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LỜI CAM ĐOAN

Tôi xin cam đoan luận án là công trình nghiên cứu của riêng tôi, được

thực hiện dưới sự hướng dẫn của tập thể giảng viên hướng dẫn. Các số liệu và

kết quả trình bày trong luận án là trung thực. Những phần kết quả có liên quan

đến các công trình đồng tác giả đã được sử dụng trung thực, có trích dẫn đầy

đủ, và đã nhận được sự đồng thuận của các đồng tác giả trước khi đưa vào luận

án. Tôi chịu trách nhiệm về tính chính xác và trung thực của toàn bộ nội dung

luận án.

Hà Nội, ngày . . . tháng . . . năm 2025

Tác giả

Nguyễn Văn Nghĩa
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Danh mục ký hiệu và viết tắt

Ký hiệu Giải thích

Fq Trường hữu hạn với q phần tử,

q là lũy thừa của một số nguyên tố p.

S = Fq[x1, . . . , xn] Vành đa thức n ẩn có hệ số thuộc trường Fq.

Im Ideal của vành Fq[x1, . . . , xn] sinh bởi {xq
m

1 , xq
m

2 , . . . , xq
m

n }.

Qm(n) Vành thương Fq[x1, . . . , xn]/Im.

Qk,i, 0 ≤ i ≤ k − 1 Đa thức Dickson hạng k thứ i.

Vi = Vi(x1, . . . , xi) Bất biến Mùi thứ i.

= V (x1, . . . , xi)

Dn = Fq[Qn,0, . . . , Qn,n−1] Đại số Dickson hạng n.

Fq ⟨x1, x2, . . . , xn⟩ Không gian véctơ có cơ sở {x1, x2, . . . , xn} trên trường Fq.

GLn,GLn(Fq) Nhóm tuyến tính tổng quát n chiều có hệ số trên trường Fq.

Pα Nhóm con Parabolic của nhóm tuyến tính tổng quát GLn.

Bn Nhóm con Borel của nhóm tuyến tính tổng quát GLn.

SGLn , SPα , SBn Không gian các đa thức của S bất biến dưới tác động
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Ký hiệu Giải thích

của các nhóm GLn,Pα,Bn.

Qm(n)GLn ,Qm(n)Pα , Không gian các đa thức của Qm(n) bất biến dưới tác động

Qm(n)Bn của các nhóm GLn,Pα,Bn.

Bm(α) Một Fq-cơ sở của không gian bất biến Qm(n)Pα.

Bm(1n) Một Fq-cơ sở của không gian bất biến Qm(n)Bn.

Bm(n) Một Fq-cơ sở của không gian bất biến Qm(n)GLn.

Bm(2, 1) Một Fq-cơ sở của không gian bất biến Qm(3)P(2,1).

Bm(1, 2) Một Fq-cơ sở của không gian bất biến Qm(3)P(1,2).
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MỞ ĐẦU

Lý thuyết bất biến nghiên cứu tác động của nhóm, các điểm bất động và

các quỹ đạo. Thông thường, nhóm tác động trên các không gian véctơ (phân

bậc), hoặc các đại số trên một trường. Đây là một trong những lĩnh vực nghiên

cứu trung tâm của đại số, với liên hệ và ứng dụng trong nhiều nhánh nghiên

cứu khác của toán học như tổ hợp, lý thuyết nhóm, đối đồng điều của nhóm,

tôpô đại số và lý thuyết biểu diễn.

Đối tượng nghiên cứu cổ điển và quan trọng nhất là tác động tuyến tính

của các nhóm hữu hạn trên vành đa thức. Ký hiệu V là một không gian véctơ n

chiều trên trường k, và (x1, . . . , xn) là một cơ sở của V . Ký hiệu GL(V ) là nhóm

các tự đẳng cấu tuyến tính của V . Ta có thể đồng nhất GL(V ) với nhóm nhân

các ma trận khả nghịch cấp n với hệ số trong k. Ký hiệu S là đại số đa thức

theo các biến x1, . . . , xn với hệ số trong k,

S = k[x1, . . . , xn].

Tác động của một tự đồng cấu σ ∈ GL(V ) trên V mở rộng một cách duy nhất

thành một tự đẳng cấu đại số của S bởi công thức

(σf)(x1, . . . , xn) = f(σx1, . . . , σxn),

ở đó σxj =
∑

σi,jxi. Ta cần tìm tất cả các đa thức f ∈ S sao cho σf = f với mọi

σ thuộc một nhóm con hữu hạn G nào đó của GL(V ).

Một ví dụ quen thuộc là các bất biến của nhóm đối xứng Σn, tác động
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theo cách thông thường như là nhóm hoán vị các biến x1, . . . , xn. Các đa thức

bất biến đó thường được gọi là các đa thức đối xứng. Một kết quả cơ bản của

đại số là tập hợp tất cả các đa thức đối xứng lập thành một đại số con của đại

số đa thức, hơn nữa, nó cũng là một vành đa thức:

k[x1, . . . , xn]
Σn = k[e1, . . . , en].

ở đó ei là các đa thức đối xứng sơ cấp. Đa thức đối xứng là các đối tượng toán

học quen thuộc trong nhiều lĩnh vực khác nhau của toán học.

Tổng quát hơn, nếu G là một nhóm hữu hạn, và M là một k[G]-môđun,

chúng ta quan tâm đến bài toán xác định không gian con các bất biến

MG = {m ∈ M : gm = m, ∀g ∈ G}

hay nói cách khác đối đồng điều bậc 0, H0(G;M), của G với hệ số trong M và

đối ngẫu của nó là không gian đối cố định1

H0(G;M) = MG = M/⟨gm−m : g ∈ G,m ∈ M⟩.

Trong một số tài liệu, MG còn được gọi là không gian đối bất biến. Tuy nhiên,

trong lý thuyết bất biến cũng như lý thuyết biểu diễn, có sự khác biệt rất lớn

giữa trường hợp đặc số của trường chia hết (modular) hay không chia hết (non-

modular) cấp của nhóm. Trong trường hợp non-modular, đặc số của trường k

bằng 0, hoặc nguyên tố cùng nhau với cấp của nhóm. Khi đó, gần như toàn bộ

lý thuyết trở nên tương tự như trên trường số phức. Từ quan điểm ứng dụng

trong tôpô đại số, và đối đồng điều của nhóm, lý thuyết bất biến modular có vai

trò quan trọng hơn. Trong thực tế thì nhiều vấn đề trong trường hợp modular

khó và thú vị hơn và là chủ đề của các nghiên cứu thời sự.

Trong Luận án này, chúng tôi sẽ chỉ quan tâm tới tác động nhóm hữu

1Cofixed space
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hạn trên các không gian véctơ phân bậc trên trường hữu hạn có q phần tử, ký

hiệu là Fq, ở đó q là luỹ thừa của đặc số p là một số nguyên tố nào đó.

Đối với các vành giao hoán trên trường Fq, ánh xạ lấy luỹ thừa q, thường

được biết đến dưới tên gọi đồng cấu Frobenius, đóng vai trò vô cùng quan trọng.

Người ta thường tìm các cách thức khác nhau để khai thác sự tồn tại của đồng

cấu Frobenius. Một trong những kỹ thuật đó là toán tử Steenrod P i, i ≥ 0,

và đại số Steenrod A. Mặc dù có nguồn gốc từ tôpô đại số, với vai trò là các

toán tử đối đồng điều của các không gian tôpô, đại số Steenrod có thể được xây

dựng một cách hoàn toàn đại số. Các không gian bất biến thường sẽ có cấu trúc

của một môđun trên đại số Steenrod, và vì thế việc sử dụng các hiểu biết về

đại số Steenrod trong lý thuyết bất biến modular trở nên hoàn toàn tự nhiên.

Hướng nghiên cứu về các cấu trúc của vành bất biến xem như môđun trên đại

số Steenrod đã được nghiên cứu rộng rãi. Các tài liệu tham khảo tiêu biểu là

các công trình của Boardman [4], Meyer và Smith [21], cũng như của Walker và

Wood [36], [37], cùng các tài liệu tham khảo liên quan.

Đại số Dickson, Đại số Mùi

Một trong những kết quả nền tảng trong lý thuyết bất biến modular là

công trình của Dickson [7] từ năm 1911, xác định tường minh cấu trúc của vành

bất biến của vành đa thức n biến trên trường Fq dưới tác động của nhóm tuyến

tính tổng quát GLn(Fq).

Dn = Fq[x1, . . . , xn]
GLn(Fq) = Fq[Qn,0, . . . , Qn,n−1].

Các đa thức Qn,i, 0 ≤ i ≤ n− 1, được gọi là các bất biến Dickson. Một phần tử

của đại số Dickson Dn được gọi là các đa thức Dickson. Với mọi nhóm con G

của GLn(Fq), ta có một phép nhúng tự nhiên SGLn(Fq) ⊆ SG. Vì vậy, các đa thức

Dickson luôn nằm trong các vành bất biến, và các vành bất biến là các mở rộng
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hữu hạn của Đại số Dickson. Vì tính chất phổ quát này, đại số Dickson có tầm

quan trọng đặc biệt trong lý thuyết bất biến modular.

Khi G = Un là p-nhóm con Sylow của GLn(Fq), chúng ta có kết quả tương

tự bởi Huỳnh Mùi năm 1975 [24]:

Fq[x1, . . . , xn]
Un = Fq[V1, . . . , Vn].

Các bất biến Mùi Vi, 0 ≤ i ≤ n, giữ vai trò quan trọng tương tự như bất biến

Dickson, đặc biệt là khi khảo sát các p-nhóm.

Các vành bất biến cho các nhóm con parabolic của nhóm tuyến tính tổng

quát GLn cũng đã được xác định hoàn toàn qua các công trình của Hewitt [14],

Kuhn - Mitchell [18], Phạm Anh Minh và Võ Thanh Tùng [22].

Sau các công trình của Quillen, Mùi, Madsen và Milgram, Wilkerson và

nhiều cộng sự, Đại số Dickson, đại số Mùi đã trở thành một công cụ quan trọng

trong tôpô đại số, đặc biệt là trong lý thuyết về toán tử đối đồng điều và đối

đồng điều của nhóm.

Vành đa thức modulo luỹ thừa Frobenius

Với mỗi số nguyên dương m, ký hiệu Im là iđêan của vành đa thức S trên

trường Fq sinh bởi các luỹ thừa Frobenius thứ m, Im = (xq
m

1 , . . . , xq
m

n ). Đặt Qm(n)

là vành thương

Qm(n) = S/Im.

Do Im ổn định dưới tác động của GLn = GLn(Fq), vành thương Qm(n) có tác

động cảm sinh của GLn. Cấu trúc GLn-môđun của Qm(n), và đặc biệt là không

gian GLn-bất biến của nó là đối tượng nghiên cứu chính của luận án này.

Các nghiên cứu của Kuhn [17] về Morava K-lý thuyết của không gian

phân loại cũng như của Boardman [4] và Kameko [15] về bài toán tìm hệ sinh

9



tối tiểu của vành đa thức xem như môđun trên đại số Steenrod cho thấy cấu trúc

môđun trên nhóm tuyến tính tổng quát và/hoặc trên đại số Steenrod của vành

đa thức modulo luỹ thừa Frobenius cần được nghiên cứu một cách kỹ lưỡng hơn.

Từ cách xây dựng, ta thấy Qm(n) là một đại số hữu hạn chiều. Ở bậc cao

nhất n(qm − 1), ta có một không gian véctơ một chiều, sinh bởi đơn thức

xq
m−1
1 · · · xq

m−1
n ,

với tác động tầm thường của GLn. Ta có thể định nghĩa một dạng song tuyến

tính không suy biến trên Qm(n) bởi công thức

(f, g) =


fg, nếu deg(fg) = n(qm − 1),

0, trong các trường hợp khác.

Vì vậy, tồn tại một đẳng cấu giữa các không gian véctơ

Qm(n)GLn ∼= Qm(n)GLn
.

Do đối ngẫu Poincare, thông tin về không gian bất biến Qm(n)GL
n sẽ cho

thông tin về không gian đối cố định Qm(n)GLn
, và khi cho m đến vô cùng, ta

thu được thông tin về không gian đối cố định SGLn
của vành đa thức. Một điều

đáng ngạc nhiên là trong khi không gian bất biến SGLn, hay còn gọi là đại số

Dickson, đã được xác định hoàn toàn từ năm đầu thế kỷ 20, trong khi đó gần

như không có hiểu biết nào về SGLn
cho đến các công trình của Lewis-Reiner và

Stanton [19].

Vành đa thức modulo Frobenius cũng cho thông tin về đại số đối bất

biến2. Nhắc lại rằng nếu GLn (Fq), vành đối bất biến của GLn là vành thương

của đại số đa thức S bởi iđêan sinh bởi các đa thức bất biến SGLn không chứa

2coinvariant algebra
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hằng (tức là không chứa các thành phần bậc 0).

S ⊗SGLn k = S/(SGLn
+ ),

ở đó k được hiểu là SGLn-môđun tầm thường. Lưu ý rằng SGLn
vẫn còn tác động

cảm sinh của GLn. Chevalley, dựa trên các nghiên cứu trước đó của Shephard

và Todd phân loại các nhóm phản xạ phức chứng minh rằng khi k = C là trường

số phức, đại số đối bất biến SGLn
đẳng cấu với biểu diễn chính quy C[GLn], xem

như là GLn-môđun [16]. Điều thú vị là đẳng cấu này giúp tạo nên một phân bậc

cho biểu diễn chính quy, và nhiều nghiên cứu sâu sắc về liên hệ giữa phân bậc

này và các biểu diễn bất khả quy của GLn.

Trong trường hợp modular, Mitchell [23] chứng minh rằng đại số đối bất

biến và biểu diễn chính quy đẳng cấu Brauer với nhau, hay nói cách khác là

có cùng các thành phần hợp thành thương (composition factors). Trong trường

hợp này, chúng ta hầu như không có thông tin gì về mối liên hệ giữa các biểu

diễn bất khả quy và các phân bậc cảm sinh từ đẳng cấu trên.

Mặt khác, từ phương trình cơ bản

Xqn −Xqn−1

Qn,n−1 + · · ·+ (−1)nXq0Qn,0 = 0,

với mọi X thuộc không gian con được sinh bởi x1, . . . , xn, ta kết luận rằng iđêan

Frobenius (xq
n

1 , . . . , xq
n

n ) nằm trong iđêan sinh bởi các Qn,i, hay nói cách khác là

(SGLn
+ ). Từ đó, chúng ta có một toàn cấu chính tắc của các GLn-môđun

Qn(n) = S/(xq
n

1 , . . . , xq
n

n ) 7−→ S/(SG
+).

Đối tượng nghiên cứu chính của luận án là vành Qm(n) dưới tác động

của nhóm tuyến tính tổng quát GLn (Fq) và các nhóm con parabolic. Trong công

trình rất sâu sắc, Lewis, Reiner và Stanton [19] đã đưa ra một loạt các giả thuyết

về chuỗi Hilbert của các vành bất biến nói trên của vành đa thức modulo lũy
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thừa Frobenius, và các hệ quả. Đây là kết qủa của một chuỗi các công trình

nghiên cứu từ hơn 20 năm nay về hiện tượng sàng xyclic3 trong đại số tổ hợp

và các q-phiên bản của Reiner, Stanton và các cộng sự. Trong đó, vành đa thức

modulo lũy thừa Frobenius đóng vai trò như là một phiên bản tương tự của

không gian q-W Fuss Catalan, Cat(m)(W, q) khi nhóm phản xạ hữu hạn W được

thay thế bởi nhóm tuyến tính tổng quát GLn (Fq).

Trong phần tiếp theo, chúng tôi sẽ giới thiệu chi tiết hơn về nghiên cứu của

Lewis, Reiner, Stanton và các cộng sự, nhằm cung cấp một bức tranh tương đối

khái quát về nguồn gốc dẫn đến phát biểu của loạt giả thuyết về chuỗi Hilbert

của các vành bất biến Qm(n). Đây là một hướng nghiên cứu thời sự trong tổ hợp

đại số4, có nhiều liên hệ sâu sắc với lý thuyết biểu diễn, lý thuyết nút,... và cho

đến nay vẫn còn nhiều vấn đề mở chưa được giải quyết. Phần giới thiệu dưới

đây độc lập với các kết quả của các chương sau.

Hiện tượng sàng xyclic (CSP)

Phiên bản q

Một phiên bản q5 của một định lý hay công thức là một tổng quát hóa

của kết quả đó với sự xuất hiện của một tham số mới, tham số q, và khi cho q

tiến đến 1 thì ta thu lại được kết quả ban đầu. Trong đại số và tổ hợp, phiên bản

q xuất hiện một cách tự nhiên khi ta làm việc trên trường hữu hạn có q phần

tử và với các tập hợp có tác động của nhóm GLn (Fq) (ở đây q phải là luỹ thừa

của một số nguyên tố nhưng hàm biến q xây dựng được sẽ được định nghĩa với

q tuỳ ý.) Trong trường hợp này, khi cho q tiến đến 1, nhóm GLn (Fq) được coi là

suy biến thành nhóm đối xứng Σn của n phần tử. Từ năm 1956, nhà toán học

Pháp Jacques Tits [35] đã đưa ra một hình ảnh gợi ý về sự tồn tại của cái gọi là

3cyclic sieving phenomena - CSP
4algebraic combinatorics
5q-analogue
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trường có 1 phần tử để mô tả sự kiện này. Theo ông, tổ hợp của các tập hợp và

tập con cũng giống như hình học của các không gian véctơ và không gian con.

Tổ hợp là trường hợp q = 1 của hình học! Đã có rất nhiều kết quả trong tổ hợp

và lý thuyết biểu diễn cho thấy hình ảnh này hoàn toàn không hề chỉ có tính

chất tượng trưng.

Hiện tượng sàng xyclic - CSP

Năm 2004, Reiner, Stanton và White [29] đã giới thiệu một khái niệm gọi

là hiện tượng sàng xyclic6, nhằm mô tả các đối xứng của một tập hợp hữu hạn

dưới tác động của nhóm xyclic, trong đó tác động của nhóm được mã hóa thông

qua một hàm sinh liên kết với tập hữu hạn đã cho. Từ một vài ví dụ mở đầu,

đã có ngày càng nhiều ví dụ về hiện tượng này được phát hiện trong nhiều bối

cảnh khác nhau, thể hiện sự gắn kết sâu sắc với nhiều đối tượng tổ hợp khác và

với lý thuyết biểu diễn.

Giả sử X là một tập hợp hữu hạn với tác động của một nhóm xyclic C

cấp n nào đó. Có thể xem C như là một nhóm con của nhóm nhân các số phức

khác không C× qua một ánh xạ nhúng ω từ C vào nhóm nhân các căn bậc n

của đơn vị. Giả sử tồn tại một đa thức X(q), biến q, với hệ số nguyên không âm

sao cho với mọi c ∈ C, giá trị của đa thức X(q) tại q = ω(c) đếm số phần tử của

tập hợp các điểm bất động của X dưới tác động của c:

[X(q)]q=ω(c) = |{x ∈ X : c(x) = x}| = |Xc|. (1)

Nói riêng, X(1) chính là lực lượng của tập hợp X. Một bộ ba (X,X(q), C)

các dữ liệu như trên được gọi là có biểu hiện CSP. Hàm X(q) thông thường sẽ

có thêm một số tính chất bổ sung, ẩn chứa thông tin về một họ các đối tượng

tổ hợp gắn kết với nhau mà tập hợp X ban đầu chỉ là một thành phần. Hàm

6Cyclic Sieving Phenomenon - CSP
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sinh X(q) được định nghĩa với mọi q, và sẽ trở nên có nghĩa về mặt tổ hợp khi q

là một luỹ thừa của một số nguyên tố, khi đó X(q) đếm số phần tử của một đối

tượng tổ hợp nào đó được xác định trên trường hữu hạn Fq. Điểm thú vị và khá

bất ngờ là đa thức hệ số nguyên không âm X(q) không chỉ nhận giá trị nguyên

dương mà còn cũng có ý nghĩa tổ hợp khi q là một căn của đơn vị.

Một số tính chất tiêu biểu của hàm X(q) thường gặp là:

1. X(q) khi khai triển theo q có dạng
∑

x∈X qst(x), ở đó st : X → N là một ánh

xạ thú vị nào đó của tập hợp X.

2. X(q) thường có thêm công thức tích đơn giản, làm cho nó có thể tính toán

được dễ dàng.

3. X(q) =
∑

i≥0 dim(Ri)q
i = Hilb(R, q) là chuỗi Hilbert của một đại số phân

bậc R nào đó trên trường F, R = ⊕Ri gắn kết với X và có cấu trúc tổ hợp

- đại số có ý nghĩa.

Sau đây là một ví dụ đơn giản, nhưng như chúng ta sẽ thấy, là khởi đầu của

một hành trình với nhiều ý tưởng và kết quả sâu sắc.

Ví dụ 0.0.1. Xét X là tập hợp tất cả các tập con gồm k phần tử của tập hợp

[N ] = {1, 2, . . . , N}. Ta nói nhóm xyclic C cấp n tác đồng gần tự do trên [N ] nếu

như nó được sinh bởi một phần tử c ∈ ΣN có kiểu xích gồm một trong hai dạng

sau

• Một xích độ dài n, ở đó N = an, C tác động tự do trên [N ], và

• Một xích độ dài n và một tập gồm chỉ một phần tử, N = an+ 1.

