ ∈ Rn.

1.3. Hệ chuyển mạch rời rạc tuyến tính dương

Xét hệ chuyển mạch rời rạc tuyến tính dương (DPSS) dạng

x(k + 1) = Aσ(k)x(k), (1.11)

trong đó x(k) ∈ Rn
+ là biến trạng thái tại thời gian k, σ : N ∪ {0} → N là

quy tắc chuyển mạch, Ai ∈ Rn×n là ma trận dương với mọi i ∈ N .

1.3.1. Tính ổn định của hệ chuyển mạch rời rạc tuyến tính dương

Định nghĩa 1.3.1 (xem [20]). Hệ (1.11) là ổn định (tiệm cận) nếu với mọi
quy tắc chuyển mạch σ và điều kiện ban đầu x(0) ∈ Rn

+ ta có x(k) → 0 khi
k → ∞.
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Định nghĩa 1.3.2 (xem [20]). Một hàm V (x) : Rn → R được gọi là hàm
đồng dương (copositive) nếu V (x) > 0 với mọi x > 0 và V (0) = 0. Hàm
đồng dương V (x) : Rn → R được gọi là hàm Lyapunov chung (CLF) cho hệ
DPSS (1.11) nếu

∀x > 0,∀i ∈ N ∆Vi(x) := V (Aix)− V (x) < 0,

hoặc tương đương
∀x > 0, max

i∈N
∆Vi(x) < 0.

Ta thường xét ba lớp hàm đồng dương dưới đây:

� hàm đồng dương tuyến tính: V (x) = v⊤x, với v ∈ Rn, v > 0.

� hàm đồng dương bậc hai: V (x) = x⊤Px, với P = P⊤ ∈ Rn×n sao cho
x⊤Px > 0 với mọi x ≥ 0, x ̸= 0.

� hàm bậc hai xác định dương: V (x) = x⊤Px, với P = P⊤ ≻ 0.

Một hàm đồng dương tuyến tính V (x) = v⊤x, với v > 0 là hàm Lyapunov
chung cho hệ DPSS (1.11) nếu v⊤Aix < v⊤x với mọi i ∈ N và với mỗi x > 0.
Nếu tồn tại một hàm Lyapunov chung cho hệ (1.11) thì hệ (1.11) ổn định
(tiệm cận). Điều này được khẳng định trong mệnh đề dưới đây.

Mệnh đề 1.3.1 (xem [20]). Hệ DPSS (1.11) là ổn định nếu tồn tại v ∈ Rn

sao cho
v > 0 và v⊤(Ai − I) < 0, ∀i ∈ N.

1.3.2. Tính ổn định của hệ chuyển mạch rời rạc tuyến tính dương

theo thời gian dừng nhỏ nhất

Ta gọi dãy {kq}q∈N là dãy thời điểm chuyển mạch, tức là thời điểm σ(k) thay
đổi giá trị và τq := kq+1 − kq được gọi là thời gian dừng. Ta quy ước k0 = 0.
Ta biết rằng, một hệ chuyển mạch là ổn định nếu tất cả các hệ con là ổn
định và việc chuyển mạch được thực hiện đủ chậm. Trong [59], các tác giả
đã nghiên cứu xác định thời gian dừng nhỏ nhất τ ∗ để hệ (1.11) bao gồm các
hệ con ổn định là ổn định tiệm cận, với quy tắc chuyển mạch

σ(k) = i ∈ N, ∀k ∈ [kq, kq+1), (1.12)

trong đó kq và kq+1 là hai thời điểm chuyển mạch liên tiếp thỏa mãn
kq+1 − kq ≥ τ ∗.

Điều kiện ổn định của hệ DPSS (1.11) với thời gian dừng nhỏ nhất được
trình bày trong định lý dưới đây.
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Định lý 1.3.1 (xem [59]). Giả sử, với hằng số 0 < τ ∈ N cho trước, tồn
tại một tập các véc tơ v1, v2, . . . , vN ∈ Rn, vi > 0, i ∈ N sao cho

v⊤i (Ai − I) < 0, ∀i ∈ N (1.13)

và
v⊤i A

τ
i − v⊤j < 0, ∀ i, j ∈ N. (1.14)

Khi đó, hệ (1.11) ổn định tiệm cận với mọi dãy thời điểm chuyển mạch
{kq}q∈N thỏa mãn τq ≥ τ .

Định lý 1.3.2 (xem [34]). Cho trước hằng số 0 < τ ∈ N. Các khẳng định
dưới đây là tương tương:

i) Tồn tại một tập các véc tơ vi ∈ Rn, vi > 0, i ∈ N sao cho{
v⊤i (Ai − I) < 0, ∀i ∈ N,

v⊤i A
τ
i − v⊤j < 0, ∀i, j ∈ N ;

ii) Tồn tại một tập các véc tơ vi,l ∈ Rn, vi,τ > 0, i ∈ N, l = 0, 1, . . . τ sao
cho 

vj,0 − vi,τ < 0, ∀i, j ∈ N,

v⊤i,τ(Ai − I) < 0, ∀i ∈ N,

v⊤i,l+1Ai − v⊤i,l ≤ 0, ∀i ∈ N, 0 ≤ l ≤ τ − 1.