Ở đó a là một số nguyên dương nào đó. Đặt X(q) là q-hệ số nhị thứcN
k


q

=
[N ]q

[k]q · [N − k]q
=

(1− qN−k+1)(1− qN−k+2) . . . (1− qN )

(1− q1) . . . (1− qk)
.
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Khi đó bộ ba (X,X(q), C) có biểu hiện CSP.

Khi q là luỹ thừa của một số nguyên tố, q-hệ số nhị thức ở trên có một

ý nghĩa tổ hợp rất cụ thể:

n
k


q

đếm số các không gian con k-chiều của một

không gian véctơ n chiều trên trường Fq. Ngoài ra, có thể chứng minh rằngn
k


q

=
∑
K⊂[n]

qK−(k−1
2 ),

ở đó tổng chạy trên tất cả các tập con K gồm k phần tử của [n], và ta cũng dùng

để chỉ tổng các số thuộc K. Trên trường F = C, có thể chọn đại số phân bậc R

chính là vành thương của vành bất biến C[x1, . . . , xn]
Σk×Σn−k dưới tác động của

nhóm con Young Σk ×Σn−k ⊂ Σn bởi iđêan sinh bởi các phần tử bậc dương của

vành đối xứng C[x1, . . . , xn]
Σn.

Trong phần tiếp theo, chúng ta sẽ thấy ví dụ mở đầu này được mở rộng

theo nhiều hướng khác nhau và là khởi đầu của một chuỗi các công trình nghiên

cứu rất sâu sắc trong tổ hợp và đại số.

Liên hệ với lý thuyết biểu diễn

Ví dụ trên có thể được kiểm chứng một cách trực tiếp, dùng các công cụ

sơ cấp. Tuy nhiên nó khá lắt nhắt và không giải thích được rõ ràng bản chất. Có

một cách thức khác để chứng minh CSP qua công cụ của lý thuyết biểu diễn,

chúng ta sẽ tóm tắt lại ở đây.

Giả sử X là một tập hợp, được trang bị một tác động của nhóm xyclic

C. Khi đó CX - không gian véctơ nhận X làm một cơ sở, là một C-môđun hoán

vị, với hàm đặc trưng χ thoả mãn

χ(c) = |Xc|, c ∈ C.
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Bây giờ xét hàm sinh X(q) và giả sử X(q) =
∑ℓ

i=0 aiq
i, ai là các số tự nhiên. Nếu

tồn tại một cơ sở khác cho CX sao cho tác động của c ∈ C chéo hoá được và các

phần tử trên đường chéo của ma trận biểu diễn có dạng

1, . . . , 1, ω(c), . . . , ω(c), . . . , ω(c)ℓ, . . . , ω(c)ℓ

ở đó ω(c)i xuất hiện đúng ai lần. Khi đó ta cũng có

χ(c) =

ℓ∑
0

aiω(c)
i = X(ω(c)),

và ta thu được phương trình (1). Như vậy sàng xyclic được quy về vấn đề đổi

cơ sở của một C-môđun.

Điều kiện c chéo hoá được thực ra không phải là một điều kiện quá chặt

chẽ. Trên trường số phức, nhóm xyclic C có n biểu diễn bất khả qui, ký hiệu

lần lượt là V (i), 0 ≤ i ≤ n− 1. Tác động của một phần tử sinh c lên V (i) là phép

nhân với ω(c)i. Do đó, nếu tồn tại đẳng cấu giữa các C-môđun CX ∼= ⊕aiV
(i),

ta sẽ có ngay CSP.

Nhóm phản xạ

Trong ví dụ mở đầu, ta làm việc với nhóm đối xứng. Một trong những

hướng nghiên cứu quan trọng của tổ hợp và đại số là mở rộng các kết quả từ

nhóm đối xứng cho các nhóm phản xạ khác, đặc biệt là các nhóm phản xạ thực

(nhóm Coxeter), hay các nhóm phản xạ phức. Bên cạnh việc có thêm những ví

dụ mới về hiện tượng CSP, việc tổng quát hóa cũng giúp hiểu rõ hơn các nhóm

con xyclic nào có thể tạo nên CSP.

Sau đây, các nhóm được xét đều là các nhóm hữu hạn, trừ khi được lưu

ý khác.
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Nhóm Coxeter

Các nhóm Coxeter, trong đó có nhóm đối xứng, là các nhóm đối xứng

của các đa diện đều, đồng thời là các nhóm Weyl của các đại số Lie đơn. Chúng

xuất hiện trong nhiều lĩnh vực khác nhau trong toán học. Trong luận án này,

để đơn giản hóa trình bày, chúng tôi sẽ chỉ xét các nhóm Coxeter hữu hạn.

Định nghĩa 0.0.2. Một nhóm Coxeter (hữu hạn) W là một nhóm hữu hạn

được xác định bởi một tập hợp các phần tử sinh S ⊆ W và các quan hệ có dạng

(ss′)m(s,s′) = e, s, s′ ∈ S.

ở đó e là phần tử đơn vị, các số nguyên dương m(s, s′) là cấp của ss′, thoả mãn

• m(s, s′) = m(s′, s);

• m(s, s′) = 1 nếu và chỉ nếu s = s′.

Cũng có thể định nghĩa các nhóm Coxeter một cách hình học, và các

nhóm Coxeter hữu hạn chính là các nhóm phản xạ thực hữu hạn.

Thông thường, ta có sẵn một danh sách các phần tử sinh S, và gọi (W,S)

là một hệ Coxeter. Lưu ý rằng m(s, s) = 1 nên s2 = e với mọi s ∈ S. Do đó, ta có

thể viết lại công thức (ss′)m(s,s′) = e dưới dạng đối xứng

ss′ss′ . . . = s′ss′s . . . ,

ở đó mỗi vế có đúng m(s, s′) lần xuất hiện của s hay s′.

Ví dụ 0.0.3. Ví dụ phổ biến nhất và quan trọng nhất về nhóm coxeter là nhóm

đối xứng Σn. Ở đây tập hợp S = (s1, . . . , sn−1) gồm các phép hoán vị sơ cấp

si = (i, i+ 1). Các quan hệ Coxeter có dạng

• s2i = 1,
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• sisj = sjsi, nếu |i− j| > 2,

• sisi+1si = si+1sisi+1, 1 ≤ i ≤ n− 1.

Một nhóm Coxeter được gọi là bất khả qui nếu nó không viết được thành

tích của hai nhóm Coxeter không tầm thường. Các nhóm Coxeter hữu hạn bất

khả quy đã được phân loại hoàn toàn bởi Coxeter.

Hạng của W là số phần tử sinh nhỏ nhất trong một hệ sinh của nó, và

nếu hệ sinh R có hạng nhỏ nhất thì các phần tử của nó được gọi là đơn.

Trên các nhóm Coxeter, tồn tại một hàm đóng vai trò rất quan trọng, và

cũng được sử dụng để xây dựng các ví dụ về CSP. Ta biết mỗi một từ w ∈ W

viết được dưới dạng một tích của các phần tử sinh trong S. Nếu tích này có độ

dài ℓ nhỏ nhất có thể thì nó được gọi là rút gọn, và ℓ được gọi là độ dài của w,

viết là ℓ(w) = ℓ.

Bây giờ giả sử (W,S) là một hệ Coxeter, và J ⊂ S là một tập con nào đó.

Ký hiệu WJ là nhóm con parabolic tương ứng - tức là nhóm con của W sinh bởi

J . Có thể chứng minh được rằng mỗi lớp kề wWJ có (duy nhất) một đại diện

với độ dài nhỏ nhất. Ký hiệu W J là tập hợp các đại diện các lớp kề này, và đặt

W J(q) =
∑

w∈W J

qℓ(w).

Ví dụ nếu W = Σn, J = S − {sk} với 1 ≤ k ≤ n− 1 nào đó. Khi đó

(Σn)J ∼= Σk × Σn−k,

và có thể chứng minh được

W J(q) =

n
k


q

.

Nếu k = 0 hay k = n thì J = S. Như vậy ta đã thấy bóng dáng của một bộ ba có

biểu hiện CSP: Tập hợp hữu hạn X là tập các lớp kề W/WJ với lực lượng đúng
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bằng
(
n
k

)
và hàm sinh tương ứng chính là W J(q). Trong phần tiếp theo, chúng ta

sẽ giải thích những nhóm xyclic C nào có thể tạo nên bộ ba (W/WJ , C,W
J(q))

có biểu hiện CSP. Ta cũng sẽ mở rộng họ các nhóm từ nhóm phản xạ thực hữu

hạn (nhóm Coxeter) sang các nhóm phản xạ phức hữu hạn.

Nhóm phản xạ phức và phần tử chính quy của Springer

Một phần tử của nhóm GLn(C) được gọi là một phép phản xạ nếu nó có

cấp hữu hạn và không gian bất biến trong Cn có đối chiều bằng 1. Không gian

con đó được gọi là siêu phẳng phản xạ. Một nhóm phản xạ là một nhóm con

W của GLn(C) sinh bởi các phép phản xạ. Mọi phép phản xạ thực đều có thể

được xem là một phản xạ phức sau khi mở rộng trường. Tuy nhiên trường hợp

phản xạ phức tổng quát hơn vì đối với phản xạ thực ta yêu cầu một phép phản

xạ phải có cấp bằng 2. Các nhóm phản xạ phức hữu hạn, bất khả qui đã được

phân loại hoàn toàn bởi Shephard và Todd [16].

Một phần từ g của một nhóm phản xạ phức hữu hạn W được gọi là chính

quy7 nếu nó có một véctơ riêng không nằm trong bất cứ một siêu phẳng phản

xạ nào của W . Một giá trị riêng tương ứng với véctơ riêng này cũng được gọi là

chính quy.

Ký hiệu A là đại số đối bất biến S/(SW
+ ), ở đó S = C[x1, . . . , xn]. Cho

c là một phần tử chính quy cấp n, ký hiệu C là nhóm xyclic sinh bởi c, gọi

ω = ω(c) ∈ C× là một căn nguyên thuỷ bậc n của 1. Ta sẽ trang bị cho A một

tác động của nhóm W × C như sau:

• W tác động trên A theo cách thông thường, cảm sinh từ S.

• C tác động bằng cách đặt c(xi) = ωxi.

W ×C cũng tác động lên vành nhóm C[W ], ở đó W tác động bên trái, và C tác

động bên phải.

7regular
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Ta có định lý sau đây của Springer [33].

Định lý 0.0.4. Cho W là một nhóm phản xạ phức hữu hạn, A là đại số đối bất

biến của W , C là nhóm con xyclic của W sinh bởi một phần tử chính quy. Khi

đó A và vành nhóm C[W ] đẳng cấu với nhau, xem như là W × C-môđun.

Reiner, Stanton và White [29] chứng minh rằng

Định lý 0.0.5. Cho W là một nhóm phản xạ phức hữu hạn, A là đại số đối bất

biến của W , C là nhóm con xyclic của W sinh bởi một phần tử chính quy c ∈ C.

Giả sử W ′ là một nhóm con của W , và xét đại số bất biến AW ′
. Khi đó bộ ba

(W/W ′, C.Hilb(AW ′
; q))

có biểu hiện CSP.

Nói riêng, trong trường hợp W là một nhóm Coxeter, W ′ là một nhóm

con parabolic, ta có thể chứng minh rằng W J = Hilb(AWJ ; q).

Định lý 0.0.6. Cho (W,S) là một hệ Coxeter hữu hạn, J ⊆ S. C là một nhóm

con xyclic của W sinh bởi một phần tử chính quy. Khi đó bộ ba

(W/WJ , C,W
J(q))

có biểu hiện CSP.

Trong trường hợp W có kiểu AN−1, tức là nhóm đối xứng, ta có

Bổ đề 0.0.7. Giả sử W có kiểu AN−1, khi đó g ∈ W là chính quy nếu và chỉ

nếu nó tác động gần tự do trên [N ].

Ta thu lại được ví dụ mở đầu về CSP.
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Nhóm phản xạ tổng quát

Ta có thể định nghĩa khái niệm nhóm phản xạ hữu hạn trên một trường

bất kỳ, và có thể tìm kiếm mở rộng tương tự cho trường hợp tổng quát này.

Cả hai ví dụ trên đều đã được tổng quát hóa cho trường hợp các nhóm

phản xạ hữu hạn truyền thống như các nhóm Coxeter. Hàm Cat(W, q) được xây

dựng ứng với mỗi nhóm phản xạ hữu hạn quen thuộc như các nhóm Coxeter,

và cũng có ý nghĩa tổ hợp thú vị. Trong trường hợp W là nhóm đối xứng Σn, ta

thu được hàm q-Catalan như ở trên.

Các nhóm phản xạ có thể được định nghĩa một cách tổng quát hơn như

sau. Một nhóm phản xạ là một nhóm con hữu hạn W của nhóm tuyến tính tổng

quát GL(V ) các tự đẳng cấu của một không gian véctơ n chiều V trên trường

F nào đó sao cho tác động cảm sinh của W trên đại số đối xứng S = S(V ∗) có

vành bất biến SW là một đại số đa thức

SW = F[f1, . . . , fn].

Các đa thức thuần nhất fi thường được sắp xếp theo thứ tự bậc tăng dần

d1 ≤ d2 ≤ . . . ≤ dn. Bậc cực đại dn trong trường hợp nhóm Coxeter có ý nghĩa

quan trọng, thường được gọi là số Coxeter của W , và ký hiệu là h.

Nói chung, vành bất biến SW không phải là một đại số đa thức con của

S. Tuy nhiên, theo một kết quả cổ điển của Noether, S là một mở rộng nguyên

của SW , và do đó S là một SW -môđun hữu hạn sinh. Do đó, SW là một F-đại

số hữu hạn sinh, với ít nhất n phần tử sinh.

Định nghĩa về nhóm phản xạ ở trên (không có bóng dáng của chữ phản

xạ!) bắt nguồn từ một kết quả nổi tiếng của Serre năm 1967 [30] chứng minh

rằng đối với một nhóm hữu hạn W ⊆ GLn(F), nếu SW là một đa thức thì W

được sinh bởi các phép phản xạ. Ở đây, một phép phản xạ là một tự đẳng cấu

r : V → V sao cho không gian bất biến V r là một siêu phẳng (có đối chiều bằng
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1).

Các nghiên cứu của Chevalley (1955) và Shephard-Todd (1954) [16] cho

thấy trên trường số phức C, chiều ngược lại của định lý Serre cũng đúng: Nếu

W là một nhóm con hữu hạn của GLn(C) sao cho vành bất biến SW là một vành

đa thức SW = C[f1, . . . , fn] thì W là một nhóm phản xạ.

Với định nghĩa tổng quát như trên, chúng ta thấy từ tính toán của Dickson,

nhóm GLn(Fq) cũng là một nhóm phản xạ. Một hướng nghiên cứu tự nhiên tiếp

theo là tìm cách mở rộng các kết quả về hiện tượng CSP từ các nhóm phản xạ

cổ điển như nhóm Coxeter sang các nhóm phản xạ tổng quát như GLn(Fq).

Để định nghĩa phần tử chính quy trong trường hợp tổng quát trên một

trường F, ta cần làm việc với bao đóng đại số F và không gian véctơ V = V ⊗FF.

Giả sử G là một nhóm con hữu hạn của GL(V ) sinh bởi các phép phản xạ. Một

phần tử g ∈ G được gọi là chính quy nếu nó có một véctơ riêng v ∈ V không

nằm trong bất cứ một siêu phẳng phản xạ H = H ⊗F F nào của G.

Xét một nhóm con H ≤ G. Tập hợp hữu hạn sẽ được sử dụng để tạo nên

một bộ ba chính là tập hợp các lớp kề trái G/H, và hàm sinh sẽ là

Hilb(SH ; q)/Hilb(SG; q).

Reiner, Stanton và Webb chứng minh rằng hàm này có hệ số nguyên. Tuy nhiên,

để nó có hệ số không âm, cần có thêm giả thiết mạnh hơn tính chất sinh bởi

các phản xạ - ta yêu cầu SG là một đại số đa thức.

Định lý sau đây, được chứng minh bởi Broer, Reiner, Smith và Webb [5]

là một tổng quát hơn nữa của các định lý được phát biểu trước đây.

Định lý 0.0.8. Cho V là một không gian véctơ hữu hạn chiều trên trường F.

G là một nhóm con hữu hạn của GL(V ) sao cho SG là một đại số đa thức. Giả

sử g là một phần tử chính quy của G, tác động trái trên G/H. Khi đó với mọi
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nhóm con H ≤ G, bộ ba sau đây có biểu hiện CSP:

(G/H,< g >,
Hilb(SH ; q)

Hilb(SG; q)
).

Catalan CSP

Một ví dụ quan trọng về CSP với nhiều hệ quả rất sâu sắc là các CSP

liên quan tới các số Catalan. Cho đến nay, theo Stanley [34], đã có khoảng 214

tập hợp X xuất hiện rất tự nhiên được đếm bởi số Catalan

X(1) = Catn =
1

n+ 1

(
2n

n

)
,

trong đó có nhiều tập được trang bị một tác động tự nhiên của nhóm xyclic C.

Hai tập hợp tiêu biểu là tập hợp NC(n) tất cả các phân hoạch không vắt tréo8

của tập hợp [n] = {1, 2, . . . , n} và tập hợp các tam giác phân của một đa giác

(n + 2)-cạnh. Một phân hoạch của tập hợp [n] được gọi là không vắt tréo nếu

như khi xếp 1, 2, . . . n thành vòng tròn thì bao lồi của các khối khác nhau trong

phân hoạch không cắt nhau.

Trong cả hai trường hợp,

X(q) = Catn(q) =
1

[n+ 1]q

2n
n


q

,

tuy nhiên nhóm xyclic C trong trường hợp đầu là nhóm xyclic cấp n quay vòng

tập hợp {1, 2, . . . , n}, còn trong trường hợp thứ hai thì X là nhóm xyclic cấp

(n+ 2) hoán vị các đỉnh của đa giác.

Định lý 0.0.9. Bộ ba (NCn, Cn,Catn(q)), ở đó nhóm xyclic Cn tác động lên NCn

bằng cách hoán vị các phần tử của [n], có biểu hiện CSP.
8noncrossing
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Mở rộng cho các nhóm phản xạ phức

Có thể xem kết quả trên là trường hợp đặc biệt (khi W = Σn) của một

kết quả tổng quát hơn của Bessis và Reiner [2] cho một họ các nhóm phản xạ

phức W .

Giả sử W là một nhóm (hữu hạn) tác động bất khả quy lên không gian

Cn bởi các phép phản xạ. Ta gọi n là hạng của W . Khi đó không gian bất biến

C[x1, . . . , xn]
W là một đại số đa thức sinh bởi đúng n đa thức thuần nhất có bậc

d1 ≤ . . . ≤ dn. Các bậc di này cũng giống như trong trường hợp Coxeter.

∑
w∈W

qℓ(w) =

n∏
i=1

[di]q.

Tiếp theo, chúng ta cần chỉnh lại một chút khái niệm độ dài trong trường hợp

phức. Ký hiệu R là tập hợp tất cả các phép phát xạ trong W . Ta có mối quan

hệ giữa R và tập sinh S:

R = {wsw−1 : w ∈ W, s ∈ S}.

Ta định nghĩa độ dài tuyệt đối9 của một phần tử w ∈ W , ký hiệu là ℓR(w), là

độ dài nhỏ nhất khi viết w thành một tích của các phần tử thuộc R. Ta có công

thức tương tự cho độ dài tuyệt đối và bậc

∑
w∈W

qℓW (w) =

n∏
i=1

(1 + (di − 1)q).

Trong phần này, ta sẽ giả thiết W là một nhóm sinh tốt10, tức là W có thể được

sinh bởi n phép phản xạ. Các nhóm Coxeter đều thỏa mãn yêu cầu này, và tính

chất kỹ thuật này nhằm đảm bảo cho khái niệm số Coxeter h được xác định duy

nhất (và bằng dn).

9absolute length
10well-generated
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Giả sử c là một phần tử chính quy của W có bậc h. Một phần tử chính

quy với bậc h như vậy tồn tại nhờ tính chất sinh tốt. Đặt

NC(W ) = {w ∈ W : ℓR(w) + ℓR(w
−1c) = n},

Do R ổn định dưới tác động W -liên hợp nên nhóm xyclic C sinh bởi c tác động

lên tập hợp NC(W ) qua phép liên hợp: nếu w ∈ NC(W ) thì cwc−1 ∈ NC(W ). Ta

định nghĩa số W -q-Catalan:

Cat(W, q) =

n∏
i=1

[h+ di]q
[di]q

.

Kết quả sau đây là một tổng quát hoá của trường hợp W = Σn ở trên.

Định lý 0.0.10. Bộ ba (NC(W ), C,Cat(W, q)) có biểu hiện CSP.

Fuss-Catalan

Các số Catalan có thể được xây dựng một cách tổng quát hơn, gọi là các

số Fuss-Catalan Cat
(m)
n = 1

mn+1

(
(m+1)n

n

)
. Số Fuss-Catalan đếm số các cách phân

chia một (mn+2)-đa giác đều thành các (m+2)-đa giác đều, với q-phiên bản và

CSP tương tự như trên.

Cả hai ví dụ trên đều đã được tổng quát hóa cho trường hợp các nhóm

phản xạ hữu hạn truyền thống như các nhóm Coxeter. Trong trường hợp W là

nhóm đối xứng Σn, ta thu được hàm q-Catalan như ở trên. Ta có thể định nghĩa

số W -Fuss Catalan là

Cat(m)(W ) =

n∏
i=1

mh+ di
di

,

và số q −W -Fuss Catalan là

Cat(m)(W, q) =

n∏
i=1

[mh+ di]q
[di]q

.

Kết quả tương tự cho các số W Fuss Catalan và phiên bản q cũng đã được đưa
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ra.

Hàm sinh Cat(W, q)

Một câu hỏi đặt ra là hàm sinh Cat(W, q) là chuỗi Hilbert của đại số nào?

Câu trả lời đến từ lý thuyết biểu diễn của đại số Cherednik hữu tỉ11 - một hướng

nghiên cứu trong hình học và đại số không giao hoán và lý thuyết nút.

Năm 1994, Haiman [13] mô tả quan hệ giữa không gian các bất biến của

nhóm đối xứng có tên gọi là điều hòa đường chéo12 và lý thuyết biểu diễn của

đại số Cherednik hữu tỉ. Năm 2003, Gordon [10] cùng với Berest, Etingof và

Ginzburg [3] đã mở rộng kết quả của Haiman cho toàn bộ các nhóm Coxeter.

Sau đó Gordon và Griffeth [11] đã chỉ ra mối liên hệ giữa biểu diễn của RCA

của các nhóm phản xạ phức với các số Fuss Catalan và q-Fuss Catalan nói đển

ở trên.

Họ chứng minh rằng với mọi nhóm Coxeter bất khả quy W tác động lên

vành đa thức C[x1, . . . , xn], tồn tại các đa thức thuần nhất θ1, . . . , θn ∈ S bậc h+1

thỏa mãn các tính chất sau đây:

• (θ1, . . . , θn) lập thành một hệ tham số thuần nhất cho S. Nói cách khác,

vành thương của S bởi iđêan Θ = (θ1, . . . , θn) hữu hạn chiều trên C.

• C-không gian véctơ căng bởi θ1, . . . , θn là W -ổn định, và đẳng cấu với W -

biểu diễn trên V .

• Hilb((S/(Θ))W , q) = Cat(W, q).

Mặc dù vậy, việc xây dựng các đa thức thuần nhất θi không hề đơn giản và phải

xét từng trường hợp.

11Rational Cherednik algebra - RCA
12diagonal harmonics
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Không gian đỗ

Khi làm việc với các nhóm phản xạ (thực hoặc phức), người ta thường

mong muốn các kết quả được chứng minh không phải phụ thuộc vào việc xét

từng trường hợp trong phân loại của Shephard và Todd. Năm 2015, Armstrong,

Reiner và Rhoades [1] đã đưa ra một chứng minh khác cho kết quả của Bessis

và Reiner thông qua mô hình mới cho NC(W ), lấy cảm hứng từ một đối tượng

tổ hợp là không gian đỗ13.

Giả sử có n xe ô tô và có n vị trí đỗ xe được đánh số từ 1 đến n. Các xe ô

tô xếp hàng để vào bến đỗ. Tại thời điểm thứ i, chiếc xe thứ i mong muốn được

đỗ ở vị trí f(i) nếu có thể được, còn nếu không thì nó sẽ đỗ ở vị trí j đầu tiên còn

trống sau f(i), do đó j ≥ f(i). Nếu tất cả các xe đều đỗ được theo mong muốn

của mình thì f được gọi là một hàm đỗ 14 có độ dài n. Nói các khác, f : [n] → [n]

là một hàm đỗ nếu và chỉ nếu |{x : f(x) ≤ i}| ≥ i với mọi 1 ≤ i ≤ n. Tập hợp

tất cả các hàm đỗ có độ dài n, ký hiệu là Parkn, được trang bị một tác động tự

nhiên của nhóm đối xứng Σn bởi công thức (σf)(i) = f(σ−1(i)).

Nếu W là một nhóm Weyl (một họ nhóm Coxeter đặc biệt), với lưới

nghiệm Q và số Coxeter h, Haiman [13] đã xây dựng W -không gian đỗ chính tắc

là biểu diễn hoán vị của W trên thương Q/(h+1)Q. Các phần tử của Q/(h+1)Q

vì thế được gọi là các W -hàm đỗ.

Armstrong, Reiner và Rhoades [1] đã xây dựng 2 W -không gian đỗ mới,

gọi là các không gian đỗ không tréo15 ParkNC
W và không gian đỗ đại số16 ParkalgW

cho tất cả các nhóm Coxeter. Các không gian này ngoài tác động của W còn

có thêm tác động của nhóm con xyclic C của W sinh bởi một phần tử Coxeter,

và trong trường hợp nhóm tinh thể17, chúng đều đẳng cấu với W -không gian đỗ

13parking space
14parking function
15noncrossing parking space
16algebraic parking space
17crystallography
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chính tắc.

Không gian đỗ đại số ParkalgW được xây dựng như một biến dạng của vành

thương C[V ]/(Θ):

ParkalgW = C[θ1, . . . , θn]/(θ1 − x1, . . . , θn − xn).

ở đó Θ = (θ1, . . . , θn) là một hệ tham số thuần nhất bậc h + 1 trong C[V ] như

trong định lý của Gordon [10] và Berest - Etingof - Ginzburg [3] nói trên. V là

không gian căng bởi các nghiệm đơn α1, . . . , αn của W . Xây dựng này không phụ

thuộc vào lựa chọn hệ tham số.

Nhóm G = GLn(Fq) muốn làm nhóm Coxeter

Ta đã biết từ định lý của Dickson rằng vành bất biến SG là một đại số

đa thức sinh bởi các bất biến Dickson Qn,i, 0 ≤ i ≤ n− 1 với bậc lớn nhất qn− 1.

Như vậy G = GLn(Fq) cũng là một nhóm phản xạ. Tuy không phải là một nhóm

phản xạ thực (nhóm Coxeter), nhưng nó có nhiều tính chất và thể hiện khá

tương tự. Vì thế có thể đặt câu hỏi về tương tự của các kết quả trên cho G. Nếu

đặt

Θ = (θ1, . . . , θn) = (xq
m

1 , . . . , xq
m

n )

thì chúng đều thuần nhất bậc (qn − 1) + 1, lập thành một hệ tham số cho S và

không gian căng bởi chúng đẳng cấu với không gian căng bởi x1, . . . , xn. Như

vậy, khi tìm kiếm phiên bản tương tự của Cat(W, q) từ nhóm Coxeter cổ điển

sang cho nhóm GLn(Fq), ta thu được vành đa thức modulo lũy thừa Frobenius

Qm(n).

Phiên bản đại số của không gian đỗ phân bậc Qm(n) là Fq-không gian

căng bởi Fn
qm. Khi so sánh số chiều của các không gian bất biến dưới tác động

của các nhóm con parabolic của hai phiên bản phân bậc và không phân bậc,

Lewis, Reiner và Stanton [19] đã đề xuất một chuỗi các giả thuyết về chuỗi
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Hilbert của các vành bất biến này thông qua các hệ số nhị thức tổng quát (q, t),

là phiên bản phân bậc của các q-hệ số nhị thức ở trên.

Để phát biểu giả thuyết của Lewis, Reiner và Stanton [19], chúng ta giới

thiệu thêm một số ký hiệu và định nghĩa. Một hợp thành yếu18 β = (β1, . . . , βℓ)

là một dãy các số nguyên không âm. Ta đặt Bi =
∑i

j=1 βj và |β| =
∑ℓ

j=1 βj. Tập

hợp các phân hoạch yếu có thể được trang bị một thứ tự cục bộ, ở đó β ≤ β′

nếu βi ≤ β′
i với mọi i.

Giả sử α = (α1, . . . , αℓ) là một hợp thành của số nguyên dương k, theo

[28], (q, t)-hệ số nhị thức tổng quát của k bởi α được cho bởi công thức

k
α


q,t

=

∏k−1
j=0

(
1− tq

k−qj
)

∏l
i=1

∏αi

j=1

(
1− tq

Ai−qAi−j
) ,

trong đó Ai =
∑i

j=1 αj.

Lewis, Reiner và Stanton [19] đã đề xuất một chuỗi các giả thuyết về

chuỗi Hilbert của không gian véctơ phân bậc các bất biến Qm (n) dưới tác động

của các nhóm con parabolic của nhóm tuyến tính tổng quát GLn như sau:

Giả thuyết 1.4.1 (Giả thuyết 1.1 [19]). Chuỗi Hilbert-Poincaré của Fq-không

gian véctơ phân bậc của các GLn-bất biến Qm (n)GLn là chuỗi lũy thừa Cn,m (t)

xác định bởi công thức

Hilb
(
Qm (n)GLn , t

)
= Cn,m (t) =

min{n,m}∑
k=0

t(n−k)(qm−qk)

m
k


q,t

.

Giả thuyết 1.4.2 (Giả thuyết Parabolic 1.5 [19]). Cho n là số nguyên dương,

α = (α1, . . . , αl) là một hợp thành của n và gọi Pα là nhóm con parabolic của GLn.

Chuỗi Hilbert-Poincaré của Fq-không gian véctơ phân bậc của các Pα-bất biến

18weak composition
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Qm (n)Pα là chuỗi lũy thừa Cα,m (t) xác định bởi công thức

Hilb
(
Qm (n)Pα , t

)
= Cα,m (t) =

∑
β≤α,|β|≤m

te(m,α,β)

 m

β,m− |β|


q,t

,

ở đó e (m,α, β) =
∑l

i=1 (αi − βi)
(
qm − qBi

)
và Bi = β1 + . . .+ βi.

Chẳng hạn, khi m ≥ n = 2 và α = (1, 1) thì Pα là nhóm con Borel của GL2

và β ∈ {(0, 0) , (0, 1) , (1, 0) , (1, 1)}. Theo giả thuyết thì chuỗi Hilbert-Poincaré của

Qm (n)B2 là

t2(q
m−1) + tq

m−11− tq
m−1

1− tq−1
+ tq

m−q 1− tq
m−1

1− tq−1
+

(
1− tq

m−1
) (

1− tq
m−q
)

(1− tq−1)
(
1− tq

2−q
) .

Lewis, Reiner và Stanton đã chứng minh cho giả thuyết của họ trong

trường hợp m = 1, n bất kỳ. Trong công trình [12], Goyal thu được một số kết

quả về giả thuyết Parabolic đối với nhóm Borel trong trường hợp m = n = 2

và xây dựng được một số bất biến cho trường hợp m = 2 và n bất kỳ. Goyal

đã xây dựng một cách cụ thể một số các họ bất biến "đặc biệt", không phải là

các đa thức bất biến thông thường. Một phiên bản của giả thuyết Parabolic đã

được nghiên cứu bởi Drescher và Shepler nghiên cứu trong [8]. Gần đây, Taiwang

Deng trong công trình [6] đã xác định được các bất biến và đối bất biến của

vành đa thức rút gọn, ứng dụng vào nghiên cứu các lớp xoắn trong đối đồng

điều của nhóm SL2 (Z).

Các kết quả chính của luận án

Vấn đề trung tâm của luận án là xác định cấu trúc của vành bất biến

modular trên vành đa thức modulo lũy thừa Frobenius - một đối tượng có cấu

trúc phức tạp hơn so với trường hợp vành đa thức thông thường. Cách tiếp cận

chủ đạo của chúng tôi là kết hợp giữa việc xây dựng các công cụ tính toán mới

(toán tử δ) và kỹ thuật toán tử chuyển (transfer) để giải quyết bài toán về cơ
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sở tuyến tính và xác định chuỗi Hilbert-Poincaré.

Luận án tập trung nghiên cứu về cơ sở tuyến tính của các vành bất biến

Qm (n) dưới tác động của nhóm tuyến tính tổng quát và nhóm con parabolic, đặc

biệt là nhóm con Borel. Đồng thời, chúng tôi cũng chứng minh các giả thuyết

của Lewis, Reiner và Stanton [19] về chuỗi Hilbert-Poincaré của vành bất biến

trong trường hợp nhóm con Borel và các nhóm con Parabolic khác của nhóm

tuyến tính tổng quát và mối liên hệ với đại số Steenrod. Các kết quả chính đạt

được bao gồm:

• Xây dựng hệ Bm(1n) dựa trên toán tử δ và các hàm hữu tỷ Yb(I; J), từ đó

chứng minh hệ này là một cơ sở tuyến tính của vành bất biến Qm(n)Bn.

Từ đó, chúng tôi chứng minh thành công giả thuyết của Lewis - Reiner -

Stanton [19] về chuỗi Hilbert-Poincaré của vành bất biến Qm(n)Bn.

• Đưa ra giả thuyết và xác định cơ sở tuyến tính cho không gian bất biến

ứng với các nhóm con Parabolic Qm(n)Pα và nhóm tuyến tính tổng quát

Qm(n)GLn. Và chứng minh tính đúng đắn của các giả thuyết về cơ sở tuyến

tính cho trường hợp hạng không vượt quá 3 thông qua kỹ thuật toán tử

chuyển (transfer).

• Nghiên cứu lọc Fn,k và chứng minh cấu trúc môđun của nó trên đại số

Dickson và đại số Steenrod cho các trường hợp hạng thấp.

Cấu trúc của luận án

Ngoài phần Mở đầu, Kết luận và Tài liệu tham khảo, luận án được bố

cục thành 3 chương:

Chương 1: Kiến thức chuẩn bị. Chương này hệ thống hóa các khái

niệm nền tảng về lý thuyết bất biến modular và đại số Steenrod. Nội dung trọng

tâm bao gồm: đại số Steenrod, hệ số nhị thức (q, t) và các kết quả cơ bản của
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Lewis - Reiner - Stanton liên quan đến vành bất biến. Đây là cơ sở lý thuyết

xuyên suốt cho các kết quả nghiên cứu ở các chương sau.

Chương 2: Bất biến của vành đa thức modulo lũy thừa Frobenius

dưới tác động của nhóm con Borel. Chương này trình bày các kết quả công

bố tại bài báo thứ nhất. Chúng tôi định nghĩa toán tử δ như một biến thể của

hàm Schur [20] và khảo sát các tính chất của nó. Từ đó, chúng tôi xây dựng hàm

hữu tỷ Yb(I; J) và chứng minh tính đa thức, tính bất biến dưới các điều kiện xác

định. Bằng phương pháp quy nạp, chúng tôi thiết lập hệ Bm(1n) và chứng minh

đây chính là cơ sở tuyến tính của vành bất biến dưới tác động của nhóm Borel

Qm(n)Bn. Kết quả này cho phép chúng tôi khẳng định tính đúng đắn của giả

thuyết Lewis - Reiner - Stanton [19].

Chương 3: Bất biến của vành đa thức modulo lũy thừa Frobenius

dưới tác động của các nhóm con parabolic hạng thấp. Chương này dựa

trên các kết quả ở bài báo thứ hai, tập trung vào việc mở rộng nghiên cứu cho

không gian bất biến Qm(n)Pα.

• Đầu tiên, thông qua việc phân tích tập đơn thức Dickson ∆m
s , chúng tôi

đưa ra ước lượng chặn trên cho tổng số chiều của các không gian con bất

biến, giúp đơn giản hóa việc chứng minh tính cơ sở bằng cách đưa về chứng

minh tính hệ sinh.

• Tiếp theo, bằng cách sử dụng toán tử chuyển từ vành bất biến của nhóm

con Borel lên các nhóm con Parabolic và nhóm GLn, chúng tôi lần lượt xây

dựng và thu gọn các hệ sinh cho trường hợp hạng 2 và hạng 3. Kết quả cho

thấy các hệ sinh này trùng khớp với giả thuyết đề ra.

• Cuối cùng, chúng tôi khảo sát bộ lọc Fn,k xây dựng từ hệ cơ sở tuyến tính,

chứng minh Fn,k có cấu trúc môđun trên đại số Dickson và đại số Steenrod

đối với các trường hợp hạng n ≤ 3.
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Chương 1

Kiến thức chuẩn bị

Trong chương này, chúng tôi trình bày một số kiến thức chuẩn bị có liên

quan đến các nội dung chính ở các chương tiếp theo của luận án.

1.1. Lý thuyết bất biến modular

1.1.1. Giới thiệu

Một kết quả cơ bản khẳng định rằng mọi đa thức đối xứng đều biểu diễn

được (một cách duy nhất) dưới dạng hàm đa thức theo các đa thức đối xứng cơ

bản [25]. Cụ thể, nếu ta xét tác động tự nhiên của nhóm đối xứng Σn trên đại

số đa thức K [x1, . . . , xn] (với K là một trường tùy ý), ta thu được đẳng cấu đại

số

K [y1, . . . , yn] −→ K [x1, . . . , xn]
Σn = {f ∈ K [x1, . . . , xn] | ∀σ ∈ Σn, σ (f) = f}

yi 7→ ei.

Trong đó, ei là đa thức đối xứng sơ cấp thứ i, được định nghĩa bởi

e1 = x1 + · · ·+ xn; e2 =
∑

1≤i<j≤n

xixj ; . . . ; en = x1 · · · xn.



Dễ thấy trong trường hợp trên, nhóm Σn tác động lên K [x1, . . . , xn] bằng các

đẳng cấu K-đại số phân bậc. Lý thuyết bất biến của nhóm hữu hạn quan tâm

đến bài toán tổng quát sau đây. Cho G là một nhóm con của nhóm tuyến tính

tổng quát GLn (K), G tác động lên không gian các đa thức thuần nhất bậc 1

(sinh bởi x1, . . . , xn), do đó tác động lên K [x1, . . . , xn] một cách tự nhiên.

Người ta quan tâm đến các câu hỏi sau đây.

• Tìm một hệ sinh (theo nghĩa K-đại số) f1, . . . , fm cho K [x1, . . . , xn]
G, tức

là ta có toàn cấu

K [y1, . . . , ym] → K [x1, . . . , xn]
G , yi 7→ fi.

• Giả sử f1, . . . , fm là một hệ sinh của K [x1, . . . , xn]
G, tìm quan hệ đại số

giữa các phần tử sinh fi (các đa thức g1, . . . , gk ∈ K [y1, . . . , ym] sao cho

g1 (f1, . . . , fm) = · · · = gk (f1, . . . , fm) = 0), tức là ta có đẳng cấu

K [y1, . . . , ym] / ⟨g1, . . . , gm⟩ ∼= K [x1, . . . , xn]
G , yi 7→ fi.

• Cho một đa thức bất biến f ∈ K [x1, . . . , xn]
G, mô tả f dưới dạng hàm đa

thức theo các phần tử sinh, tức là tìm đa thức g ∈ K [y1, . . . , ym] sao cho

f = g (f1, . . . , fm).

Kết quả sau đây đưa ra lời giải cho các câu hỏi đã nêu, trong một trường

hợp cụ thể. Cần lưu ý rằng tính đúng đắn của kết quả này không phụ thuộc vào

đặc số của trường.

Định lý 1.1.1 (Mệnh đề 4.5.5 [25]). Giả sử G là một nhóm con hữu hạn của

GLn (Fq), và Fq[V ]G là vành các đa thức bất biến dưới tác động tuyến tính tự

nhiên của G trên không gian véctơ V = Fn
q . Nếu tồn tại các phần tử bất biến

f1, . . . , fn ∈ Fq[V ]G sao cho:

i) Các đa thức f1, . . . , fn độc lập đại số trên Fq,
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ii) Tích các bậc thỏa mãn deg(f1) · deg(f2) · · · deg(fn) = |G|, thì Fq[V ]G là một

vành đa thức tự do trên các phần tử sinh fi, 1 ≤ i ≤ n, tức là:

Fq[V ]G = Fq[f1, . . . , fn].

Định lý này cho phép xác định cấu trúc không gian bất biến trong nhiều

trường hợp quan trọng, điển hình như khi xét bất biến Dickson của nhóm tuyến

tính tổng quát GLn (Fq) và bất biến tam giác trên của nhóm con Borel sẽ được

trình bày ở phần tiếp theo.

1.1.2. Bất biến Dickson

Trong lý thuyết bất biến modular trên trường hữu hạn, hai đối tượng cơ

bản và tiêu biểu là bất biến Dickson và bất biến Mùi. Các bất biến này không

chỉ thể hiện những đặc trưng điển hình trong lý thuyết bất biến mà còn đóng

vai trò nền tảng cho việc xây dựng các bất biến của các nhóm con parabolic

trong Qm(n). Trong phần này, chúng tôi sẽ trình bày các khái niệm, công thức

và tính chất cơ bản của bất biến Dickson.