Hơn nữa, khi một trong các khẳng định trên đúng, hệ DPSS (1.11) là ổn định
tiệm cận với dãy thời điểm chuyển mạch {kq}q thỏa mãn τq ≥ τ .

1.3.3. Tính ổn định hóa được bằng quy tắc chuyển mạch của hệ

chuyển mạch rời rạc tuyến tính dương

Định nghĩa 1.3.3 (xem [20]). Hệ DPSS (1.11) là ổn định hóa được nếu
với mọi điều kiện ban đầu dương x(0), tồn tại một dãy chuyển mạch σ :
N ∪ {0} → N sao cho quỹ đạo trạng thái x(k) hội tụ về 0.

Định nghĩa 1.3.4 (xem [20]). Hệ DPSS (1.11) là ổn định hóa được nhất
quán nếu tồn tại một dãy chuyển mạch σ : N ∪ {0} → N sao cho với mọi
điều kiện ban đầu dương x(0), quỹ đạo trạng thái tương ứng x(k) hội tụ về
0.

Mệnh đề 1.3.2 (xem [20]). Xét hệ chuyển mạch rời rạc tuyến tính dương
(1.11), các khẳng định sau là tương đương:
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i) hệ ổn định hóa được;

ii) hệ ổn định hóa được nhất quán;

iii) tồn tại M > 0 và bộ chỉ số i0, i1, . . . , iM−1 ∈ N sao cho ma trận tích
AiM−1

AiM−2
. . . Ai1 là một ma trận Schur dương;

iv) tồn tại một dãy chuyển mạch tuần hoàn đưa quỹ đạo trạng thái tương
ứng với mọi điều kiện ban đầu dương hội tụ về 0.
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Chương 2

Hệ chuyển mạch rời rạc tuyến tính

suy biến dương chỉ số 1

2.1. Hệ chuyển mạch rời rạc tuyến tính suy biến chỉ số 1

2.1.1. Định nghĩa hệ chuyển mạch rời rạc tuyến tính suy biến

chỉ số 1

Ta xét hệ chuyển mạch rời rạc tuyến tính suy biến (SDLS) dạng

Eσ(k)x(k + 1) = Aσ(k)x(k), (2.1)

trong đó Ei, Ai ∈ Rn×n, x(k) ∈ Rn là vec tơ trạng thái tại thời điểm k ∈ N
và σ : N ∪ {0} → N := {1, 2, . . . , N}, N ∈ N, là quy tắc chuyển mạch xác
định mode j hoạt động tại thời gian k. Giả sử các ma trận Ei suy biến với
mọi i ∈ N . Ta liên kết hệ (2.1) với điều kiện ban đầu

x(0) = x0 ∈ Rn (2.2)

Định nghĩa 2.1.1. Nghiệm của hệ chuyển mạch rời rạc tuyến tính suy biến
dạng (2.1) là dãy {x(k)}k thỏa mãn hệ (2.1) với mỗi k = 1, 2, . . . và với mọi
quy tắc chuyển mạch σ(k) ∈ N bắt đầu từ trạng thái x(0) tương thích.

Định nghĩa 2.1.2 (xem [5, 6]). Hệ (2.1) được gọi là hệ chuyển mạch tuyến
tính suy biến chỉ số 1 nếu

Si ∩ kerEj = {0}, với mọi i, j ∈ N, (2.3)

trong đó Si = A−1
i (imEi) := {ξ ∈ Rn : Aiξ ∈ imEi}.

Bổ đề 2.1.1 (xem [5, 6]). Giả sử hệ chuyển mạch tuyến tính suy biến (2.1)
có chỉ số 1. Khi đó ta có các khẳng định sau
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(i) rankEi = const =: r,

(ii) Si ⊕ kerEj = Rn, ∀i, j ∈ N .

2.1.2. Ánh xạ một bước cho hệ SDLS chỉ số 1

Định nghĩa 2.1.3 (xem [5]). Xét hệ chuyển mạch rời rạc tuyến tính suy
biến chỉ số 1 dạng (2.1). Khi đó ánh xạ một bước từ mode j đến mode i được
định nghĩa bởi

Φi,j := Π
kerEj

Si
Φ(Ej ,Aj),

trong đó Π
kerEj

Si
là phép chiếu chính tắc lên Si song song với kerEj, và Φ(Ej ,Aj)

là ánh xạ một bước tại mode j tương ứng như trong Bổ đề 1.2.3.

Định lý 2.1.1 (xem [5, 6]). Hệ chuyển mạch rời rạc tuyến tính chỉ số 1
có nghiệm duy nhất khi và chỉ khi x(0) = x0 ∈ Sσ(0). Khi đó ta có công thức

x(k + 1) = Φσ(k+1),σ(k)x(k), ∀k ∈ N (2.4)

trong đó, Φi,j là ánh xạ một bước từ mode j đến mode i được xác định như
trong Định nghĩa 2.1.3.

Định nghĩa 2.1.4 (xem [5, 6]). Ma trận chuyển trạng thái Φσ(k, h) cho
hệ (2.1) được xác định bởi

Φσ(k, h) = Φσ(k),σ(k−1)Φσ(k−1),σ(k−2) . . .Φσ(h+1),σ(h),

với k > h và Φσ(h, h) = Π
kerEσ(h)

Sσ(h)
.