Giả sử n ≥ 1 và S = Fq[x1, . . . , xn] là vành đa thức có hệ số trên trường

hữu hạn Fq. Nhóm tuyến tính tổng quát GLn = GLn (Fq) tác động lên S bằng

cách thay thế tuyến tính. Khi đồng nhất nhóm tuyến tính tổng quát GLn với

nhóm các tự đẳng cấu tuyến tính của không gian véctơ V = Fq⟨x1, . . . , xn⟩, ta

thu được một tác động của nhóm GLn lên đại số đa thức S.

Đại số con SGLn gồm các đa thức trong S bất biến dưới tác động của GLn,

được xác định lần đầu tiên bởi L. Dickson vào những năm đầu thế kỷ 20 [7]. Cụ

thể, Dickson chứng minh được rằng

SGLn = Fq[Qn,0, . . . , Qn,n−1].

Trong đó Qn,i với 0 ≤ i ≤ n − 1 là các đa thức của các biến x1, . . . , xn, xác định
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bởi đẳng thức sau

Qn (t) =
∏

v=(v1,...,vn)∈Fn
q

(t+ v1x1 + · · ·+ vnxn) = tq
n

+

n−1∑
i=0

(−1)n−iQn,it
qi .

Các đa thức Qn,i (với 0 ≤ i ≤ n − 1) được gọi là bất biến Dickson, và đại số

Dn := Fq[Qn,0, . . . , Qn,n−1] được gọi là đại số bất biến Dickson của nhóm GLn,

hay gọn là đại số Dickson của GLn.

Ta có kết quả sau đây.

Bổ đề 1.1.2. Các đa thức Qn (t) là bất biến dưới tác động của GLn (Fq), do đó

mỗi đa thức hệ số Qn,i (x1, . . . , xn) cũng là bất biến đối với GLn (Fq).

Chứng minh. Xét một phần tử bất kỳ g ∈ GLn (Fq). Áp dụng phép biến đổi g

lên các biến x1, . . . , xn trong biểu thức định nghĩa Qn (t), ta có

g ·Qn (t) =
∏
v∈Fn

q

(
t+ v1x

′
1 + · · ·+ vnx

′
n

)
,

trong đó (x′1, . . . , x
′
n) = g · (x1, . . . , xn) và v = (v1, . . . , vn) chạy qua tất cả các véctơ

trong Fn
q . Vì g là một phép biến đổi tuyến tính khả nghịch trên không gian Fn

q ,

ánh xạ v 7→ g · v là một song ánh trên tập Fn
q . Do đó, tập các dạng tuyến tính

v1x
′
1 + · · · + vnx

′
n khi v chạy qua tất cả các véctơ trùng với tập các dạng tuyến

tính a1x1 + · · ·+ anxn khi (a1, . . . , an) chạy qua Fn
q . Vì vậy,

g ·Qn (t) =
∏

(a1,...,an)∈Fn
q

(t+ a1x1 + · · ·+ anxn) = Qn (t) .

Do g ·Qn (t) = Qn (t), đồng nhất các hệ số của tq
i

hai vế, ta suy ra

g ·Qn,i (x1, . . . , xn) = Qn,i (x1, . . . , xn)

với mọi i. Nói cách khác, mỗi đa thức Qn,i (x1, . . . , xn) là một phần tử của

Fq[x1, . . . , xn]
GLn(Fq).
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Tiếp theo, ta chứng minh tính độc lập đại số của tập các bất biến Dickson

Qn,i (0 ≤ i ≤ n−1). Để chứng minh rằng các bất biến Dickson Qn,i (0 ≤ i ≤ n−1)

là các tập độc lập đại số, ta sử dụng kết quả sau.

Bổ đề 1.1.3. Giả sử f1, . . . , fn ∈ Fq[x1, . . . , xn] là một bộ các đa thức sao cho

Fq[x1, . . . , xn] là nguyên trên Fq[f1, . . . , fn], thì f1, . . . , fn là độc lập đại số.

Chứng minh. Vì Fq[x1, . . . , xn] là nguyên trên Fq[f1, . . . , fn] nên số chiều Krull

của hai đại số này là bằng nhau. Mặt khác theo lý thuyết về số chiều Krull, ta

có số chiều Krull của vành đa thức Fq[x1, . . . , xn] là n, nên số chiều Krull của

Fq[f1, . . . , fn] cũng bằng n. Cũng theo kết quả từ lý thuyết về số chiều Krull, nếu

f1, . . . , fn là không độc lập đại số thì số chiều Krull của Fq[f1, . . . , fn] bằng với bậc

siêu việt của Fq(f1, . . . , fn) (trường con của trường các phân thức Fq(x1, . . . , xn)

sinh bởi f1, . . . , fn) trên Fq, bậc siêu việt này nhỏ hơn hoặc bằng (n − 1), mâu

thuẫn với nhận xét trên. Do vậy, f1, . . . , fn là độc lập đại số.

Bổ đề 1.1.4. Tập các bất biến Dickson Qn,i (0 ≤ i ≤ n − 1) là tập độc lập đại

số.

Chứng minh. Áp dụng Bổ đề 1.1.3 để chứng minh tính độc lập đại số của các

bất biến Dickson như sau. Với mỗi i ∈ {1, . . . , n}, đặt Wi là Fq-không gian véctơ

sinh bởi x1, . . . , xi, ta quy ước thêm W0 = {0}. Khi đó xét đa thức biến t sau

f(t) =
∏
v∈Wn

(t+ v) =

n∑
i=0

(−1)n+itq
i

Qn,i,

ta thấy rằng f(t) là một đa thức monic trong Fq[Qn,0, . . . , Qn,n−1][t] và nhận

x1, . . . , xn là nghiệm. Vì vậy x1, . . . , xn là nguyên trên Fq[Qn,0, . . . , Qn,n−1], nên

Fq[x1, . . . , xn] là nguyên trên Fq[Qn,0, . . . , Qn,n−1]. Theo Bổ đề 1.1.3, ta suy ra

rằng {Qn,0, . . . , Qn,n−1} là một tập độc lập đại số.

Từ đó, chứng ta có kết quả sau.
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Định lý 1.1.5 ([7]). Vành bất biến SGLn là đại số đa thức

SGLn = Fq[x1, . . . , xn]
GLn = Fq[Qn,0, Qn,1, . . . , Qn,n−1].

Chứng minh. Trước hết, theo Bổ đề 1.1.2, các đa thức Dickson Qn,i, 0 ≤ i ≤ n−1

là các bất biến đối với tác động của nhóm tuyến tính tổng quát GLn và có bậc

deg (Qn,i) = qn − qi.

Vì vậy,
n−1∏
i=0

deg (Qn,i) =

n−1∏
i=0

(
qn − qi

)
= |GLn| .

Hơn nữa, theo Bổ đề 1.1.4 thì tập Qn,0, . . . , Qn,n−1 là độc lập đại số. Do đó, theo

Định lý 1.1.1, ta suy ra điều phải chứng minh.

1.1.3. Bất biến Mùi

Trong lý thuyết bất biến modular, bất biến Mùi là một lớp bất biến cơ

bản quan trọng, được xây dựng từ tác động của p-nhóm con Sylow Un lên vành

đa thức S = Fq[x1, x2, . . . , xn]. Những bất biến này đóng vai trò nền tảng trong

nghiên cứu các không gian đồng điều modular, đại số Steenrod, và lý thuyết

đồng luân trong tôpô đại số. Trong phần này, chúng tôi sẽ trình bày các khái

niệm, công thức và tính chất cơ bản của bất biến Mùi, làm cơ sở cho xây dựng

bất biến dưới tác động của nhóm tam giác trên (nhóm Borel) Bn.

Định nghĩa 1.1.6. Với mỗi i = 1, . . . , n, các đa thức Vi được định nghĩa như

sau

Vi =
∏

λ1,...,λi−1∈Fq

(xi + λi−1xi−1 + · · ·+ λ1x1) .

Để chỉ ra tính độc lập đại số của các bất biến Mùi, trước hết ta chứng

minh bổ đề sau.
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Bổ đề 1.1.7. Các bất biến Dickson Qn,0, . . . , Qn,n−1 thuộc Fq-đại số sinh bởi

V q−1
1 , . . . , V q−1

n .

Chứng minh. Ta chứng minh khẳng định trên bằng quy nạp theo n. Với n = 1,

ta có Q1,0 = xq−1
1 = V q−1

1 nên khẳng định đã cho là hiển nhiên đúng. Giả sử ta

đã chứng minh được khẳng định đã cho ứng với n ≥ 1 nào đó, ta sẽ chứng minh

khẳng định đã cho là đúng với n+1, tức là Qn+1,0, . . . , Qn+1,n là các phần tử nằm

trong Fq-đại số sinh bởi V q−1
1 , . . . , V q−1

n+1 . Với mỗi i ∈ {0, . . . , n}, ta có đẳng thức

Qn+1,i = Qq
n,i−1 + V q−1

n+1Qn,i,

(ở đây Qn,n = 1 và quy ước Qn,−1 = 0). Theo giả thiết quy nạp, ta có

Qq
n,i−1 ∈ Fq[V

q−1
1 , . . . , V q−1

n ] và Qn,i ∈ Fq[V
q−1
1 , . . . , V q−1

n ].

Vì vậy, Qn+1,i ∈ Fq[V
q−1
1 , . . . , V q−1

n ][V q−1
n+1 ] = Fq[V

q−1
1 , . . . , V q−1

n+1 ]. Do đó, mệnh đề

đúng với (n+1). Theo nguyên lý quy nạp, ta có được điều cần chứng minh.

Định lý 1.1.8 (Định lý 3 [22]). Vành các bất biến của S dưới tác động của

nhóm Borel Bn là đại số đa thức

SBn = Fq[V
q−1
1 , V q−1

2 , . . . , V q−1
n ].

Chứng minh. Ta có

Vi =
∏

λ1,...,λi−1∈Fq

(xi + λi−1xi−1 + · · ·+ λ1x1)

= xq
i−1

i +

i−2∑
j=0

(−1)i−1−j Qi−1,jx
qj

i .

Vì vậy,

V q−1
i =

(
xq

i−1

i +

i−2∑
j=0

(−1)i−1−j Qi−1,jx
qj

i

)q−1

.
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Với mọi g ∈ Bn, tác động của g như sau

g · xi = aixi +
∑
j<i

aijxj , ai, aij ∈ Fq, ai ̸= 0.

Vì vậy,

g(Fq⟨x1, . . . , xi−1⟩) = Fq⟨x1, . . . , xi−1⟩.

Nên theo tính chất của bất biến Dickson thì

g(Qi−1,j) = Qi−1,j , ∀j ∈ {0, . . . , i− 2}.

Do đó, mỗi đa thức Dickson Qi−1,j bất biến với i− 1 biến đầu tiên nên ta có

g · V q−1
i =

(
aix

qi−1

i +

i−2∑
j=0

(−1)i−1−j Qi−1,jaix
qj

i

)q−1

= (ai)
q−1

(
xq

i−1

i +

i−2∑
j=0

(−1)i−1−j Qi−1,jx
qj

i

)q−1

= V q−1
i .

Do đó, V q−1
i , 1 ≤ i ≤ 1 là bất biến dưới tác động của Bn. Mặt khác, mỗi bất biến

Vi có bậc deg (Vi) = qi−1 nên deg
(
V q−1
i

)
= (q − 1) qi−1. Vì vậy, ta có

deg
(
V q−1
1

)
· · · deg

(
V q−1
n

)
= (q − 1) · (q − 1) q · · · (q − 1) qn−1

= (q − 1)n q
n(n−1)

2

= |Bn| .

Mặt khác, theo Bổ đề 1.1.7, ta thấy rằng Fq[Qn,0, . . . , Qn,n−1] là một đại số con

của Fq[V
q−1
1 , . . . , V q−1

n ], mà Fq[x1, . . . , xn] là nguyên trên Fq[Qn,0, . . . , Qn,n−1], nên

Fq[x1, . . . , xn] cũng là nguyên trên Fq[V
q−1
1 , . . . , V q−1

n ]. Theo Bổ đề 1.1.3, ta suy ra

rằng {V q−1
1 , . . . , V q−1

n } là một tập độc lập đại số. Do đó, áp dụng Định lý 1.1.1,

ta suy ra điều phải chứng minh.
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Gọi Un là nhóm tam giác trên có các phần tử thuộc đường chéo chính là

1 (unipotent upper triangular group), khi đó Un p-nhóm con Sylow của GLn. Ta

có thể kiểm tra được các đa thức Vi, 1 ≤ i ≤ n là các Un-bất biến và được gọi là

bất biến Mùi. Lập luận tương tự Định lý 1.1.8, ta có kết quả sau.

Mệnh đề 1.1.9 (Định lý 6 [22]). Vành các bất biến của S dưới tác động của

nhóm Un là đại số đa thức

SUn = Fq[V1, V2, . . . , Vn].

Chú ý 1.1.10. Theo Bổ đề 6.1.1 [25], ta có

Qk+1,s = V q−1
k+1Qk,s +Qq

k,s−1.

Do đó, ta có các kết quả sau về liên hệ giữa bất biến Dickson và bất biến Mùi.

• V q−1
1 = Q1,0.

• V q−1
2 = Q2,1 −Qq

1,0.

• V q−1
3 = Q3,2 −Qq

2,1.

• · · ·

• V q−1
n = Qn,n−1 −Qq

n−1,n−2.

Vì vậy, ta có thể chỉ ra vành các bất biến của S dưới tác động của nhóm Borel

Bn là đại số đa thức

SBn = Fq[Q1,0, Q2,1, . . . , Qn,n−1].

1.2. Đại số Steenrod

Đại số Steenrod xuất hiện như một công cụ quan trọng trong tôpô đại số

và có những ứng dụng sâu rộng trong lý thuyết bất biến. Với nền tảng từ đồng
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cấu Frobenius và các phép toán Steenrod, đại số này cung cấp một cách tiếp

cận để nghiên cứu các lớp đồng điều trong không gian tôpô và lý thuyết đại số

của các nhóm hữu hạn. Trong phần này, chúng tôi dựa theo cách trình bày của

Larry Smith [31] để giới thiệu các tính chất cơ bản của đại số Steenrod, bao gồm

các phép toán, các quan hệ Adem và vai trò của nó trong lý thuyết bất biến.

1.2.1. Toán tử Steenrod và Đại số Steenrod

Giả sử F là trường Galois có q = pv phần tử và V là một F-không gian

vectơ hữu hạn chiều. Khi đó, ký hiệu F[V ] := S(V ) là F-đại số đối xứng sinh bởi

V . Nói cách khác, nếu dimF V = n và {x1, x2, . . . , xn} là một cơ sở của V thì ta có

F[V ] ∼= F[x1, x2, . . . , xn],

tức là vành đa thức nhiều biến trên F. Theo quy ước, các phần tử của V ⊂ F[V ]

được gán bậc bằng 1, do đó F[V ] là một đại số phân bậc.

Định nghĩa

P (ξ) : F[V ] −→ F[V ][[ξ]]

theo các quy tắc

i) P (ξ) là một ánh xạ F-tuyến tính,

ii) P (ξ) (v) = v + vqξ cho v ∈ V ,

iii) P (ξ) (u · w) = P (ξ) (u) · P (ξ) (w) với u,w ∈ F[V ],

iv) P (ξ) (1) = 1.

Ta xem P (ξ) như là một đồng cấu vành có bậc 0 bằng cách cho ξ bậc

1− q. Bằng cách tách ra các thành phần thuần nhất, ta có các ánh xạ F-tuyến

tính

P i : F[V ] −→ F[V ]
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thỏa mãn

P (ξ) (f) =

∞∑
i=0

P i (f) ξi.

Với q = 2, các phép toán này thường được ký hiệu bởi Sqi (f).

Mặc dù định nghĩa của P(ξ) phụ thuộc vào không gian vectơ V , nhưng dễ

thấy rằng P(ξ) là một ánh xạ tự nhiên đối với các ánh xạ tuyến tính φ : V ′ → V ′′,

tức là ta có

φ∗P(ξ) = P(ξ)φ∗,

trong đó φ∗ là đồng cấu đại số sinh ra bởi φ.

Chú ý 1.2.1. Tính tự nhiên ở đây có nghĩa là các toán tử Steenrod không phụ

thuộc vào việc lựa chọn cơ sở của V , mà chỉ phụ thuộc vào cấu trúc F-không

gian vectơ của V .

Định nghĩa 1.2.2 (Toán tử Steenrod). Các toán tử P i được gọi là các toán

tử luỹ thừa rút gọn Steenrod trên F, khi q = 2, toán tử Sqi được gọi là toán tử

Steenrod bình phương. Toán tử P i và Sqi được gọi chung là toán tử Steenrod.

Chú ý 1.2.3. Toán tử Steenrod là ánh xạ F-tuyến tính và ngoài ra thoả mãn

P i (u) =


uq nếu i = deg (u)

0 nếu i > deg (u)

và được gọi là điều kiện bất ổn định.

Công thức Cartan

Một trong những tính chất quan trọng nhất của các toán tử Steenrod là chúng

tuân theo công thức Cartan. Công thức này mô tả cách toán tử Steenrod tác

động lên tích của hai phần tử trong đối đồng điều. Cụ thể, nếu u và v là hai
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phần tử trong F[V ], thì toán tử P i sẽ phân phối lên tích u · v theo công thức

Pk (u · v) =
∑
i+j=k

P i (u) · Pj (v) , ∀k ≥ 0.

Xét một phần tử x có bậc 1 trong F[V ] ∼= F[x1, x2, . . . , xn], tức là

x = a1x1 + a2x2 + · · ·+ anxn, ai ∈ F.

Khi đó, với mọi số mũ j ≥ 0, ta có công thức

P i
(
xj
)
=

(
j

i

)
x j+i(q−1).

Đại số Steenrod

Nếu ρ : G → GLn (F) là một biểu diễn của một nhóm hữu hạn, thì các toán tử

Steenrod và tác động của G trên F[V ] giao hoán với nhau. Do đó, F[V ]G được

ánh xạ vào chính nó bởi tất cả các toán tử Steenrod. Điều này có thể được sử

dụng để tạo ra các bất biến mới từ các bất biến đã biết. Ví dụ, nếu G giữ bất

động một dạng bậc hai như Q = xy ∈ F[x, y], và F = F2, thì G cũng giữ bất động

dạng bậc ba Sq1 (Q) = x2y + xy2, và dạng bậc năm Sq2Sq1 (Q) = x4y + xy4.

Rõ ràng các toán tử Steenrod có tính chất kết hợp, và các tổ hợp của

chúng thỏa mãn một số đồng nhất thức, chẳng hạn như

P1P1 = 2P2,

điều này có thể chứng minh bằng quy nạp theo chiều của V và sử dụng các kết

quả đã biết.

Xét hàm tử F [−] từ phạm trù các không gian véctơ trên F sang phạm trù

các đại số phân bậc giao hoán trên F. Định nghĩa về tự đồng cấu của F [−] được

trình bày như sau.
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Định nghĩa 1.2.4. Xét hàm tử

F [−] : VectF −→ AlgF,

từ phạm trù các không gian véctơ trên F sang phạm trù các đại số phân bậc

giao hoán trên F.

Một tự đồng cấu của F [−] là một họ các ánh xạ tuyến tính phân bậc

f̂V : F [V ] −→ F [V ], V ∈ Obj(VectF),

sao cho với mọi ánh xạ tuyến tính φ : V1 → V2 thì ta có biểu đồ giao hoán sau.

F [V1] F [V1]

F [V2] F [V2]

f̂V1

φ∗ φ∗

f̂V2

Khi f̂V = Pk với k > 0, thì từ tính chất của toán tử Steenrod, ta thấy

rằng Pk là một tự đồng cấu của F [−].

Định nghĩa 1.2.5 (Đại số Steenrod). Đại số Steenrod trên trường F, ký hiệu

là A, là đại số con của đại số phân bậc của các tự đồng cấu của hàm tử F[−] từ

không gian véctơ sang các đại số phân bậc giao hoán trên F được sinh bởi các

toán tử Steenrod.

Quan hệ Adem

Một hệ đầy đủ các quan hệ giữa các toán tử Steenrod trên trường có đặc số

nguyên tố đã được xây dựng bằng sự kết hợp giữa các phương pháp đại số và

tôpô. Các quan hệ này được gọi là quan hệ Adem.

• Khi q = 2 thì

SqiSqj =

[ i
2
]∑

k=0

(
j − k − 1

i− 2k

)
Sqi+j−kSqk,
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với mọi i, j > 0 sao cho i < 2j.

• Khi q ̸= 2 thì

P iPj =

[ i
q
]∑

k=0

(−1)i+k

(
(q − 1) (j − k)− 1

i− qk

)
P i+j−kPk,

với mọi i, j > 0 sao cho i < qj, trong đó [a/b] là phần nguyên của a/b.

Đơn thức chấp nhận được

Cho một dãy I = (i1, i2, . . . , ik), ta viết PI = P i1P i2 · · · P ik . Các phép lặp của các

phép toán Steenrod này được gọi là các đơn thức cơ bản.

Định nghĩa 1.2.6 ([31]). Một đơn thức cơ bản được gọi là chấp nhận được nếu

is ≥ qis+1 với mọi s ≥ 1.