Khi đó, mọi nghiệm của hệ được cho bởi công thức

x(k) = Φσ(k, 0)x(0). (2.5)

Chú ý rằng, với x0 ∈ Rn ta có x(0) = x0 khi và chỉ khi x0 ∈ Sσ(0). Nói chung

x(0) phải thỏa mãn

x(0) = Π
kerEσ(0)

Sσ(0)
x0. (2.6)

Bổ đề 2.1.2 (xem [5, 6]). Xét hệ chuyển mạch rời rạc tuyến tính suy biến
chỉ số 1 dạng (2.1). Với i ∈ N, gọi Vi := [s1i , . . . , s

r
i , h

r+1
i , . . . , hni ] là ma trận

có các cột tương ứng {s1i , . . . , sri} là các véc tơ cơ sở của Si và {hr+1
i , . . . , hni }

là các véc tơ cơ sở của kerEi. Ký hiệu P :=

(
Ir 0
0 0

)
∈ Rn×n, Q := In − P .

Đặt Pi := ViPV
−1
i , Qi := I−Pi và Qi,j := VjQV

−1
i , ta có Pi = ΠkerEi

Si
, Qi =

ΠSi

kerEi
, với i, j ∈ N . Khi đó, với mọi i, j ∈ N ta có các tính chất
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i) Gi,j := Ei + AiQi,j là ma trận
không suy biến,

ii) Π
kerEj

Si
= I −Qi,jG

−1
i,jAi,

iii) Φ(Ei,Ai) = PiG
−1
i,i Ai,

iv) Φi,j =
(
I −Qi,jG

−1
i,jAi

)
PjG

−1
j,jAj;

v) PiΦi,j = Φi,j, Φi,jPj = Φi,j,

vi) EiPi = Ei;

vii) Pi = G−1
i,jEi;

viii) V −1
i G−1

i,jAiVjQ = Q.

Mệnh đề 2.1.1. ([6]) Xét hệ chuyển mạch rời rạc tuyến tính suy biến có
chỉ số 1 dạng (2.1) và gọi Vi, Gi,j là các ma trận được cho trong Bổ đề 2.1.2.
Khi đó

Ai,j = V −1
i G−1

i,jAiVj =

[
A

1
i,j 0

A
2
i,j In−r

]
, (2.7)

với A
1
i,j ∈ Rr×r và A

2
i,j ∈ R(n−r)×r. Hơn nữa, ta thấy rằng x(·) là nghiệm của

hệ (2.1) khi và chỉ khi v(·) là nghiệm của hệ

v(k + 1) = Aσ(k),σ(k−1)v(k), (2.8)

trong đó

x(k) = Vσ(k−1)

[
v(k)

−A2
σ(k),σ(k−1)v(k)

]
.

2.2. Tính dương và tính ổn định của hệ chuyển mạch rời rạc

tuyến tính suy biến chỉ số 1

Định nghĩa 2.2.1. Hệ chuyển mạch rời rạc tuyến tính suy biến (SDLS) (2.1)
được gọi là dương nếu với mọi tín hiệu chuyển mạch σ và với mọi điều kiện
ban đầu chấp nhận được x(0) ∈ Sσ(0) ∩ Rn

+, ta có x(k) ≥ 0 với mọi k ∈ N.

Định lý 2.2.1. Giả sử rằng hệ SDLS (2.1) có chỉ số 1. Các khẳng định sau
là tương đương.

i) Hệ SDLS (2.1) là hệ dương.

ii) Tồn tại các ma trận Hi,j thỏa mãn điều kiện dưới đây{
Hi,j ≥ 0,

Φi,j = Hi,jPj,
∀i, j ∈ N.

iii) Tồn tại các ma trận Di,j sao cho

Φi,j +Di,j(I − Pj) ≥ 0, ∀i, j ∈ N.
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Nhận xét 2.2.1. Sự tồn tại của ma trận Hi,j không âm và thỏa mãn bất
đẳng thức tuyến tính trong điều kiện ii) của Định lý 3.1.1 có thể được kiểm
tra thông qua quy hoạch tuyến tính, bất đẳng thức ma trận tuyến tính. Hơn
nữa, điều kiện iii) có thể được biểu diễn lại theo dạng quy hoạch tuyến tính

[(P T
i,j − I)⊗ I)]xi,j ≤ bi,j,

với xi,j = vec(Di,j) và bi,j = vec(Φi,j).

Định nghĩa 2.2.2. Hệ chuyển mạch rời rạc tuyến tính suy biến (2.1) được
gọi là ổn định (tiệm cận) nếu với mọi tín hiệu chuyển mạch σ và điều kiện
ban đầu x(0) ∈ Sσ(0), ta có x(k) → 0 khi k → ∞.

Định lý 2.2.2. Giả sử rằng hệ SDLS (2.1) có chỉ số 1, và với mọi i, j ∈ N
tồn tại ma trận Di,j sao cho

Hi,j := Φi,j +Di,j(I − Pj)

là ma trận không âm và Hi,j ≤ H với H là ma trận Schur. Khi đó, hệ (2.1)
là hệ dương và ổn định.