Có một toàn ánh từ đại số kết hợp tự do được sinh bởi các toán tử Steenrod{
P i|i ∈ N

}
modulo iđêan sinh bởi các quan hệ Adem sang đại số Steenrod. Thực

ra, ánh xạ này là đẳng cấu, và do đó các quan hệ Adem là một tập hợp đầy đủ

các quan hệ xác định cho đại số Steenrod. Cụ thể,

Mệnh đề 1.2.7 (Hệ quả 3.3 [31]). Các đơn thức chấp nhận được tạo thành một

F-cơ sở của đại số Steenrod A.

1.2.2. Ứng dụng của Đại số Steenrod trong Lý thuyết Bất biến

Một trong những ứng dụng chính của đại số Steenrod là trong lý thuyết

bất biến, các toán tử Steenrod đóng vai trò quan trọng trong việc tính toán các

iđêan bất biến dưới tác động của các nhóm hữu hạn. Điều này đặc biệt quan

trọng trong trường hợp đặc trưng của trường cơ sở là một số nguyên tố, khi đó

các iđêan nguyên tố có thể được mô tả thông qua các toán tử Steenrod.

Cụ thể, khi làm việc trên một trường có đặc số p, các toán tử Steenrod

P i (với p > 2) và Sqi (với p = 2) đóng vai trò quan trọng trong việc nghiên cứu
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các đa thức bất biến dưới tác động của một nhóm hữu hạn. Các toán tử này

không chỉ hỗ trợ trong việc phân tích cấu trúc của vành đa thức mà còn cung

cấp công cụ để khảo sát các iđêan ổn định dưới tác động của chúng.

Một trong những phương pháp cơ bản để xây dựng các bất biến từ các

đa thức cho trước là sử dụng đồng cấu chuyển (transfer). Ý tưởng chính là lấy

trung bình một đa thức theo toàn bộ quỹ đạo của nhóm G, từ đó thu được một

phần tử luôn bất biến dưới tác động của G. Khái niệm này được mô tả trong

định nghĩa sau.

Định nghĩa 1.2.8 (Đồng cấu chuyển). Đồng cấu chuyển là ánh xạ

TrG : F[V ] −→ F[V ]G

được định nghĩa bởi

TrG(f) =
∑
g∈G

g · f, f ∈ F[V ].

Chú ý 1.2.9. Đồng cấu chuyển có thể được hiểu như phép “lấy trung bình theo

quỹ đạo” của nhóm, nhờ đó từ mọi đa thức f ∈ F[V ] ta luôn thu được một bất

biến trong F[V ]G. Công cụ này đặc biệt hữu ích trong việc xây dựng bất biến

tường minh; hơn nữa, do các toán tử Steenrod giao hoán với tác động của G,

nên việc kết hợp TrG với các toán tử P i (hoặc Sqi khi q = 2) cho phép tạo ra

nhiều bất biến bậc cao hơn từ các bất biến cơ bản. Chẳng hạn, nếu G = Z/2 tác

động lên F2[x, y] bằng cách hoán vị x và y, thì TrG(x) = x+ y ∈ F2[x, y]
G là một

bất biến tuyến tính, từ đó có thể tiếp tục áp dụng các toán tử Steenrod để sinh

ra bất biến bậc cao hơn.

Để minh họa cụ thể cho vai trò của đồng cấu chuyển kết hợp với các toán

tử Steenrod, ta xét trường hợp hạng 2 được Goyal [12] nghiên cứu dưới đây.

Ví dụ 1.2.10. Trong trường hợp hạng 2, Goyal [12] đã xây dựng họ các bất
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biến

yk, 0 ≤ k ≤ qm − q

q − 1
,

của không gian Qm(2)GL2, được cho bởi

yk =
∑

i+j=
qm−q
q−1 +k

k≤i,j≤qm−q
q−1

x
i(q−1)
1 x

j(q−1)
2 .

Cụ thể, với k = 0 ta có

y0 = xq
m−q
1 + x

qm−q−(q−1)
1 xq−1

2 + · · ·+ xq−1
1 x

qm−q−(q−1)
2 + xq

m−q
2 ,

và biểu diễn được bằng định thức

y0 =

∣∣∣∣∣∣ x1 x2

xq
m

1 xq
m

2

∣∣∣∣∣∣∣∣∣∣∣∣x1 x2

xq1 xq2

∣∣∣∣∣∣
.

Tương tự, với k = 1 ta có

y1 = xq
m−q
1 xq−1

2 + x
qm−q−(q−1)
1 x

2(q−1)
2 + · · ·+ xq−1

1 xq
m−q
2 ,

và cũng có thể viết dưới dạng

y1 =

∣∣∣∣∣∣ x1 x2

xq
m

1 xq−1
2 xq

m

2 xq−1
1

∣∣∣∣∣∣∣∣∣∣∣∣x1 x2

xq1 xq2

∣∣∣∣∣∣
.

Từ đó suy ra

L2y0 = x1x
qm

2 − x2x
qm

1 .
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Áp dụng toán tử P1 cho hai vế, ta được

P1(L2y0) = P1(x1x
qm

2 − x2x
qm

1 ).

Theo công thức Cartan, cùng với việc P1(xq
m

1 ) = P1(xq
m

2 ) = 0 và

P1(L2) = P1(x1x
q
2 − x2x

q
1) = 0,

suy ra

L2P1(y0) = P1(x1) x
qm

2 − P1(x2) x
qm

1 = xq1x
qm

2 − xq2x
qm

1 .

Do đó

P1(y0) = y1.

1.3. Hệ số nhị thức

Hệ số nhị thức là một khái niệm trung tâm của tổ hợp và số học, không

chỉ phản ánh các đặc trưng đếm cổ điển như số tập con hay số phân hoạch, mà

còn xuất hiện sâu sắc trong hình học đại số và biểu diễn các nhóm đại số tuyến

tính. Trong mục này, chúng tôi giới thiệu ba loại hệ số nhị thức quan trọng q-hệ

số nhị thức, (q, t)-hệ số nhị thức, và (q, t)-đa hệ số nhị thức, được phát triển

nhằm mở rộng khái niệm cổ điển và làm phong phú thêm nội dung tổ hợp đại

số liên quan.

Đặc biệt, hệ số nhị thức dạng (q, t) đóng vai trò then chốt trong việc mô

tả các chuỗi Hilbert-Poincaré liên quan đến không gian bất biến dưới tác động

của các nhóm con parabolic của GLn. Kết quả nổi bật trong hướng tiếp cận

này là giả thuyết của Lewis-Reiner-Stanton, phát biểu mối liên hệ giữa chuỗi

Hilbert-Poincaré của các không gian bất biến với tổ hợp các hệ số (q, t)-nhị thức

và (q, t)-đa nhị thức sẽ được trình bày trong phần sau.
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1.3.1. q-hệ số nhị thức

Định nghĩa 1.3.1 (Định nghĩa 1.1 [28]). q-hệ số nhị thức của cặp số nguyên k

và n sao cho 0 ≤ k ≤ n và hệ số bất định q được xác định bởi công thứcn
k


q

=
(q)n

(q)k (q)n−k

,

ở đó (q)n = (1− q)
(
1− q2

)
· · · (1− qn).

Chú ý 1.3.2. i) Theo Công thức 1.2 [9] thì q-hệ số nhị thức là đa thức ẩn q

với hệ số nguyên không âmn
k


q

=
∑

ω∈Ωn,k

qinv(ω),

với Ωn,k là tập hợp các từ ω = (ω1, . . . , ωn) ∈ {0, 1}n gồm k số 1 và n− k số

0 và inv (ω) là số các nghịch thế trong ω, tức là cặp (i, j) với 1 ≤ i < j ≤ n

sao cho ωi = 1 và ωj = 0.

ii) Khi q là lũy thừa của một số nguyên tố thì

n
k


q

là số các Fq-không gian

con k-chiều trong không gian véctơ n-chiều Fn
q .

1.3.2. (q, t)–hệ số nhị thức

Khi làm việc với các vành phân bậc trên trường Fq, chúng ta cần lưu giữ

thông tin về bậc cũng như về số chiều tại bậc tương ứng, vì thế (q, t)-hệ số nhị

thức xuất hiện một cách tự nhiên. Khi cho giới hạn t → 1, chúng ta sẽ thu lại

được phiên bản q đếm số phần tử của một tập hợp liên quan tới tác động của

GLn(Fq). Còn khi cho q → 1, ta sẽ thu được chuỗi Hilbert, theo biến t, của một

không gian véctơ phân bậc liên quan tới biểu diễn của nhóm đối xứng Σn.
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Nếu n là một số nguyên không âm, ta định nghĩa (q, t)-giai thừa của n bởi

công thức:

n!q,t = (1− tq
n−1)(1− tq

n−q) · · · (1− tq
n−qn−1

).

Định nghĩa 1.3.3 (Định nghĩa 1.1 [28]). (q, t)-hệ số nhị thức của cặp số nguyên

k và n sao cho 0 ≤ k ≤ n và hệ số bất định q được xác định bởi công thứcn
k


q,t

=
n!q,t

k!q,t. (n− k)!q,tqk
,

Nói cách khác,n
k


q,t

=
(1− tq

n−q0)(1− tq
n−q1) . . . (1− tq

n−qk−1

)

(1− tq
k−q0)(1− tq

n−q1) . . . (1− tq
k−qk−1

)
.

Từ các công trình của Dickson cho bất biến của nhóm tuyến tính tổng quát và

kết quả của Hewett, Kuhn-Mitchell cho bất biến của các nhóm con parabolic,

(q, t)-hệ số nhị thức trên có thể được mô tả bởi công thức liên quan đến bất biến:n
k


q,t

=
Hilt(SPk , t)

Hilb(SG, t)
,

ở đó G = GLn(Fq) và Pk là nhóm con parabolic cực đại của G tương ứng với hợp

thành (k, n− k).

Chú ý 1.3.4 (Công thức 1.3 [28]). Nếu q là số nguyên dương lớn hơn 1 thì hệ

số nhị thức (q, t) là một đa thức theo t với các hệ số không âm. Khi đó, dễ thấy

rằng nó chính là q-hệ số nhị thức trong hai trường hợp

limt→1

n
k


q,t

=

n
k


q

và limq→1

n
k


q,t

1
q−1

=

n
k


t

.
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1.3.3. (q, t)–đa hệ số nhị thức

Định nghĩa 1.3.5 (Định nghĩa 1.6 [28]). Cho α = (α1, . . . , αl) và α1+ . . .+αl = n

là một hợp thành của n, (q, t)-đa hệ số nhị thức của n và α được xác định bởi

công thức n
α


q,t

=

∏n−1
j=0

(
1− tq

n−qj
)

∏l
i=1

∏αi−1
j=0

(
1− tq

Ai−qAi−1+j
) , với Ai =

i∑
k=1

αk.

Ví dụ 1.3.6. Khi n = 6 và α = (2, 3, 1) thì 6

(2, 3, 1)


q,t

=
(1− tq

6−1)(1− tq
6−q) · · · (1− tq

6−q5)

(1− tq
2−1)(1− tq

2−q)(1− tq
5−q2)(1− tq

5−q3)(1− tq
5−q4)(1− tq

5−q5)

=
(1− tq

6−1)(1− tq
6−q) · · · (1− tq

6−q4)

(1− tq
2−1)(1− tq

2−q)(1− tq
5−q2)(1− tq

5−q3)(1− tq
5−q4)

Một trong những ứng dụng nổi bật của (q, t)-hệ số nhị thức là khả năng

biểu diễn tường minh các chuỗi Hilbert-Poincaré của các không gian bất biến

dưới tác động của nhóm con parabolic của nhóm tổng quát tuyến tính. Cụ thể,

công trình của Lewis-Reiner-Stanton [19] đã chỉ ra rằng chuỗi Hilbert-Poincaré

của không gian véctơ phân bậc tương ứng với không gian bất biến Qm(n) có thể

được mô tả thông qua tổ hợp các (q, t)-hệ số nhị thức.

Tiếp theo, chúng tôi trình bày chi tiết của giả thuyết Lewis-Reiner-

Stanton, cùng với các công thức minh họa và ví dụ cụ thể cho trường hợp

nhóm con parabolic.
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1.4. Giả thuyết của Lewis - Reiner - Stanton về chuỗi

Hilbert-Poincaré của không gian bất biến Qm (n)

dưới tác động của nhóm con parabolic

Giả thuyết của Lewis - Reiner - Stanton được hình thành dựa trên các

tính chất của số q-Catalan và số q-Fuss Catalan, liên kết chuỗi Hilbert-Poincaré

với các không gian bất biến trong lý thuyết biểu diễn của các đại số Cherednik

hữu tỷ và các nhóm phản xạ phức. Một số kết quả sơ bộ liên quan đến hai giả

thuyết này đã được tìm ra, ví dụ như trong các công trình của Drescher-Shepler

[8], Goyal [12] và bài báo [19]. Tuy nhiên, cách mà các đối tượng tổ hợp xuất

hiện trong chuỗi này vẫn còn là một điều bí ẩn và chưa được giải thích đầy đủ.

Gọi α = (α1, . . . , αℓ) là một hợp thành của n và ký hiệu Pα là nhóm con

parabolic tương ứng trong GLn(Fq), tức là nhóm các ma trận khối tam giác trên

có kích thước khối theo α

Pα =




A11 A12 · · · A1ℓ

0 A22 · · · A2ℓ

...
. . . . . .

...

0 · · · 0 Aℓℓ

 : Aii ∈ GLαi(Fq)


.

Lewis, Reiner và Stanton [19] đã đề xuất một loạt các giả thuyết về chuỗi

Hilbert-Poincaré của không gian bất biến Qm (n) với m bất kỳ và hợp thành α

bất kỳ của n dựa trên hệ số nhị thức (q, t) được giới thiệu trong [28].

Dựa trên các quan sát thực nghiệm và mô hình tổ hợp liên quan đến các

hệ số (q, t)-nhị thức, Lewis, Reiner và Stanton đã phát biểu hai giả thuyết quan

trọng mô tả cấu trúc của chuỗi Hilbert-Poincaré của các không gian bất biến

Qm(n) dưới tác động của nhóm tổng quát tuyến tính và các nhóm con parabolic

của nó.

53



Giả thuyết đầu tiên liên quan đến trường hợp nhóm tuyến tính tổng quát

GLn, trong khi giả thuyết thứ hai mở rộng sang trường hợp tổng quát hơn với

các nhóm con parabolic tương ứng với các hợp thành α của n. Cả hai giả thuyết

đều sử dụng (q, t)-hệ số nhị thức và (q, t)-đa hệ số nhị thức như công cụ tổ hợp

then chốt để mô tả hàm sinh phân bậc tương ứng với không gian bất biến.

Chúng tôi trình bày phát biểu tường minh của hai giả thuyết nêu trên

cùng với công thức cụ thể cho từng trường hợp.

Giả thuyết 1.4.1 (Giả thuyết 1.1 [19]). Chuỗi Hilbert-Poincaré của Fq-không

gian véctơ phân bậc của các GL-bất biến Qm (n)GL là chuỗi lũy thừa Cn,m (t) xác

định bởi công thức

Hilb
(
Qm (n)GL , t

)
= Cn,m (t) =

min{n,m}∑
k=0

t(n−k)(qm−qk)

m
k


q,t

.

Giả thuyết 1.4.2 (Giả thuyết Parabolic 1.5 [19]). Cho n là số nguyên dương,

α = (α1, . . . , αl) là một hợp thành của n và gọi Pα là nhóm con parabolic tương

ứng của GLn (Fq). Chuỗi Hilbert-Poincaré của Fq-không gian véctơ phân bậc của

các Pα-bất biến Qm (n)Pα là chuỗi lũy thừa Cα,m (t) xác định bởi công thức

Hilb
(
Qm (n)Pα , t

)
= Cα,m (t) =

∑
β≤α,|β|≤m

te(m,α,β)

 m

β,m− |β|


q,t

,

ở đó e (m,α, β) =
∑l

i=1 (αi − βi)
(
qm − qBi

)
và Bi = β1 + · · ·+ βi.

Ví dụ 1.4.3. Khi m ≥ n = 2 và α = (1, 1) thì Pα là nhóm con Borel B2 của

GL2 (Fq) và β ∈ {(0, 0) , (0, 1) , (1, 0) , (1, 1)}. Theo giả thuyết thì chuỗi Hilbert-

Poincaré của Qm (n)B2 là

t2(q
m−1) + tq

m−11− tq
m−1

1− tq−1
+ tq

m−q 1− tq
m−1

1− tq−1
+

(
1− tq

m−1
) (

1− tq
m−q
)

(1− tq−1)
(
1− tq

2−q
) .
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Chương 2

Bất biến của vành đa thức modulo

lũy thừa Frobenius dưới tác động

của nhóm con Borel

Trong chương này chúng tôi giới thiệu toán tử δ, một biến thể của hàm

Schur theo Macdonald [20], lấy cảm hứng từ cách xây dựng các đa thức Dickson.

Toán tử này cho phép tạo ra các bất biến bậc cao từ các bất biến bậc thấp đã

biết, mở rộng khả năng xây dựng bất biến của vành đa thức Qm(n) dưới tác

động của nhóm con Borel.

Trên cơ sở toán tử δ, chúng tôi định nghĩa các hàm hữu tỷ Y (I; J) gắn với

hai dãy I, J cho trước. Bằng việc phân tích các tính chất của δ, chúng tôi chỉ

ra rằng các hàm Y (I; J) là đa thức và hơn nữa các đa thức này bất biến dưới

tác động của nhóm con Borel Bn. Đây là bước trung gian quan trọng để kết nối

giữa việc xây dựng toán tử δ và việc hình thành các hệ cơ sở của không gian bất

biến Qm (n)Bn.

Tiếp theo, chúng tôi xây dựng hệ Bm(1n) theo phương pháp quy nạp,

trong đó bao hàm các đa thức Y (I; J) với I, J thỏa mãn những điều kiện xác

định. Chúng tôi chứng minh rằng hệ Bm(1n) tạo thành một cơ sở tuyến tính của

không gian bất biến Qm(n)Bn.

Cuối cùng, dựa trên cơ sở này, chúng tôi xác định chuỗi Hilbert-Poincaré
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của Qm(n)Bn và chứng minh giả thuyết của Lewis-Reiner-Stanton [19] trong

trường hợp nhóm con Borel.

2.1. Toán tử δ và một số tính chất

Với mỗi 1 ≤ k ≤ n, ta định nghĩa

Lk = Lk (x1, x2, . . . , xk) = det
(
xq

i−1

j

)
1≤i,j≤k

và

Vk = V (x1, x2, . . . , xk) =
∏

λ1,λ2,...,λk−1∈Fq

(λ1x1 + λ2x2 + · · ·+ λk−1xk−1 + xk) .

Ta có Vk =
Lk

Lk−1
và biểu diễn

V (x1, x2, . . . , xk, X) = Xqk +

k−1∑
i=0

(−1)k−iQk,i (x1, x2, . . . , xk)X
qi ,

trong đó Qk,i là các đa thức bất biến Dickson. Vì số mũ của X trong biểu thức

này là các lũy thừa của q, nên V (x1, x2, . . . , xk, X) thỏa mãn điều kiện "tuyến

tính"

V (x1, x2, . . . , xk, aX + bY ) = aV (x1, x2, . . . , xk, X) + bV (x1, x2, . . . , xk, Y ) ,

với mọi a, b ∈ Fq. Với I = (i1 < i2 < . . . < ik) là tập con của [n] = {1, 2, . . . , n}, ta

ký hiệu

L (I) = L (xi1 , xi2 , . . . , xik) .

Với hai tập con I, J của [n], ta định nghĩa

V (J, I) =
∏
i∈I

V (J, i) ,
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với V (J, i) = V (xj1 , xj2 , . . . , xjk , xi) nếu J = (j1, j2, . . . , jk). Ta quy ước V (J,∅) =

1. Chú ý rằng thứ tự các phần tử trong I và J không ảnh hưởng đến giá trị của

V (J, I). Ngoài ra, nếu I ∩ J ̸= ∅, thì V (J, I) = 0.

Như đã trình bày ở phần trước, để xây dựng các bất biến hạng cao từ

các bất biến hạng thấp, ta cần một công cụ toán học cho phép thao tác có kiểm

soát trên cấu trúc đa thức. Toán tử δ dưới đây được định nghĩa nhằm thực hiện

mục tiêu đó.

Định nghĩa 2.1.1. Cho a, b, c là ba số nguyên dương sao cho 1 ≤ a ≤ c+1, định

nghĩa toán tử δa;b xác định bởi công thức

δa;b : Fq [x1, . . . , xc] → Fq (x1, . . . , xc+1) ,

sao cho với f ∈ Fq [x1, . . . , xc] thì

δa;b (f) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 . . . xa

xq1 . . . xqa

. . .
. . . . . .

xq
a−2

1 . . . xq
a−2

a

xq
b

1 f (x̂1, x2, . . . , xc+1) . . . xq
b

a f (x1, . . . , x̂a, . . . , xc+1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 . . . xa

xq1 . . . xqa

. . .
. . . . . .

xq
a−1

1 . . . xq
a−1

a

∣∣∣∣∣∣∣∣∣∣∣∣

.