Định lý 2.2.3. Giả sử rằng hệ SDLS (2.1) có chỉ số 1 và tồn tại véc tơ
v ∈ Rn, v > 0;Zi,j ∈ Rn×n sao cho{

v⊤(Φi,j − I) + 1
⊤
nZi,j(I − Pj) < 0,

diag(v)Φi,j + Zi,j(I − Pj) ≥ 0,
(2.9)

với mọi i, j ∈ N , trong đó 1n = [1 . . . 1]⊤. Khi đó, hệ SDLS (2.1) là hệ dương
và ổn định.

Định lý 2.2.4. Giả sử rằng hệ SDLS (2.1) có chỉ số 1. Với hằng số 0 < τ ∈
N cho trước, các khẳng định sau là tương đương:

i) Tồn tại ma trận Di,j ∈ Rn×n và một tập các véc tơ vi,j ∈ Rn, vi,j >
0, i, j ∈ N sao cho

Hi,j := Φi,j +Di,j(I − Pj) ≥ 0, ∀i, j ∈ N,

v⊤i,j(Hi,j − I) < 0, ∀i, j ∈ N,

v⊤i,jH
τ
i,j − v⊤h,k < 0, ∀i, j, h, k ∈ N ;

ii) Tồn tại ma trận Di,j ∈ Rn×n và một tập các véc tơ vi,j,l ∈ Rn, vi,j,τ >
0, i, j ∈ N, l = 0, 1, . . . τ sao cho
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
Hi,j := Φi,j +Di,j(I − Pj) ≥ 0, ∀i, j ∈ N,

vh,k,0 − vi,j,τ < 0, ∀i, j, h, k ∈ N,

v⊤i,j,τ(Hi,j − I) < 0, ∀i, j ∈ N,

v⊤i,j,l+1Hi,j − v⊤i,j,l ≤ 0, ∀i, j ∈ N, 0 ≤ l ≤ τ − 1.

Hơn nữa, khi một trong các khẳng định trên đúng, hệ SDLS (2.1) là hệ dương
và ổn định với mọi mọi dãy thời điểm chuyển mạch {kq} thỏa mãn τq ≥ τ .

2.3. Tính ổn định hóa được của hệ chuyển mạch rời rạc tuyến

tính suy biến chỉ số 1 dương

Ta định nghĩa tập điều kiện ban đầu không âm chấp nhận được
S = ∪i∈NSi ∩ Rn

+.

Định nghĩa 2.3.1. i) Hệ SDLS dương (2.1) được gọi là ổn định hóa được
nếu với mỗi điều kiện ban đầu dương x(0) ∈ S tồn tại một dãy chuyển
mạch σ : N ∪ {0} → N sao cho quỹ đạo trạng thái x(k) hội tụ về 0.

ii) Hệ SDLS dương (2.1) được gọi là ổn định hóa được nhất quán nếu tồn
tại một dãy chuyển mạch σ : N ∪ {0} → N sao cho với mỗi i ∈ N , với
mọi điều kiện ban đầu dương x(0) ∈ Si ∩ Rn

+, quỹ đạo trạng thái tương

ứng x(k) hội tụ về 0.

Nhận xét 2.3.1. Trong định nghĩa ổn định hóa được, việc chọn dãy chuyển
mạch σ có thể phụ thuộc vào điều kiện ban đầu x(0) ∈ S; còn trong định
nghĩa ổn định hóa được nhất quán, dãy chuyển mạch σ không phụ thuộc vào
điều kiện ban đầu x(0) ∈ Si∩Rn

+ với mỗi i ∈ N , nhưng nó có thể phụ thuộc

vào Si.

Định lý 2.3.1. Giả sử hệ chuyển mạch rời rạc tuyến tính suy biến (2.1) là
hệ dương và có chỉ số 1. Khi đó, các khẳng định sau tương đương:

i) hệ ổn định hóa được;

ii) hệ ổn định hóa được nhất quán;

iii) tồn tại M > 0 và bộ chỉ số i0, i1, . . . , iM ∈ N thỏa mãn iM = i0 sao cho

∥ΦiM ,iM−1
ΦiM−1,iM−2

. . .Φi1,i0∥ < 1;

iv) với mỗi p ∈ N , và điều kiện ban đầu dương x(0) ∈ Sp ∩Rn
+, tồn tại một

quy tắc chuyển mạch tuần hoàn để hệ ổn định.

20



Nhận xét 2.3.2. Định lý trên là tổng quát hóa của Mệnh đề 1 trong [20] về
tính ổn định hóa của hệ chuyển mạch rời rạc tuyến tính khi Ei = I với mọi
i ∈ N .

Định nghĩa 2.3.2. Dưới bán kính phổ của một họ các cặp ma trận {(Ei, Ai)}N1
cho hệ chuyển mạch rời rạc tuyến tính suy biến chỉ số 1 dạng (2.1) được định
nghĩa như sau

ρ̌
(
{(Ei, Ai)}N1

)
:= lim

k→∞
min

i0,i1,...,ik∈N
∥Φik,ik−1

Φik−1,ik−2
. . .Φi1,i0∥

1
k ,

trong đó Φi,j là ánh xạ một bước từ mode j đến mode i.

Để chứng minh sự tồn tại của giới hạn trong định nghĩa trên, ta cần mở
rộng Bổ đề Fekete (xem [19]).

Bổ đề 2.3.1. (Bổ đề Fekete mở rộng) Cho {ak}∞k=0 là dãy số thực sao cho

ai+j+1 ≤ c+ ai + aj, ∀i, j ≥ 1,

trong đó c là hằng số. Khi đó, giới hạn lim
k→∞

ak
k

tồn tại và bằng inf
k≥1

{
ak + c

k

}
.

Từ Bổ đề Fekete mở rộng trên, ta có hệ quả dưới đây.

Hệ quả 2.3.1. Cho {ak}∞k=0 là dãy số dương và c > 0 sao cho

ai+j+1 ≤ caiaj, với mọi i, j ≥ 1.

Khi đó, giới hạn lim
k→∞

(ak)
1
k tồn tại.

Định lý 2.3.2. Hệ chuyển mạch rời rạc tuyến tính suy biến dương có chỉ số
1 dạng (2.1) ổn định hóa được khi và chỉ khi

ρ̌
(
{(Ei, Ai)}N1

)
< 1.

Hệ quả 2.3.2. Giả sử hệ SDLS dạng (2.1) là hệ dương và có chỉ số 1. Xét
hệ giản lược (2.8). Khi đó

ρ̌
(
{(Ei, Ai)}Ni=1

)
= lim

k→∞
min

i−1,i0,...,ik−1∈N
∥A1

ik−1,ik−2
. . . A

1
i0,i−1

∥
1
k ,

trong đó A
1
ik−1,ik−2

, . . . , A
1
i0,i−1

xác định như trong Mệnh đề 2.1.1, và hệ (2.1)

là ổn định hóa được khi và chỉ khi dưới bán kính phổ này nhỏ hơn 1.
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Chương 3

Hệ chuyển mạch rời rạc tuyến tính

suy biến chỉ số 1 có nhiễu

3.1. Hệ chuyển mạch suy biến có nhiễu với cặp ma trận hệ số có

quy tắc chuyển mạch giống nhau.

Xét hệ chuyển mạch rời rạc tuyến tính suy biến chỉ số 1 có nhiễu dạng

Eσ(k)x(k + 1) = Aσ(k)x(k) + fσ(k)(x(k)), (3.1)

trong đó σ : N ∪ {0} → N, là tín hiệu chuyển mạch, Ei, Ai ∈ Rn×n và
fi : Rn → Rn, i ∈ N, là nhiễu, x(k) ∈ Rn là vectơ trạng thái tại thời điểm
k ∈ N. Giả sử rằng, các ma trận Ei là các ma trận suy biến với mọi i ∈ N .
Ta liên kết hệ (3.8) với điều kiện ban đầu

Pσ(k0−1)x(k0) = Pσ(k0−1)γ, (3.2)

với γ là vectơbất kì trong Rn và k0 là số nguyên không âm cố định.

3.1.1. Tính giải được

Định lý 3.1.1. Cho fσ(k)(x) là hàm liên tục Lipschitz với hệ số Lipschitz đủ

nhỏ, tức là,

∥fi(x)− fi(x̃)∥ ≤ Li∥x− x̃∥,∀x, x̃ ∈ Rn, i ∈ N, (3.3)

và
ωi := Limax{∥Qi,jG

−1
i,j ∥ : j ∈ N} < 1,∀i ∈ N. (3.4)

Khi đó, bài toán giá trị ban đầu (3.1)− (3.2) có nghiệm duy nhất.

22



Với i ∈ N , ta đặt

∆i := {x ∈ Rn : Qjx = −Qi,jG
−1
i,j (fi(x) + AiPjx), với j ∈ N}. (3.5)

Mệnh đề 3.1.1. Xét đa tạp nghiệm ∆i được định nghĩa trong (3.5). Khi đó,
các khẳng định sau là đúng:

(i) ∆i = {x ∈ Rn : fi(x) + Aix ∈ imEi}.

(ii) ∆i ∩ kerEj = {0}.

Nghiệm duy nhất của bài toán giá trị ban đầu (3.1), (3.2) sẽ được định
nghĩa bởi x(k) = x(k, k0; γ).

3.1.2. Tính ổn định

Định nghĩa 3.1.1. Hệ chuyển mạch rời rạc tuyến tính suy biến chỉ số 1 có
nhiễu dạng (3.1) được gọi là

(i) ổn định nếu với mỗi ε > 0, k0 ≥ 0 bất kì và với mọi quy tắc chuyển
mạch σ, luôn tồn tại δ = δ(ε, k0) ∈ (0, ε] sao cho ∥Pσ(k0−1)γ∥ < δ thì ta

có ∥x(k, k0; γ)∥ < ε với mọi k ≥ k0;

(ii) ổn định đều nếu hệ ổn định và δ không phụ thuộc vào k0;

Ta định nghĩa K là lớp các hàm tăng ψ : [0,∞) → [0,∞) sao cho
ψ(0) = 0, ψ(x) > 0 for x ̸= 0 và lim

x→0+
ψ(x) = 0.