Ví dụ 2.1.2. i) Ta có δ1;m(Qs
1,0) = xq

m−1
1 x

s(q−1)
2 .
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ii) Ta có, khi s < [m]q thì

δ2;m(Qs
1,0) =

∣∣∣∣∣∣ x1 x2

xq
m

1 x
s(q−1)
2 xq

m

2 x
s(q−1)
1

∣∣∣∣∣∣∣∣∣∣∣∣x1 x2

xq1 xq2

∣∣∣∣∣∣
=

xq
m−1
2 x

s(q−1)
1 − xq

m−1
1 x

s(q−1)
2

xq−1
2 − xq−1

1

= xq
m−q
1 x

s(q−1)
2 + x

qm−q−(q−1)
1 x

(s+1)(q−1)
2 + . . .+ x

s(q−1)
1 xq

m−q
2

= ys (Theo cách xây dựng của Goyal [12]).

Tương tự,

δ2;m(Q
[m]q
1,0 ) =

∣∣∣∣∣∣ x1 x2

xq
m

1 xq
m−1
2 xq

m

2 xq
m−1
1

∣∣∣∣∣∣∣∣∣∣∣∣x1 x2

xq1 xq2

∣∣∣∣∣∣
= xq

m−1
1 xq

m−1
2

∣∣∣∣∣∣x1 x2

x1 x2

∣∣∣∣∣∣∣∣∣∣∣∣x1 x2

xq1 xq2

∣∣∣∣∣∣
= 0.

Hay,

δ2;m

(
Q

[m]q+1

1,0

)
=

∣∣∣∣∣∣ x1 x2

xq
m

1 xq
m−1+q−1
2 xq

m

2 xq
m−1+q−1
1

∣∣∣∣∣∣∣∣∣∣∣∣x1 x2

xq1 xq2

∣∣∣∣∣∣
= −xq

m−1
1 xq

m−1
2 = −δ21(1).

Các trường hợp khác thì δ2;m(Qs
1,0) là tầm thường.
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iii) Ta có, khi m ≥ 2 thì

δ3;m(Q2,1) =

∣∣∣∣∣∣∣∣∣
x1 x2 x3

xq1 xq2 xq3

xq
m

1 Q2,1(x2, x3) xq
m

2 Q2,1(x1, x3) xq
m

3 Q2,1(x1, x2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x2 x3

xq1 xq2 xq3

xq
2

1 xq
2

2 xq
2

3

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣
x1 x2 x3

xq
2

1 xq
2

2 xq
2

3

xq
m

1 xq
m

2 xq
m

3

∣∣∣∣∣∣∣∣∣
L3

=
[0, 2,m]

[0, 1, 2]
= S(0,1,m−2).

Tương tự,

δ3;m(Q2,0) =

∣∣∣∣∣∣∣∣∣
x1 x2 x3

xq1 xq2 xq3

xq
m

1 Q2,0(x2, x3) xq
m

2 Q2,0(x1, x3) xq
m

3 Q2,0(x1, x2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x2 x3

xq1 xq2 xq3

xq
2

1 xq
2

2 xq
2

3

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣
xq1 xq2 xq3

xq
2

1 xq
2

2 xq
2

3

xq
m

1 xq
m

2 xq
m

3

∣∣∣∣∣∣∣∣∣
L3

=
[1, 2,m]

[0, 1, 2]
= S(1,1,m−2).

Đặc biệt,

δ3;m(1) =
[0, 1,m]

[0, 1, 2]
= S(0,0,m−2).

Ở đây, các ký hiệu Sλ với λ = (0, 1,m−2), (1, 1,m−2), (0, 0,m−2) được hiểu
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theo Biến thể 7 của hàm Schur được Macdonald xây dựng [20]. Trong đó,

[a, b, c] :=

∣∣∣∣∣∣∣∣∣
xq

a

1 xq
a

2 xq
a

3

xq
b

1 xq
b

2 xq
b

3

xq
c

1 xq
c

2 xq
c

3

∣∣∣∣∣∣∣∣∣
và

S(r,s,t) :=
[r, s+ 1, t+ 2]

[0, 1, 2]
.

iv) Trường hợp đặc biệt, khi f = 1 thì

δa;b (1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 . . . xa

xq1 . . . xqa

. . .
. . . . . .

xq
a−2

1 . . . xq
a−2

a

xq
b

1 . . . xq
b

a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 . . . xa

xq1 . . . xqa

. . .
. . . . . .

xq
a−1

1 . . . xq
a−1

a

∣∣∣∣∣∣∣∣∣∣∣∣

=
[0, 1, . . . , a− 2, b]

[0, 1, . . . , a− 1]
.

Vì vậy, δa,b(1) = Sλ với λ = (0, . . . , 0, b− a+1). Đặc biệt, δa,a =
[0,1,...,a−2,a]
[0,1,...,a−1]

=

Qa,a−1 và ta ký hiệu

Da = δa,a = Qa,a−1.

Các nhận xét đơn giản sau đây giúp làm rõ cách thức tác động của toán

tử δ, cũng như ảnh hưởng của nó đến bậc của các đa thức liên quan.

Nhận xét 2.1.3. i) Nếu δa;b(f) là đa thức thì tác động của toán δa;b lên đa

thức f làm tăng bậc của f lên qb − qa−1 đơn vị, cụ thể

deg(δa;b(f)) = deg(f) + qb − qa−1.

60



Đặc biệt, khi a = 1 thì δ1;b (f (x1, . . . , xc)) = xq
b−1
1 f (x2, . . . , xc+1) .

ii) Khi b cố định, để cho gọn ta viết δr+1 thay vì δr+1;b. Khai triển theo hàng

cuối cùng định thức trên tử số của δr+1 (f (x1, x2, . . . , xk)) cho ta biểu diễn

của δr+1(f) như sau,

δr+1 (f (x1, x2, . . . , xk)) =

=

r+1∑
j=1

(−1)r+1+j xq
b

j f (x1, . . . , x̂j , . . . , xk+1)L (x1, . . . , x̂j , . . . , xk+1)

L (x1, . . . , xr+1)

=

r+1∑
j=1

xq
b

j f (x1, . . . , x̂j , . . . , xk+1)

V (x1, . . . , x̂j , . . . , xr+1, xj)
.

iii) Tiếp tục, ta có

δ2r+1 (f (x1, x2, . . . , xk)) =

=

r+1∑
j=1

xq
b

j

V (x1, . . . , x̂j , . . . , xr+1, xj)

r+2∑
i=1
i̸=j

xq
b

i f (x1, . . . , x̂i, . . . , x̂j , . . . , xk+2)

V (x1, . . . , x̂i, . . . , x̂j , . . . , xr+2, xi)

=

r+1∑
j=1

(−1)r+1+jxq
b

j L(x1, . . . , x̂j , . . . , xr+1)

L (x1, . . . , xr+1)

×
r+2∑
i=1
i̸=j

xq
b

i f (x1, . . . , x̂i, . . . , x̂j , . . . , xk+2)

V (x1, . . . , x̂i, . . . , x̂j , . . . , xr+2, xi)

=

r+2∑
i,j=1
i̸=j

 ∑
l∈{i,j}
l∈[r+1]

(−1)r+1+lL(x1, . . . , x̂l, . . . , xr+1)V (. . . , x̂i, . . . , x̂j , . . . , xl)

L (x1, . . . , xr+1)


×

xq
b

i xq
b

j f (x1, . . . , x̂i, . . . , x̂j , . . . , xk+2)

V (x1, . . . , x̂i, . . . , x̂j , . . . , xr+2, xi)V (x1, . . . , x̂i, . . . , x̂j , . . . , xr+2, xj)

Trong đó, nếu l ∈ [r + 1] mà l ̸= i và l ̸= j thì

V (x1, . . . , x̂i, . . . , x̂j , . . . , xr+2, xl) = 0.
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Do đó,

∑
l∈{i,j}
l∈[r+1]

(−1)r+1+lL(x1, . . . , x̂l, . . . , xr+1)V (x1, . . . , x̂i, . . . , x̂j , . . . , xr+2, xl) =

=

r+1∑
l=1

(−1)r+1+lL(x1, . . . , x̂l, . . . , xr+1)V (x1, . . . , x̂i, . . . , x̂j , . . . , xr+2, xl) .

Mặt khác,

V (x1, . . . , x̂i, . . . , x̂j , . . . , xr+2, xl) =

=

r∑
s=0

(−1)r−sxq
s

l Qr,s(x1, . . . , x̂i, . . . , x̂j , . . . , xr+2).

Hơn nữa,

r∑
l=1

(−1)r+1+lxq
s

l L(x1, . . . , x̂l, . . . , xr+1) =

 0 khi s < r,

L(x1, . . . , xr+1) khi s = r.

Vì vậy,

∑
l∈{i,j}
l∈[r+1]

(−1)r+1+lL(x1, . . . , x̂l, . . . , xr+1)V (x1, . . . , x̂i, . . . , x̂j , . . . , xr+2, xl) =

= L(x1, . . . , xr+1).

Nên ta có

δ2r+1 (f (x1, x2, . . . , xk)) =

r+2∑
i,j=1
i̸=j

xq
b

i xq
b

j f(x1, . . . , x̂i . . . , x̂j , . . . , xk+2)

V (x1, . . . , x̂i . . . , x̂j , . . . , xr+2; xi, xj)
.

Tổng quát hơn, chúng tôi mô tả tác động lặp của toán tử δ, qua đó cho

phép biểu diễn một cách tường minh δhr+1(f) theo các tập con của tập chỉ số

và các ánh xạ Frobenius tương ứng. Nội dung này được phát biểu cụ thể trong
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mệnh đề sau.

Mệnh đề 2.1.4. Với f là hàm hữu tỷ có r′ ẩn, r′ ≥ r, h là một số nguyên dương.

Khi đó, ta có

δhr+1 (f) (x1, x2, . . . , xr′+h) =
∑

I⊂[r+h]
|I|=h

f
(
I
)
φb (I)

V
(
I, I
)

ở đó I là phần bù của I trong [r + h], φ là ánh xạ Frobenius, khi I = (i1 < i2 <

. . . < ih) thì

f
(
I
)
= f

(
x1, . . . , x̂i1 , . . . , x̂ih , . . . , xr+h, xr+h+1, . . . , xr′+h

)
.

Chứng minh. Ta chứng minh quy nạp theo h. Theo Nhận xét 2.1.3 (iii) thì

mệnh đề đúng khi h = 1. Theo giả thiết quy nạp ta có

δr+1

(
δhr+1 (f)

)
=

=

r+1∑
j=1

(−1)r+1+j xq
b

j L (x1, . . . , x̂j , . . . , xr+1)

Lr+1
δhr+1 (f) (x1, . . . , x̂j , . . . , xr′+h+1)

=

r+1∑
j=1

(−1)r+1+j xq
b

j L (x1, . . . , x̂j , . . . , xr+1)

Lr+1

∑
I⊂[r+h+1]\{j}

|I|=h

f
(
I
)
φb (I)

V
(
I, I
) ,

với I là phần bù của I trong [r+h+1]\{j}. Nhận thấy rằng, mỗi tập con J có độ

dài h+1 của [r+h+1] đều có dạng J = I⊔{j} với 1 ≤ j ≤ r+1, I ⊂ [r+h+1]\{j}
và |I| = h. Do đó, biểu thức trên trở thành

δh+1
r+1 (f) =

∑
J⊂[r+h+1]
|J |=h+1

∑
j∈J∩[r+1]

(−1)r+1+jL (x1, . . . , x̂j , . . . , xr+1)

Lr+1
· f(J)φb(J)

V (J, J \ {j})

=
∑

J⊂[r+h+1]
|J |=h+1

∑
j∈J∩[r+1]

(−1)r+1+jL (x1, . . . , x̂j , . . . , xr+1)V (J, j)

Lr+1
· f(J)φ

b(J)

V (J, J)

ở đó, J là phần bù của J trong [r + h + 1]. Do đó, để chỉ ra điều phải chứng
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minh, ta chỉ cần chỉ ra

∑
j∈J∩[r+1]

(−1)r+1+j L (x1, . . . , x̂j , . . . , xr+1)V
(
J, j
)
= Lr+1,

với mỗi j ∈ [r+1] \ J và j ∈ J thì V
(
J, j
)
= 0. Do đó, vế trái của đẳng thức trên

có thể mở rộng cho toàn bộ j chạy trên [r + 1]. Vì vậy, ta cần phải chứng minh

r+1∑
j=1

(−1)r+1+jL (x1, . . . , x̂j , . . . , xr+1)V
(
J, j
)
= Lr+1.

Tuy nhiên, từ phương trình cơ bản

V
(
J, j
)
= xq

r

j +

r−1∑
i=0

(−1)r−i xq
i

j Qr,i

(
J
)
,

và khai triển Laplace

r+1∑
j=1

(−1)r+1+j L (x1, . . . , x̂j , . . . , xr+1) x
qi

j =

Lr+1 , i = r

0 , i < r
.

Ta suy ra đẳng thức trên là đúng. Vì vậy, ta có điều phải chứng minh.

Tiếp theo, ta xác định tác động lặp của toán tử δr+1. Chú ý rằng ta có

đẳng thức sau

V (x1, . . . , xs, y) =

s∑
i=0

(−1)s−i yq
i

Qs,i (x1, . . . , xs) .

Khi đó, với các ẩn y1, . . . , yh ta có

h∏
j=1

V (x1, . . . , xs, yj) =
∑

T∈T (h,s)

βT (x1, . . . , xs) · αT (y1, . . . , yh) ,

với T thuộc tập hữu hạn

T (h, s) = {(t0, t1, . . . , ts) | t0 + . . .+ ts = h, ti ≥ 0, i = 1, . . . , s} .
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Và

βT (x1, . . . , xs) = (−1)
∑

ti(s−i)Qt0
s,0 · · ·Q

ts
s,s,

αT (y1, . . . , yh) là tổng các đơn thức của y1, . . . , yh với các số mũ là lũy thừa của q

sao cho qi xuất hiện ti lần với i = 0, . . . , s. Do đó, αT (y1, . . . , yh) là hàm đa tuyến

tính, đối xứng và chia hết cho tích y1 · · · yh. Đặc biệt, khi h = 0 thì tập T (h, s)

chỉ gồm một phần tử sao cho ti = 0 với i = 1, . . . , s. Do đó, trong trường hợp này

thì αT = βT = 1.

Tiếp theo, chúng tôi xây dựng biểu thức tổng quát cho tác động của toán

tử δ dựa trên cấu trúc của các đa thức Dickson. Điều này giúp hình thức hóa

quá trình biểu diễn tác động lặp của toán tử δ.

Định nghĩa 2.1.5. Với mỗi hàm hữu tỷ g gồm r′ ≥ r ẩn và T ∈ T (s, h) ta xác

định

Ar;T (g) =
∑

I⊂[r+h],|I|=h

g
(
I
)
αT (I)

V
(
I, I
) ,

ở đó αT (I) = αT (xi1 , . . . , xih) khi I = (xi1 < . . . < xih). I là phần bù của I trong

[r + h] và

g
(
I
)
= g
(
x1, . . . , x̂i1 , . . . , x̂ih , . . . , xr+h, xr+h+1, . . . , xr′+h

)
.

Ví dụ sau minh họa một trường hợp đặc biệt của định nghĩa trên, trong

đó tác động lặp của toán tử δ chính là trường hợp riêng của toán tử Ar;T (g).

Ví dụ 2.1.6. Với s = b và τ = (τ0 = 0, . . . , τs−1 = 0, τs = h), theo Mệnh đề 2.1.4,

ta có

Ar,τ (g) = δhr+1 (g) .

Tiếp theo, chúng tôi đưa ra một kết quả kỹ thuật, giúp làm rõ cách toán

tử δ tác động lên các biểu thức đại số. Kết quả này sẽ đóng vai trò quan trọng

trong việc thiết lập cơ sở tuyến tính cho không gian các bất biến ở các phần sau.

65



Mệnh đề 2.1.7. Cho r, s, k là các số nguyên dương sao cho r ≤ s + k. Giả sử

f (x1, . . . , xs′) và g (x1, . . . , xr′) là các hàm hữu tỷ với r′ ≥ r, s′ ≥ s. Khi đó,

δhr+1

(
g · δks+1 (f)

)
=

∑
T∈T (s,h)

Ar;T (g) δh+k
s+1 (βT f) .

Chứng minh. Ta xét trường hợp s′ = s. Khi s′ > s, ta chỉ cần sắp xếp lại các ẩn

một cách thích hợp và lập luận tương tự.

δhr+1

(
g · δks+1 (f)

)
=
∑

I⊂[r+h]
|I|=h

g
(
I
)
φb (I)

V
(
I, I
) · δks+1 (f)

(
I, r + h+ 1, . . . , s+ k + h

)

=
∑

I⊂[r+h]
|I|=h

g
(
I
)
φb (I)

V
(
I, I
) ·

∑
J⊂I ′

|J |=k

f (I ′ \ J)φb (J)

V (I ′ \ J, J)
, với I ′ = [s+ h+ k] \ I

=
∑

H⊂[s+h+k]
|H|=h+k

∑
I⊂H∩[r+h]

|I|=h

g
(
I
)

V
(
I, I
) · f (H)φb (H)

V
(
H,H

) · V
(
H, I

)
,

với H = I ⊔ J, r + h ≤ s+ k + h.

Nếu I ̸⊂ H thì H∩I ̸= ∅ nên V
(
H, I

)
= 0. Do đó, điều kiện I ⊂ H∩ [r+h]

có thể thay bằng I ⊂ [r + h]. Vì vậy,

δhr+1

(
g · δks+1 (f)

)
=

∑
H⊂[s+h+k]
|H|=h+k

∑
I⊂[r+h]
|I|=h

g
(
I
)

V
(
I, I
) · f (H)φb (H)

V
(
H,H

) · V
(
H, I

)

=
∑

T∈T (h,s)

∑
H⊂[s+h+k]
|H|=h+k

∑
I⊂[r+h]
|I|=h

g
(
I
)
αT (I)

V
(
I, I
) ·

βT
(
H
)
f
(
H
)
φb (H)

V
(
H,H

)
Theo Định nghĩa 2.1.5, ta có:

∑
I⊂[r+h]
|I|=h

g
(
I
)
αT (I)

V
(
I, I
) = Ar;T (g) .
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Mặt khác, theo Mệnh đề 2.1.4, ta có:

∑
H⊂[s+h+k]
|H|=h+k

βT
(
H
)
f
(
H
)
φb (H)

V
(
H,H

) = δh+k
s+1 (βT f) .

Từ đó, ta suy ra

δhr+1

(
g · δks+1 (f)

)
=

∑
T∈T (s,h)

Ar;T (g) δh+k
s+1 (βT f) .

Vậy, ta có điều phải chứng minh.

2.2. Xây dựng hệ Bm (1n)

Trong phần này, chúng tôi xây dựng một hệ các phần tử tạo nên cơ

sở tuyến tính cho không gian bất biến Qm (n)Bn trong trường hợp nhóm con

parabolic đặc biệt Pα = Bn. Trước hết, chúng tôi định nghĩa các biểu thức dạng

Yb (I; J) đóng vai trò cơ bản trong quá trình xây dựng hệ cơ sở.

Định nghĩa 2.2.1. Với hai dãy I = (i1, . . . , ik) và J = (j1, . . . , jk) các số nguyên

không âm, định nghĩa hàm hữu tỷ

Yb (I; J) = δi11;b

(
Dj1

1 δi22;b

(
Dj2

2 · · · δikk;b
(
Djk

k

)
· · ·
))

,

ở đó Da = δa;a (1) và ΦYb (I; J) = Yb+1 (0, I; 0, J), tức là

ΦYb (I; J) = δi12;b+1

(
Dj1

2 δi23;b+1

(
Dj2

3 · · · δikk+1;b+1

(
Djk

k+1

)
· · ·
))

.

Tiếp theo, chúng tôi xây dựng tập hợp Bm (1n) gồm các phần tử được tạo

thành từ các biểu thức Yb (I; J) như trên, bằng cách sử dụng phương pháp quy

nạp.

Định nghĩa 2.2.2. Với n ≥ 1 và m ≥ 0, tập hợp Bm (1n) được xác định bằng

cách quy nạp như sau.
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i) B0 (1
n) = {1} với mọi n ≥ 1.

ii) Bm (1) =
{
Da

1 | a ≤ [m]q
}
, với mọi m ≥ 0.

iii) Bm(1n) =
{
δ1;m(Y ) | Y ∈ Bm(1n−1)

}⊔{
Da

1Φ(Y ) | a < [m]q, Y ∈ Bm−1(1
n−1)

}
.

Ở đó, [a]q =
qa−1
q−1 .

Từ định nghĩa trên, chúng tôi mô tả cụ thể hơn cấu trúc của tập hợp

Bm (1n) thông qua phân hoạch rời rạc thành các lớp con Bk
m (1n) như sau.

Mệnh đề 2.2.3. Bm (1n) là hợp rời rạc
⊔min(n,m+1)

k=1 Bk
m (1n), ở đó các tập hợp

Bk
m (1n) là tập hợp chứa tất cả các phần tử Ym (I, J) mà hai dãy I = (i1, . . . , ik)

và J = (j1, . . . , jk) thỏa mãn các điều kiện i1 + · · ·+ ik = n− k,

j1 < [m]q , . . . , jk−1 < [m− k + 2]q, jk ≤ [m− k + 1]q.