Bổ đề 3.1.1. Hệ SDLS chỉ số 1 có nhiễu (3.1) là ổn định nếu và chỉ nếu
tồn tại hàm ψ ∈ K, sao cho với mỗi số nguyên không âm k0 và với mọi quy
tắc chuyển mạch, bất đẳng thức sau đúng

∥x(k)∥ ≤ ψ(∥x(k0)∥), ∀k ≥ k0. (3.6)

Định lý 3.1.2. Hệ SDLS chỉ số 1 có nhiễu (3.1) là ổn định nếu và chỉ nếu
tồn tại hàm Lyapunov Vσ : N×Rn → R+ liên tục theo biến thứ hai tại γ = 0
và các hàm a, ψk ∈ K, sao cho

i) a(∥y∥) ≤ Vσ(k, y) ≤ ψk(∥y∥), ∀k ≥ 0,∀y ∈ ∆σ(k),∀σ,

ii) ∆Vσ(k, y(k)) := Vσ(k + 1, y(k + 1)) − Vσ(k, y(k)) ≤ 0,∀k ≥ 0,∀σ, với
y(k) là nghiệm của (3.1) tương ứng với σ.

Định lý 3.1.3. Hệ SDLS chỉ số 1 có nhiễu (3.1) là ổn định đều nếu và chỉ
nếu tồn tại các hàm a, b ∈ K và hàm Lyapunov Vσ : N× Rn → R+, sao cho

i) a(∥y∥) ≤ Vσ(k, y) ≤ b(∥y∥), ∀k ≥ 0,∀y ∈ ∆σ(k),∀σ,

ii) ∆Vσ(k, y(k)) := Vσ(k + 1, y(k + 1)) − Vσ(k, y(k)) ≤ 0,∀k ≥ 0,∀σ, với
y(k) là nghiệm của (3.1) tương ứng với σ.
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3.2. Hệ chuyển mạch rời rạc tuyến tính suy biến thuần nhất với

cặp ma trận hệ số có quy tắc chuyển mạch lệch nhau.

Xét hệ chuyển mạch rời rạc tuyến tính suy biến thuần nhất với cặp ma trận
hệ số có quy tắc chuyển mạch lệch nhau dạng

Eσ(k+1)x(k + 1) = Aσ(k)x(k), (3.7)

trong đó σ : N ∪ {0} → N, là quy tắc chuyển mạch, Ei, Ai ∈ Rn×n. Giả sử
rằng Ei là các ma trận suy biến với mọi i ∈ N .

Ta giả sử (3.7) là hệ có chỉ số 1 (xem [8, 38]), tức là, các giả thiết sau
được thỏa mãn

(i) rankEi = r < n,∀i ∈ N ,

(ii) Si,j ∩ kerEi = {0},∀i, j ∈ N ,
trong đó Si,j = A−1

i (imEj) = {ξ ∈ Rn : Aiξ ∈ imEj}.

Trong [38], tác giả chứng minh được rằng, từ giả thiết (ii) suy ra

Si,j ⊕ kerEi = Rn,∀i, j ∈ N.

Gọi Vi,j = {s1i,j, . . . , sri,j, hr+1
i , . . . , hni } là ma trận gồm các cột tương ứng là

các vectơ cơ sở của Si,j và kerEi và Q = diag(0r, In−r), P = In −Q, với 0r
là ma trận không cỡ r × r và In−r là ma trận đơn vị cỡ (n− r)× (n− r).
Khi đó, ma trậnQi,j := Vi,jQV

−1
i,j xác định một phép chiếu lên kerEi dọc theo

Si,j (tức là, Q
2
i,j = Qi,j và imQi,j = kerEi) và Pi,j := In−Qi,j là phép chiếu

lên Si,j dọc theo kerEi. Hơn nữa, ta xác định toán tử nối Qi,j,k := Vi,jQV
−1
j,k .

Định lý 3.2.1 (xem [38]). Xét hệ chuyển mạch rời rạc tuyến tính suy biến
thuần nhất chỉ số 1 dạng (3.7), với mọi i, j,m ∈ N , các khẳng định sau là
đúng:

(i) Gi,j,m = Ej + AiQi,j,m là ma trận không suy biến;

(ii) EjPj,m = Ej;

(iii) Pj,m = G−1
i,j,mEj;

(iv) V −1
j,mG

−1
i,j,mAiVi,jQ = Q.
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3.3. Tính giải được của hệ chuyển mạch rời rạc tuyến tính suy

biến chỉ số 1 có nhiễu

Xét hệ chuyển mạch rời rạc tuyến tính suy biến chỉ số 1 có nhiễu dạng

Eσ(k+1)x(k + 1) = Aσ(k)x(k) + fσ(k)(x(k)), (3.8)

trong đó σ : N ∪ {0} → N, là quy tắc chuyển mạch, Ei, Ai ∈ Rn×n và
fi : Rn → Rn, i ∈ N, là nhiễu, x(k) ∈ Rn là vectơ trạng thái tại thời điểm
k ∈ N. Giả sử rằng Ei là các ma trận suy biến với mọi i ∈ N và hệ chuyển
mạch rời rạc tuyến tính suy biến thuần nhất tương ứng có chỉ số 1.

Ta liên kết hệ (3.8) với điều kiện ban đầu

Pσ(k0),σ(k0+1)x(k0) = Pσ(k0),σ(k0+1)γ, (3.9)

với γ là vectơ bất kỳ trong Rn và k0 là số nguyên không âm cố định.

Định lý 3.3.1. Cho fσ(k)(x) là hàm liên tục Lipschitz với hệ số Lipschitz đủ

nhỏ, tức là,

∥fi(x)− fi(x̃)∥ ≤ Li∥x− x̃∥,∀x, x̃ ∈ Rni ∈ N, (3.10)

và
ωi := Limax{∥Qi,j,mG

−1
i,j,m∥ : j,m ∈ N} < 1,∀i ∈ N. (3.11)

Khi đó bài toán giá trị ban đầu (3.8)− (3.9) có nghiệm duy nhất.

Ta định nghĩa toán tử Cauchy liên kết với hệ (3.8)

Φσ(k, h) =
k∏

l=h+1

Pσ(l)σ(l+1)G
−1
σ(l−1)σ(l)σ(l+1)Aσ(l−1) và Φσ(h, h) = Pσ(h)σ(h+1).

(3.12)
Khi đó, dễ thấy rằng Φσ(k, h) thỏa mãn

Φσ(k, h) = Φσ(k, l)Φσ(l, h), ∀k ≥ l ≥ h.

Công thức biến thiên hằng số cho nghiệm của hệ (3.8) được đưa ra trong
hệ quả dưới đây.

Hệ quả 3.3.1. Nghiệm duy nhất của hệ (3.8) với điều kiện ban đầu (3.9)
thỏa mãn phương trình

x(k) =Φσ(k, k0)Pσ(k0)σ(k0+1)γ

+
k−1∑
i=k0

Φσ(k, i+ 1)Pσ(i+1)σ(i+2)G
−1
σ(i)σ(i+1)σ(i+2)fσ(i)(x(i))

−Qσ(k)σ(k+1)σ(k+2)G
−1
σ(k)σ(k+1)σ(k+2)(fσ(k)(x(k)) + Aσ(k)Pσ(k)σ(k+1)x(k)).

(3.13)
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Đặt

∆i := {x ∈ Rn : Qi,jx = −Qi,j,mG
−1
i,j,m(fi(x) + AiPi,jx), vớij,m ∈ N}.

(3.14)

Mệnh đề 3.3.1. Xét đa tạp nghiệm ∆i được định nghĩa trong (3.14). Khi
đó, các khẳng định sau là đúng:

(i) ∆i = {x ∈ Rn : fi(x) + Aix ∈ imEj, với j ∈ N}.

(ii) ∆i ∩ kerEi = {0}.

Nghiệm duy nhất của bài toán giá trị ban đầu (3.8)− (3.9) sẽ được định
nghĩa bởi x(k) = x(k, k0; γ).

3.4. Tính ổn định của hệ chuyển mạch rời rạc tuyến tính suy biến

chỉ số 1 có nhiễu

Định nghĩa 3.4.1. Hệ SDLS chỉ số 1 có nhiễu dạng (3.8) được gọi là

i) ổn định nếu với mỗi ε > 0, k0 ≥ 0 bất kỳ và với mọi quy tắc chuyển
mạch, luôn tồn tại δ = δ(ε, k0) ∈ (0, ε] sao cho ∥Pσ(k0),σ(k0+1)γ∥ < δ thì

ta có ∥x(k, k0; γ)∥ < ε với mọi k ≥ k0, ổn định đều nếu nghiệm ổn định
và δ không phụ thuộc vào k0;

ii) ổn định tiệm cận nếu nghiệm ổn định và với bất kỳ k0 ≥ 0, với mọi quy
tắc chuyển mạch, tồn tại δ = δ(k0) > 0 sao cho ∥Pσ(k0),σ(k0+1)γ∥ < δ thì

ta có ∥x(k, k0; γ)∥ → 0 khi k → +∞;

iii) ổn định mũ nếu tồn tại M > 0, 0 < λ < 1 sao cho với mọi k ≥ k0 và
mọi quy tắc chuyển mạch ta có ∥x(k, k0; γ)∥ ≤Mλk−k0∥Pσ(k0),σ(k0+1)γ∥.

Ta định nghĩa K là lớp các hàm tăng ψ : [0,∞) → [0,∞) sao cho
ψ(0) = 0, ψ(x) > 0 với x ̸= 0 và lim

x→0+
ψ(x) = 0.