Chứng minh. Ta chứng minh quy nạp theo n. Với n = 1 thì hai dãy I = (i1) và

J = (j1) thỏa mãn điều kiện
i1 = 1− 1 = 0.

j1 ≤ [m− 1 + 1]q = [m]q .

Khi đó,

Bm (1n) =

min(n,m+1)⊔
k=1

Bk
m (1n) = B1

m (1n) =
{
Da

1 | a ≤ [m]q
}
.

Vì vậy, mệnh đề đúng với n = 1. Giả sử mệnh đề đúng với n− 1. Khi đó,

Bm

(
1n−1

)
=

min(n−1,m+1)⊔
k=1

Bk
m

(
1n−1

)
.

Ở đó, Bk
m

(
1n−1

)
chứa các đa thức Y (I; J) với I = (i1, . . . , ik) và J = (j1, . . . , jk)
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thỏa mãn  i1 + · · ·+ ik = n− 1− k,

j1 < [m]q , . . . , jk−1 < [m− k + 2]q, jk ≤ [m− k + 1]q.

Khi đó, δ1,m
(
Bk
m

(
1n−1

))
là tập hợp các Y (I; J) với I = (i1, . . . , ik) và J =

(j1, . . . , jk) thỏa mãn
i1 + · · ·+ ik = n− k,

i1 ≥ 1,

j1 < [m]q , . . . , jk−1 < [m− k + 2]q, jk ≤ [m− k + 1]q.

Tiếp theo, Da
1Φ
(
Bm−1

(
1n−1

))
với a < [m]q là tập hợp gồm các phần tử

Da
1Φ
(
Bm−1

(
1n−1

))
=
{
Da

1ΦY (I; J) | Y (I; J) ∈ Bm−1

(
1n−1

)}
,

với I =
(
i′1, . . . , i

′
k−1

)
và J =

(
j′1, . . . , j

′
k−1

)
thỏa mãn điều kiện i′1 + · · ·+ i′k−1 = n− 1− (k − 1) = n− k,

j′1 < [m− 1]q, . . . , j
′
k−1 ≤ [m− 1− (k − 1) + 1]q = [m− k + 1]q.

Cụ thể,

Y (I; J) = δi
′
1

1;m−1

(
Dj′1

1 δ2;m−1

(
Dj′2

2 · · · δk−1;m−1

(
D

j′k−1

k−1

)
· · ·
))

và

ΦY (I; J) = δi
′
1

2;m

(
Dj′1

2 δ3;m

(
Dj′2

3 · · · δk;m
(
D

j′k−1

k

)
· · ·
))

.

Khi đó,

Da
1ΦY (I; J) = δ01;m

(
Da

1δ
i′1
2;m

(
Dj′1

2 δ3;m

(
Dj′2

3 · · · δk;m
(
D

j′k−1

k

)
· · ·
)))

= Y
(
I ′; J ′) ,
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sao cho I ′ =
(
0, i′1, . . . , i

′
k−1

)
và J ′ =

(
a, j′1, . . . , j

′
k−1

)
thỏa mãn 0 + i′1 + · · ·+ i′k−1 = n− k,

a < [m]q , j
′
1 < [m− 1]q, . . . , j

′
k−1 ≤ [m− k + 1]q.

Vậy, ta có điều phải chứng minh.

2.3. Tính đa thức của Y

Trong phần này, chúng tôi sẽ chứng minh rằng họ các hàm hữu tỷ Ym (I, J)

thực chất là các đa thức. Trước khi đi vào chứng minh chính, chúng tôi thiết lập

một số khái niệm trung gian và kết quả hỗ trợ nhằm mô tả chính xác tác động

của các toán tử trong định nghĩa của Ym (I, J).

Đầu tiên, chúng tôi mở rộng khái niệm tác động của toán tử δ thông qua

việc định nghĩa một tích chập hai hàm hữu tỷ, cho phép biểu diễn các tác động

lặp của toán tử δ dưới dạng đại số thuận tiện hơn.

Định nghĩa 2.3.1. Với hai hàm hữu tỷ f (x1, . . . , xr) và g (x1, . . . , xh), tích chập

của f và g được định nghĩa bởi công thức

f • g =
∑

I⊔J=[r+h],|I|=r,|J |=h

f (I) g (J)

V (I, J)
.

Tiếp theo, chúng tôi minh họa cách mà các toán tử như δhr+1 và Ar;T có

thể được biểu diễn thông qua tích chập qua các ví dụ sau.

Ví dụ 2.3.2. i) Theo Mệnh đề 2.1.4, ta có

δhr+1 (f) (x1, x2, . . . , xr′+h) =
∑

I⊂[r+h],|r|=h

f
(
I
)
φb (I)

V
(
I, I
) .

Vì vậy,

δhr+1 (f) (x1, x2, . . . , xr′+h) = f • φb
h.
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Ở đó, φh là ánh xạ lũy thừa Frobenius với h ẩn.

ii) Theo Định nghĩa 2.1.5, ta có

Ar;T (g) =
∑

I⊂[r+h],|I|=h

g
(
I
)
αT (I)

V
(
I, I
) .

Vì vậy,

Ar;T (g) = g • αT .

Từ hai ví dụ trên, ta thấy rằng nhiều biểu thức hình thành trong định

nghĩa của Y đều có thể biểu diễn thông qua các tích chập giữa các hàm hữu tỷ.

Trong mệnh đề tiếp theo, chúng tôi đưa ra các điều kiện cụ thể của f và g để

đảm bảo rằng tích chập giữa hai đa thức như vậy là đa thức.

Mệnh đề 2.3.3. Nếu đa thức f (x1, . . . , xs) là GLs-bất biến và g (x1, . . . , xk−s) là

đa thức đối xứng, đa tuyến tính và chia hết cho x1 · · · xk−s thì f • g là đa thức

trong Fq[x1, . . . , xk].

Chứng minh. Với mỗi I ⊂ [k], đặt V (I, J) là tích của các nhân tử tuyến tính có

dạng

xj +
∑
i∈I

λixi, j ∈ J, λi ∈ Fq.

Để chứng minh rằng f • g là đa thức trong Fq[x1, . . . , xk], ta sẽ chỉ ra rằng bất kỳ

nhân tử tuyến tính như trên đều không xuất hiện trong f • g sau khi quy đồng

mẫu số chung và thu gọn. Hơn nữa, do tính đối xứng nên không mất tính tổng

quát, ta sẽ chứng minh điều này với dạng tuyến tính

ω = xa+1 + λ1x1 + · · ·+ λaxa,

ở đó a ≤ s, và tất cả các λi ̸= 0 với mọi 1 ≤ i ≤ a. Ta nhận thấy rằng, V
(
I, I
)
chứa

ω nếu và chỉ nếu I chứa
{
1, . . . , î, . . . , a+ 1

}
nhưng không chứa i với 1 ≤ i ≤ a+1.

Như vậy, I có dạng I = [a + 1] \ {i} ∪ K với K ⊂ [k] sao cho |K| = s − a và
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[a+ 1] ∩K = ∅. Như vậy, ta chỉ cần xét các tổng của f • g ứng với các tập con

∑
|K|=s−a

[a+1]∩K=∅

a+1∑
i=1

f ([a+ 1] \ {i} ∪K) g
(
K \ [a+ 1] ∪ {i}

)
V ([a+ 1] \ {i} ∪K, {i})V

(
[a+ 1] \ {i} ∪K,K \ [a+ 1]

) . (2.1)

Mặt khác, ta có

1

V ([a+ 1]/ {i} ∪K, {i})
=

L ([a+ 1]/ {i} ∪K)

L ([a+ 1]/ {i} ∪K ∪ {i})
.

Do đó, bằng cách sắp xếp lại các cột theo thứ tự và lưu ý rằng các phần tử của

K đều lớn hơn a+ 1, ta có

L ([a+ 1]/ {i} ∪K ∪ {i}) =


(−1)s−i L ([a+ 1] ∪K) i ≤ a

(−1)s−a L ([a+ 1] ∪K) i = a+ 1

.

Do đó, thừa số này ở các mẫu số trong công thức (2.1) chứa ω (bội 1), trong khi đó

các thành phần V
(
[a+ 1]/ {i} ∪K,K/[a+ 1]

)
không chứa ω với mọi 1 ≤ i ≤ a+1.

Vì vậy, cố định K thì các hạng tử trong công thức 2.1 được biểu diễn thành

1

L ([a+ 1] ∪K)
×[ a∑

i=1

(−1)s−i f ([a+ 1]/ {i} ∪K) g
(
K/[a+ 1] ∪ {i}

)
L ([a+ 1]/ {i} ∪K)

V
(
[a+ 1]/ {i} ∪K,K/[a+ 1]

) +

(−1)s−a f ([a] ∪K) g
(
K/[a+ 1] ∪ {a+ 1}

)
L ([a] ∪K)

V
(
[a] ∪K,K/[a+ 1]

) ]
.

Do đó, ta chỉ cần chỉ ra rằng với mỗi K cố định thì tổng

a∑
i=1

(−1)s−i f ([a+ 1]/ {i} ∪K) g
(
K/[a+ 1] ∪ {i}

)
L ([a+ 1]/ {i} ∪K)

V
(
[a+ 1]/ {i} ∪K,K/[a+ 1]

) +

(−1)s−a f ([a] ∪K) g
(
K/[a+ 1] ∪ {a+ 1}

)
L ([a] ∪K)

V
(
[a] ∪K,K/[a+ 1]

) (2.2)

triệt tiêu khi ω = 0. Thật vậy, mỗi 1 ≤ i ≤ a thì xi đều xuất hiện không tầm
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thường trong ω và f là GLs-bất biến nên ta có

f ([a+ 1]/ {i} , K) = f ([a] ∪K) , với mọi 1 ≤ i ≤ a.

Mặt khác, ta cũng có

L ([a+ 1]/ {i} ∪K) =


(−1)a−i λiL ([a] ∪K) i ≤ a,

L ([a] ∪K) i = a+ 1,

và

V
(
[a+ 1]/ {i} ∪K,K/[a+ 1]

)
= V

(
[a] ∪K,K/[a+ 1]

)
.

Do đó, tổng trong công thức (2.2) được rút gọn thành

f ([a] ∪K)L ([a] ∪K)

V
(
[a] ∪K,K/[a+ 1]

) ( a∑
i=1

λig
(
K/[a+ 1] ∪ {i}

)
+ g
(
K/[a+ 1] ∪ {a+ 1}

))
.

Vì g vừa đối xứng, đa tuyến tính và g chia hết cho x1 · · · xk−s nên ta có

a∑
i=1

λig
(
K/[a+ 1] ∪ {i}

)
+ g
(
K/[a+ 1] ∪ {a+ 1}

)
= g
(
K/[a+ 1] ∪ {ω}

)
= 0.

Do đó, ta có điều phải chứng minh.

Cuối cùng, chúng tôi áp dụng mệnh đề trên để chứng minh rằng các biểu

thức Yb (I, J) thực sự là đa thức. Kết quả này được trình bày trong hệ quả quan

trọng sau.

Hệ quả 2.3.4. Với hai dãy I và J thì Yb (I, J) được xác định trong Định nghĩa

2.2.1 là đa thức.

Chứng minh. Theo định nghĩa Yb (I, J), ta có

Yb (I; J) = δ1;b

(
Dj1

1 δ2;b

(
Dj2

2 · · · δk;b
(
Djk

k

)
· · ·
))

.

Ta sẽ chỉ ra rằng, nếu thay mỗi Dja
a bởi một đa thức ua mà ua là GLa−1-bất biến
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với a − 1 biến đầu tiên thì Yb (I, J) vẫn là đa thức. Đầu tiên ta xét trường hợp

đơn giản nhất Y = δikk (uk). Trường hợp ik = 0 thì hiển nhiên ta có điều phải

chứng minh. Khi ik > 0, ta viết uk dưới dạng

uk =
∑
r

fr (x1, . . . , xk−1) gr (xk, xk+1, . . .) ,

ở đó fr (x1, . . . , xk−1) là GLk−1-bất biến. Khi đó

δikk (uk) =
∑
r

δikk (fr) · gr (xk+ik , xk+1+ik , . . .) .

Ở đó,

δikk (fr) = f • φb
ik

nên theo Mệnh đề 2.3.3 thì δikk (fr) là đa thức. Do đó, Y là đa thức. Ta quy nạp

theo k. Sử dụng Mệnh đề 2.1.7 ta có

δiss

(
usδ

is+1

s+1

(
us+1

(
· · ·
(
δikk (uk)

)
· · ·
)))

=

=
∑

T∈T (s,is)

As−1;T (us) δ
is+is+1

s+1

(
βTus+1δ

is+s

s+2

(
us+2

(
· · ·
(
δikk (uk)

)
· · ·
)))

.

Vì mỗi βTus+1 đều là các bất biến với s ẩn đầu tiên nên mỗi phần tử

δis+is+1

s+1

(
βTus+1δ

is+s

s+2

(
us+2

(
· · ·
(
δikk (uk)

)
· · ·
)))

,

đều là các đa thức theo giả thiết quy nạp. Theo Mệnh đề 2.3.3 thì As−t;T (us)

cũng là đa thức. Vì vậy,

δiss

(
usδ

is+1

s+1

(
us+1

(
· · ·
(
δikk (uk)

)
· · ·
)))

là đa thức. Do đó, ta có điều phải chứng minh.
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2.4. Tính bất biến của Y

Trong phần này, chúng tôi sẽ chứng minh rằng các đa thức Ym(I; J)

được xây dựng từ các toán tử δ và các đa thức Dickson là bất biến modulo(
xq

m

1 , . . . , xq
m

n

)
dưới tác động của nhóm con Borel Bn. Trước tiên chúng tôi sẽ

giới thiệu khái niệm một lớp đa thức mới được gọi là (k,m)-bất biến, đóng vai

trò trung gian quan trọng trong lập luận quy nạp.

Định nghĩa 2.4.1. Đa thức f (x1, . . . , xk) ∈ Fq[x1, . . . , xk] được gọi là (k,m)-bất

biến nếu nó thỏa mãn các điều kiện sau đây.

i) f (λ1x1, . . . , λkxk) = f (x1, . . . , xk) với mọi λi ∈ F∗
q. Nói cách khác, f bất biến

dưới tác động của nhóm con ma trận đường chéo chính.

ii) f (x1, . . . , xi, . . . , xj + xi, . . . , xk) = f (x1, . . . , xk) +
(
xq

m

i

)
với mọi 1 ≤ i < j ≤

k.

Chú ý 2.4.2. Nếu f là (k,m)-bất biến thì f là Bk-bất biến modulo (xq
m

1 , . . . , xq
m

k ).

Mệnh đề dưới đây cho thấy rằng toán tử δr;m bảo toàn tính (k,m)-bất

biến trong trường hợp tác động của toán tử δr;m bảo toàn tính đa thức. Kết quả

này đóng vai trò then chốt cho phép ta áp dụng lập luận quy nạp trong phần

còn lại.

Mệnh đề 2.4.3. Với r ≤ k + 1, f (x1, . . . , xk) là (k,m)-bất biến và δr;m (f) là đa

thức. Khi đó, δr;m là (k + 1,m)-bất biến.
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Chứng minh. Gọi N là tử số của

δr;m (f) =

∣∣∣∣∣∣∣∣∣∣∣∣

x1 . . . xr
... . . .

...

xq
r−2

1 . . . xq
r−2

r

xq
m

1 f (x̂1, x2, . . . , xk+1) . . . xq
m

r f (x1, . . . , x̂r, . . . , xk+1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 . . . xr
... . . .

...

xq
r−1

1 . . . xq
r−1

r

∣∣∣∣∣∣∣∣∣

.

Với mỗi 1 ≤ i < j ≤ k + 1, ta xét toán tử σ sao cho

σ (xl) =


xj + xi nếu l = j,

xl nếu l ̸= j.

Do δr;m (f) là đa thức nên σ (δr;m (f)) cũng là đa thức. Mặc khác, Lr bất biến

dưới tác động của toán tử σ nên σN −N chia hết cho Lr.

Khi j ≤ r, cột thứ j của định thức σN là tổng của hai cột

[
xj , x

q
j , . . . , x

qr−2

j , xq
m

j f (x1, . . . , x̂j , . . . , xk+1)
]T

và [
xi, x

q
i , . . . , x

qr−2

i , xq
m

i f (x1, . . . , x̂j , . . . , xk+1)
]T

.

Do đó, σN − N là tổng của hai định thức. Trong đó, định thức thứ nhất có

(r − 1) dòng đầu tiên giống (r − 1) dòng đầu tiên của định thức N và dòng cuối

cùng được xác định theo công thức dưới đâyxq
m

l [f (x1, . . . , x̂l, . . . , xj + xi, . . . , xk+1)− f (x1, . . . , x̂l, . . . , xj , . . . , xk+1)] khi l ̸= j,

0 khi l = j ≤ r.

Các hiệu f (x1, . . . , x̂l, . . . , xj + xi, . . . , xk+1) − f (x1, . . . , x̂l, . . . , xj , . . . , xk+1) chia

hết cho xq
m

i vì f là một (k,m)-bất biến. Do đó tất cả các số hạng ở dòng cuối
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cùng của định thức này đều chia hết cho xq
m

i . Ngoài ra, cột thứ i các số hạng

đều chứa xi nên định thức này chia hết cho xq
m+1
i .

Định thức thứ hai thì cột thứ i và cột thứ j có r − 1 số hạng đầu tiên giống

nhau. Sau khi rút gọn bằng cách lấy cột thứ j trừ cột thứ i và khai triển theo

cột thứ j thì định thức này có giá trị là

xq
m

i

[
f (x1, . . . , xi, . . . , x̂j , . . . , xk+1)

− f (x1, . . . , x̂i, . . . , xj + xi, . . . , xk+1)
]
Lr−1 (x1, . . . , x̂j , . . . , xk+1) .

Do Lr−1 (x1, . . . , x̂j , . . . , xk+1) chứa xi nên định thức này cũng chia hết cho xq
m+1
i .

Khi j > r thì khai triển σN − N chỉ có định thức thứ nhất, chứng minh tương

tự σN −N cũng chia hết cho xq
m+1
i .

Vì vậy, ta đã chỉ ra rằng trong cả hai trường hợp thì σN − N đều chia hết cho

cả xq
m+1
i và Lr. Vì vậy, σN −N chia hết cho xq

m+1
i Lr. Do đó, mệnh đề đã được

chứng minh.

Bằng cách áp dụng Mệnh đề trên theo phương pháp quy nạp, chúng tôi

thu được hệ quả sau, khẳng định rằng Ym(I; J) là một đa thức.

Hệ quả 2.4.4. Mỗi đa thức Ym (I; J) là Bn-bất biến modulo
(
xq

m

1 , . . . , xq
m

n

)
.

Chứng minh. Ta có

Ym (I; J) = δi11;m

(
Dj1

1 δi22;m

(
Dj2

2 · · · δikk;m
(
Djk

k

)
· · ·
))

,

vì Djk
k là (k,m)-bất biến và δikk;m

(
Djk

k

)
là đa thức nên theo Mệnh đề 2.4.3 thì

δikk;m

(
Djk

k

)
là (k + ik,m)-bất biến. Tiếp tục lập luận tương tự như trên, ta có

Ym (I; J) là (k + i1 + · · ·+ ik,m)-bất biến. Nhưng k + i1 + · · · + ik = n, nên ta có

Ym (I; J) là (n,m)-bất biến. Do đó, ta có điều phải chứng minh.
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2.5. Cơ sở tuyến tính của không gian bất biến Qm (n)Bn

Trong phần này, chúng tôi sẽ thiết lập một cơ sở tường minh cho không

gian Fq-véctơ các Bn-bất biến trong Qm(n). Cụ thể, chúng tôi chứng minh rằng

tập hợp Bm(1n) gồm các đa thức Ym(I; J) tạo thành một cơ sở tuyến tính của

không gian này.

Trường hợp cơ sở n = 1 là hiển nhiên. Do đó, ta có thể giả sử n ≥ 2 và

tiến hành lập luận quy nạp theo số biến. Để thuận tiện, ký hiệu B(x2, . . . , xn)

được dùng để chỉ ảnh của bao hàm b 7→

1 0

0 b

 từ nhóm Borel Bn−1 vào GLn.

Giả sử F (x1, . . . , xn) là một đa thức Bn-bất biến trong Qm(n). Do các số

mũ xuất hiện trong F đều là bội của q − 1, ta có thể khai triển F theo biến x1

và phân tích số hạng có bậc thấp nhất. Trường hợp số mũ của x1 bằng qm − 1

sẽ được xử lý đầu tiên thông qua bổ đề sau.

Bổ đề 2.5.1. Với m ≥ 0, n ≥ 2 và F (x1, . . . , xn) = xq
m−1
1 f (x2, . . . , xn) là Bn-bất

biến của Qm (n) thì f (x2, . . . , xn) là B (x2, . . . , xn)-bất biến modulo
(
xq

m

2 , . . . , xq
m

n

)
.