Bổ đề 3.4.1. Hệ SDLS chỉ số 1 có nhiễu (3.8) là ổn định nếu và chỉ nếu
tồn tại hàm ψ ∈ K, sao cho với mỗi số nguyên không âm k0 và với mọi quy
tắc chuyển mạch, bất đẳng thức sau đúng

∥x(k)∥ ≤ ψ(∥x(k0)∥), ∀k ≥ k0. (3.15)

Định lý 3.4.1. Hệ SDLS (3.8) là ổn định nếu và chỉ nếu tồn tại của hàm
Lyapunov Vσ : N×Rn → R+ liên tục theo biến thứ hai tại γ = 0 và các hàm
a, ψk ∈ K, sao cho
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i) a(∥y∥) ≤ Vσ(k, y) ≤ ψk(∥y∥), ∀k ≥ 0,∀y ∈ ∆σ(k),∀σ,

ii) ∆Vσ(k, y(k)) := Vσ(k + 1, y(k + 1)) − Vσ(k, y(k)) ≤ 0,∀k ≥ 0,∀σ, với
y(k) là nghiệm của (3.8) tương ứng với σ.

Định lý 3.4.2. Hệ SDLS chỉ số 1 có nhiễu (3.8) là ổn định đều nếu và chỉ
nếu tồn tại hai hàm a, b ∈ K và hàm Lyapunov Vσ : N× Rn → R+, sao cho

i) a(∥y∥) ≤ Vσ(k, y) ≤ b(∥y∥), ∀k ≥ 0,∀y ∈ ∆σ(k),∀σ,

ii) ∆Vσ(k, y(k)) := Vσ(k + 1, y(k + 1)) − Vσ(k, y(k)) ≤ 0,∀k ≥ 0,∀σ, với
y(k) là nghiệm của (3.8) ứng với σ.

Định lý 3.4.3. Giả sử rằng tồn tại hàm Lyapunov Vσ : Z+ × Rn → R+ và
các hàm a, c, ψk ∈ K sao cho

i) a(∥y∥) ≤ Vσ(k, y) ≤ ψk(∥y∥), ∀k ≥ 0,∀y ∈ ∆σ(k),∀σ,

ii) ∆Vσ(k, y(k)) := Vσ(k + 1, y(k + 1)) − Vσ(k, y(k)) ≤ −c(∥y(k)∥),∀k ≥
0,∀σ, với y(k) là nghiệm của (3.8) ứng với σ.

Khi đó, hệ SDLS chỉ số 1 có nhiễu (3.8) là ổn định tiệm cận.

Ta định nghĩa

µ = max{Li(1 +Ki)∥Pj,mG
−1
i,j,m∥ : i, j,m ∈ N}.

Định lý 3.4.4. Xét hệ SDLS chỉ số 1 có nhiễu (3.8). Giả sử các điều kiện
của Định lý 3.3.1 được thỏa mãn. Nếu tồn tại M > 0, 0 < λ < 1 sao cho

∥Φσ(k, h)∥ ≤Mλk−h, ∀k ≥ h ≥ k0,

và Mµ < 1− λ, thì hệ SDLS chỉ số 1 có nhiễu (3.8) là ổn định mũ.
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Kết luận và kiến nghị

Kết quả đạt được của luận án
Trong luận án này, chúng tôi đã nghiên cứu và giải được hai bài toán của

hệ chuyển mạch rời rạc suy biến.

� Bài toán 1 nghiên cứu hệ chuyển mạch rời rạc tuyến tính suy biến chỉ
số 1 dương. Chúng tôi đã nghiên cứu tính ổn định của hệ này thông qua
phương pháp LP (linear programing) cùng với các tính chất của hệ có
chỉ số 1, thiết lập điều kiện ổn định với thời gian dừng nhỏ nhất. Sau
đó, luận án đưa ra định nghĩa về dưới bán kính phổ của một họ các cặp
ma trận, từ đó thiết lập điều kiện cần và đủ cho tính ổn định hóa được
của hệ chuyển mạch rời rạc tuyến tính suy biến chỉ số 1.

� Bài toán 2 nghiên cứu tính giải được và ổn định của lớp hệ chuyển mạch
rời rạc tuyến tính suy biến có nhiễu với phần tuyến tính có chỉ số 1 trong
hai trường hợp: quy tắc chuyển mạch ở cặp ma trận hệ số giống nhau và
khác nhau. Chúng tôi đưa ra kết quả cho tính giải được của lớp hệ này
bằng cách sử dụng các tính chất của phép chiếu, tính chất của hệ chỉ số
1 của hệ thuần nhất và nguyên lý ánh xạ co. Sau đó, luận án thiết lập
điều kiện ổn định, ổn định đều, ổn định tiệm cận của hệ dựa vào phương
pháp hàm Lyapunov. Cuối cùng, chúng tôi đề xuất điều kiện ổn định
mũ của hệ bằng cách sử dụng công thức biến thiên hằng số cho nghiệm,
đánh giá nghiệm và sử dụng bất đẳng thức Gronwall dạng rời rạc.

Một số vấn đề có thể tiếp tục nghiên cứu:

� Nghiên cứu tính giải được và ổn định của hệ chuyển mạch rời rạc suy
biến phi tuyến dạng Eσ(k)x(k + 1) = Fσ(k)(x(k)).

� Ổn định hóa hệ chuyển mạch rời rạc suy biến chỉ số 1 bằng quy luật
chuyển mạch thích hợp hoặc bằng điều khiển phản hồi.

� Nghiên cứu tính ổn định, ổn định hóa được của hệ chuyển mạch rời rạc
suy biến không có chỉ số 1.
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