Chứng minh. Với mọi σ ∈ B (x2, . . . , xn), đặt σ′ =

1 0

0 σ

 ∈ Bn.Do F (x1, . . . , xn) =

xq
m−1
1 f (x2, . . . , xn) là Bn-bất biến của Qm (n) nên ta có

σ′F (x1, . . . , xn) = F (x1, . . . , xn) = xq
m−1
1 f (x2, . . . , xn)

(
mod

(
xq

m

1 , . . . , xq
m

n

))
.

Mặt khác,

σ′F (x1, . . . , xn) = σ′xq
m−1
1 f (x2, . . . , xn)

= xq
m−1
1 σf (x2, . . . , xn)

(
mod

(
xq

m

1 , . . . , xq
m

n

))
.
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Vì vậy,

σf (x2, . . . , xn) = f (x2, . . . , xn)
(
mod

(
xq

m

2 , . . . , xq
m

n

))
.

Do đó, f (x2, . . . , xn) là B (x2, . . . , xn)-bất biến modulo
(
xq

m

2 , . . . , xq
m

n

)
.

Trường hợp khi số mũ của x1 nhỏ hơn qm − 1 với m ≥ 1 thì ta biểu diễn

F dưới dạng

F (x1, . . . , xn) = x
(q−1)i
1 f (x2, . . . , xn) + x

(q−1)(i+1)
1 f ′ (x1, x2, . . . , xn) .

Tiếp theo, chúng tôi xét trường hợp số mũ của x1 trong đa thức F (x1, . . . , xn)

nhỏ hơn qm − 1. Khi đó, F có thể được khai triển theo x1 với số hạng bậc thấp

nhất là x
(q−1)i
1 f(x2, . . . , xn) với i < [m]q. Để hiểu rõ hơn cấu trúc của thành phần

f(x2, . . . , xn) trong khai triển này, chúng tôi đưa ra bổ đề sau, cho thấy f là lũy

thừa bậc q của một đa thức bất biến ở hạng thấp hơn.

Bổ đề 2.5.2. Đa thức f (x2, . . . , xn) trong biểu diễn trên là lũy thừa với số mũ

bằng q của đa thức g (x2, . . . , xn) nào đó. Hơn nữa, g (x2, . . . , xn) là B (x2, . . . , xn)-

bất biến modulo
(
xq

m−1

2 , . . . , xq
m−1

n

)
.

Chứng minh. Trước hết, ta chứng minh rằng f là lũy thừa bậc q của một đa

thức g nào đó. Thật vậy, khi nhân F với xq
m−q−(q−1)i
1 , ta thu được một phần tử

Bn-bất biến modulo Im có dạng

F ′ = x
qm−q−(q−1)i
1 F = xq

m−q
1 f (x2, . . . , xn) + xq

m−1
1 f ′ (x1, x2, . . . , xn) .

Ta biểu diễn f (x2, . . . , xn) dưới dạng tổ hợp tuyến tính của các đơn thức xJ =

xj22 · · · xjnn . Với mỗi 2 ≤ k ≤ n, ta sẽ chỉ ra jk chia hết cho q với mọi J . Thật vậy,

vì F ′ là Bn-bất biến modulo Im nên

F ′ (x1, . . . , xk + x1, . . . , xn)− F ′ (x1, . . . , xk, . . . , xn) = 0 (mod Im).

Rõ ràng, số hạng xq
m−1
1 [f ′ (x1, . . . , xk + x1, . . . xn)− f ′ (x1, . . . , xk, . . . xn)] chia hết
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cho xq
m

1 nên nó triệt tiêu trong vành thương Qm (n).

Mặt khác, số hạng xq
m−q
1 [f (x2, . . . , xk + x1, . . . xn)− f (x2, . . . , xk, . . . xn)] là tổ hợp

tuyến tính của các biểu thức có dạng

d (J) = xq
m−q
1

[
xj22 · · · (xk + x1)

jk · · · xjnn − xj22 . . . xjkk . . . xjnn

]
=

jk∑
s=1

(
jk
s

)
xq

m−q+s
1 xj22 · · · xjk−s

k · · · xn.

Mặt khác, nếu J ̸= J ′ thì d (J) và d (J ′) không có thành phần chung không tầm

thường. Từ đó suy ra, với mỗi J thì d (J) = 0 (mod Im). Số mũ của x1 trong các

biểu thức trên là qm − q + s. Vì vậy, bằng cách đồng nhất thức ta suy ra(
jk
s

)
= 0,

với mọi 1 ≤ s ≤ q − 1. Do đó, jk chia hết cho q với mọi k và mọi J . Vì vậy,

f (x2, . . . , xn) = g (x2, . . . , xn)
q .

Tiếp theo, với mọi σ ∈ B (x2, . . . , xn) đặt

σ′ =

1 0

0 σ

 ∈ Bn.

Ta có

F ′ = xq
m−q
1 f (x2, . . . , xn) + xq

m−1
1 f ′ (x1, x2, . . . , xn)

= xq
m−q
1 f (x2, . . . , xn) + xq

m−1
1 f ′′ (x2, . . . , xn) (mod Im).

Do đó,

σ′F ′ = xq
m−q
1 σf (x2, . . . , xn) + xq

m−1
1 σf ′′ (x2, . . . , xn) (mod Im)

= xq
m−q
1 σg (x2, . . . , xn)

q + xq
m−1
1 σf ′′ (x2, . . . , xn) (mod Im).
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Vì F ′ là Bn-bất biến nên

σ′F ′ = F ′ (mod Im).

Từ đó suy ra

σg (x2, . . . , xn)
q = g (x2, . . . , xn)

q (mod Im) với mọi σ ∈ Bn (x2, . . . , xn) .

Vì vậy,

σg (x2, . . . , xn) = g (x2, . . . , xn)
(
mod

(
xq

m−1

2 , . . . , xq
m−1

n

))
.

Vậy, ta suy ra g (x2, . . . , xn) là B (x2, . . . , xn)-bất biến modulo
(
xq

m−1

2 , . . . , xq
m−1

n

)
.

Từ cấu trúc đặc biệt của f(x2, . . . , xn) trong Bổ đề 2.5.2, chúng tôi khai

thác thêm mối liên hệ giữa các toán tử δa;b và phép nâng lũy thừa trong trường

hợp f là lũy thừa bậc q của một đa thức g. Bổ đề sau mô tả tác động của toán

tử δ trên các đa thức như vậy khi thay thế biến đầu tiên bằng 0, đồng thời cung

cấp công cụ quan trọng cho phép xác định cách toán tử Φ tác động lên các phần

tử trong Bm−1(1
n−1).

Bổ đề 2.5.3. Nếu đa thức f (x1, x2, . . . , xc) thỏa mãn

f (0, x2, . . . , xc) = g (x2, . . . , xc)
q ,

và δa+1,b+1 (f) là đa thức thì δa+1;b+1 (f) (0, x2, . . . , xc+1) =
(
δa;b (g) (x2, . . . , xc+1)

)q
.

Vì vậy, nếu Y ∈ Bm−1

(
1n−1

)
thì

ΦY (0, x2, . . . , xn) = Y (x2, . . . , xn)
q .
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Chứng minh. Theo định nghĩa toán tử δ ta có

δa+1;b+1 (f) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 . . . xa+1

xq1 . . . xqa+1

...
. . .

...

xq
a−1

1 . . . xq
a−1

a+1

xq
b+1

1 f (x̂1, x2, . . . , xc+1) . . . xq
b+1

a+1f
(
x1, . . . , x̂a+1, . . . , xc+1

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 . . . xa+1

xq1 . . . xqa+1

...
. . .

...

xq
a

1 . . . xq
a

a+1

∣∣∣∣∣∣∣∣∣∣∣∣

.

Vì vậy,

δa+1;b+1 (f) =

a+1∑
j=1

xq
b+1

j f (x1, . . . , x̂j , . . . , xc+1)

V (x1, . . . , x̂j , . . . , xa+1, xj)
.

Theo giả thiết thì f (0, x2, . . . , xc) = g (x2, . . . , xc)
q, hơn nữa với j = 2, . . . , c+1 thì

V (0, x2, . . . , x̂j , . . . , xa+1, xj) = V (x2, . . . , x̂j , . . . , xa+1, xj)
q
, nên ta có

δa+1;b+1 (f) (0, x2, . . . , xc+1) =

a+1∑
j=2

xq
b+1

j f (0, . . . , x̂j , . . . , xc+1)

V (0, . . . , x̂j , . . . , xa+1, xj)

=

a+1∑
j=2

xq
b+1

j g (x2, . . . , x̂j , . . . , xc+1)
q

V (x2, . . . , x̂j , . . . , xa+1, xj)
q

=

(
a+1∑
j=2

xq
b

j g (x2, . . . , x̂j , . . . , xc+1)

V (x2, . . . , x̂j , . . . , xa+1, xj)

)q

=
(
δa;b (g) (x2, . . . , xc+1)

)q
.

Tiếp tục, theo định nghĩa thì Dk+1 = δk+1;k+1 (1) = Qk+1,k. Hơn nữa, theo Bổ đề

6.1.1 [25] thì Qk+1,s = V q−1
k+1Qk,s +Qq

k,s−1. Vì vậy, ta có

Qk+1,k (x1, x2, . . . , xk+1) = Vk (x2, . . . , xk+1, x1)
q−1 +Qk,k−1 (x2, . . . , xk+1)

q .
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Do đó,

Dk+1 (0, x2, . . . , xk+1) = Qk+1,k (0, x2, . . . , xk+1)

= Qk,k−1 (x2, . . . , xk+1)
q

= Dk (x2, . . . , xk+1)
q .

Từ đó,

Dk+1 (0, x2, . . . , xk+1)
ik = Dk (x2, . . . , xk+1)

qik .

Mặt khác, với hai dãy I = (i1, . . . , ik) và J = (j1, . . . , jk) các số nguyên không âm,

ta có

Yb (I; J) = δi11;b

(
Dj1

1 δi22;b

(
Dj2

2 · · · δikk;b
(
Djk

k

)
· · ·
))

,

và

ΦYb (I; J) = δi12;b+1

(
Dj1

2 δi23;b+1

(
Dj2

3 · · · δikk+1;b+1

(
Djk

k+1

)
· · ·
))

.

Vì vậy, áp dụng kết quả trên liên tiếp ta suy ra

ΦY (0, x2, . . . , xn) = Y (x2, . . . , xn)
q .

Từ các bổ đề trên, chúng tôi thu được kết quả tổng quát sau, khẳng định

rằng tập Bm(1n) tạo thành một cơ sở của không gian các Bn-bất biến trong

Qm(n).

Định lý 2.5.4. Hệ Bm (1n) là một cơ sở của Fq-không gian véctơ các Bn-bất biến

Qm (n)Bn.

Chứng minh. Trước hết, với n = 1, có thể chứng minh rằng Qm (1)B1 là một

Fq-không gian véctơ với cơ sở
{
Da

1 | a ≤ [m]q
}
. Ta sẽ sử dụng phương pháp quy

nạp theo n để thiết lập hai tính chất sau đối với hệ Bm (1n), cụ thể là
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i) Chứng minh Bm (1n) là hệ sinh của Fq-không gian véctơ. Qm (n)Bn

Giả sử đa thức thuần nhất F là Bn-bất biến của Qm (n)Bn và F và có dạng

F (x1, . . . , xn) = x
(q−1)i
1 f (x2, . . . , xn) + x

(q−1)(i+1)
1 f ′ (x1, x2, . . . , xn) .

Tức là x
(q−1)i
1 f (x2, . . . , xn) là số hạng theo x1 có bậc nhỏ nhất của F . Khi

đó, nếu i1 = [m]q thì

F (x1, . . . , xn) = xq
m−1
1 f (x2, . . . , xn)

là Bn-bất biến. Vì vậy, theo Bổ đề 2.5.1 f (x1, . . . , xn−1) là Bn−1-bất biến.

Khi đó, theo giả thiết quy nạp f (x1, . . . , xn−1) sinh bởi Bm

(
1n−1

)
. Vì vậy,

F sinh bởi
{
δ1;m (Y ) | Y ∈ Bm

(
1n−1

)}
.

Ngược lại, với i < [m]q theo Bổ đề 2.5.2 thì

f (x2, . . . , xn) = g (x2, . . . , xn)
q

ở đó, g (x2, . . . , xn) ∈ Qm−1 (n− 1)Bn−1. Theo giả thiết quy nạp, g (x2, . . . , xn)

có thể biểu diễn dưới dạng

g (x2, . . . , xn) =
∑
I,J

cY Y (x2, . . . , xn)

với Y (x2, . . . , xn) ∈ Bm−1

(
1n−1

)
. Đặt

F ′ = F −
∑
I,J

cYD
i
1ΦY,

ta có bậc của x1 của số hạng có bậc nhỏ nhất theo x1 trong F ′ lớn hơn bậc

của x1 của số hạng có bậc nhỏ nhất theo x1 trong F . Do đó, lặp lại lập

luận trên với F ′ thì ta có điều phải chứng minh.

ii) Chứng minh Bm (1n) là hệ độc lập tuyến tính của Fq-không gian véctơ

84



Qm (n)Bn.

Trước hết, tập hợp thứ nhất
{
δ1;m (Y ) | Y ∈ Bm

(
1n−1

)}
là độc lập tuyến

tính theo giả thiết quy nạp.

Tiếp theo, với tập hợp thứ hai
{
Da

1ΦY | Y ∈ Bm−1

(
1n−1

)
, a < [m]q

}
, theo

Bổ đề 2.5.3 ta có

Da
1Φ (Y ) = x

a(q−1)
1 Y (x2, . . . , xn)

q

+ đơn thức có bậc của x1 lớn hơn a(q − 1).

Do đó, nếu
∑

Y cYD
a
1Φ (Y ) = 0

(
mod

(
xq

m

1 , . . . , xq
m

n

))
thì

∑
Y

cY Y (x2, . . . , xn) = 0
(
mod

(
xq

m

2 , . . . , xq
m

n

))
.

Theo giả thiết quy nạp thì cY là triệt tiêu. Do đó, ta có điều phải chứng

minh.

Ví dụ 2.5.5. i) Với m ≥ 0, không gian Qm (1)B1 được sinh bởi hệ

(1) Da
1 , a ≤ [m]q.

ii) Với m ≥ 1, không gian Qm (2)B2 được sinh bởi hệ

(1) δ1;m (Da
1) , a ≤ [m]q,

(2) Da
1D

b
2, a < [m]q , b ≤ [m− 1]q.

iii) Với m ≥ 2, không gian Qm (3)B3 được sinh bởi hệ

(1) δ1;mδ1;m (Da
1) , a ≤ [m]q,

(2) δ1;m
(
Da

1D
b
2

)
, a < [m]q , b ≤ [m− 1]q,

(3) Da
1δ2;m

(
Db

2

)
, a < [m]q , b ≤ [m− 1]q,
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(4) Da
1D

b
2D

c
3, a < [m]q , b < [m− 1]q, c ≤ [m− 2]q.

Hệ quả 2.5.6. Với thứ tự lex thì từ nhỏ nhất của Ym (I; J) là

k∏
s=1

xq
m−qs−1

i1+···+is−1+s · · · x
qm−qs−1

i1+···+is+s−1x
jsq

s−1(q−1)
i1+···+is+s .

2.6. Chuỗi Hilbert-Poincaré của không gian bất biến

Qm (n)Bn

Sau khi đã thiết lập cơ sở tuyến tính cho không gian bất biến Qm(n)Bn,

chúng tôi khảo sát chuỗi Hilbert-Poincaré tương ứng. Từ đó, chúng tôi chứng

minh Giả thuyết Parabolic 1.5 của Lewis, Reiner và Stanton [19] đối với trường

hợp nhóm con Borel của GLn.

Theo giả thuyết trên, chuỗi Hilbert-Poincaré của không gian bất biến

Qm(n)Bn được cho bởi một biểu thức tổ hợp tường minh Fn,m(t), xây dựng từ

các hệ số nhị thức (q, t) và một hàm số mũ e(m, 1n, β). Trước khi đi vào chứng

minh chính, chúng tôi có một số nhận xét và bổ đề kỹ thuật cho thấy cấu trúc

quy nạp của hàm Fn,m(t) phù hợp với cách xây dựng tập Bm(1n) trong phần

trước.

Chuỗi Hilbert-Poincaré của không gian bất biến Qm (n)Bn là hàm Fn,m (t)

được xác định như sau

Fn,m (t) =
∑

β≤1n,|β|≤m

te(m,1n,β)

 m

β,m− |β|


q,t

,

ở đó

• e (m, 1n, β) =
∑n

i=1 (1− βi)
(
qm − qBi

)
với β = (β1, . . . , βn) và Bi =

∑i
j=1 βj,

•

 m

β,m− |β|


q,t

=

∏|β|−1
j=1

(
1−tq

m−qj
)

∏n
i=1

∏βi−1
j=0

(
1−tq

Bi−q
Bi−1+j

) .
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Trước hết, ta có nhận xét sau về tính chất của (q, t)-hệ số nhị thức và e (m, 1n, β)

được suy ra trực tiếp từ định nghĩa của chúng.

Nhận xét 2.6.1. Với β = (1, β2, . . . , βn) = (1, β′), ta có

i) te(m,1n,β) = (tq)e(m−1,1n−1,β′),

ii)

 m

m− |β|


q,t

= 1−tq
m−1

1−tq−1

 m− 1

β′,m− 1− |β′|


q,tq

.

Tiếp theo, chúng tôi chỉ ra chất đơn giản sau về hàm Fn,m (t). Kết quả

này cho thấy hàm Fn,m (t) có tính chất quy nạp tương tự như tập Bm (1n).

Bổ đề 2.6.2. Ta có

Fn,m (t) = tq
m−1Fn−1,m (t) +

1− tq
m−1

1− tq−1
Fn−1,m−1 (t

q) .

Chứng minh. Ta có

Fn,m(t) =
∑
β≤1n

|β|≤m

te(m,1n,β)

 β

m− |β|


q,t

=
∑

β=(0,β′)≤1n

|β|≤m

te(m,1n,β)

 β

m− |β|


q,t

+
∑

β=(1,β′)≤1n

|β|≤m

te(m,1n,β)

 β

m− |β|


q,t

(tách theo phần tử đầu của β là 0 hoặc 1)

= tq
m−1

∑
β′≤1n−1

|β′|≤m

te(m,1n−1,β′)

 β′

m− |β′|


q,t

+
1− tq

m−1

1− tq−1
Fn−1,m−1(t

q)

(áp dụng Nhận xét 2.6.1 cho số hạng thứ hai)

= tq
m−1Fn−1,m(t) +

1− tq
m−1

1− tq−1
Fn−1,m−1(t

q).

Do đó, ta có điều phải chứng minh.
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Dựa vào kết quả trên, ta có thể chứng minh được Giả thuyết 1.5 của

Lewis, Reiner và Stanton [19] cho trường hợp nhóm con Borel của nhóm tuyến

tính tổng quát.

Định lý 2.6.3. Chuỗi Hilbert-Poincaré của không gian bất biến Qm (n)Bn là

Fn,m (t). Vậy giả thuyết 1.5 của Lewis - Reiner - Stanton [19] đúng cho trường

hợp nhóm con Borel.

Chứng minh. Trước hết, với n = 1 thì Fq-cơ sở của Qm (1)B1 là

Bm (1) =
{
Da

1 = x
a(q−1)
1 | a ≤ [m]q

}
=
{
1, xq−1

1 , x
2(q−1)
1 , . . . , xq

m−1
1

}
.

Do đó, chuỗi Hibert của Qm (1)B1 là

1 + tq−1 + t2(q−1) + · · ·+ tq
m−1 =

1− tq
m

1− tq−1
+ tq

m−1 = F1,m (t) .

Vậy, mệnh đề đúng với n = 1. Hơn nữa, hệ cơ sở Bm (1n) được xác định một cách

quy nạp như sau

Bm (1n) =
{
δ1;m (Y ) | Y ∈ Bm

(
1n−1

)}⊔{
Da

1Φ (Y ) | a < [m]q , Y ∈ Bm−1

(
1n−1

)}
.

Do đó, theo Bổ đề 2.6.2 về tính chất quy nạp của Fn,m (t) thì ta suy ra điều phải

chứng minh.

Mỗi số hạng trong tổng định nghĩa Fn,m(t) đều tương ứng với các phần

tử trong cơ sở Bm(1n) của không gian bất biến Qm(n)Bn. Nhận xét sau mô tả rõ

cấu trúc của các phần tử Ym(I, J) tương ứng với từng chỉ số của β.

Nhận xét 2.6.4. Với β = (β1, . . . , βn) là dãy các số nguyên không âm sao cho

β ≤ 1n và |β| ≤ m thì số hạng te(m,1,β)

 m

β,m− |β|


q,t

của Fn,m (t) là chuỗi Hilbert-

Poincaré của không gian con của Qm (n)Bn sinh bởi các phần tử Ym (I, J) mà cặp

(I, J) thỏa mãn các điều kiện
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(1) βi = 1 ở các vị trí i1 + · · ·+ is + s với 1 ≤ s ≤ k − 1,

(2) Khi s = k, i1+· · ·+ik+k = n thì jk = [m−k+1]q và βn = 1 nếu jk < [m−k+1]q,

(3) βi = 0 trong các trường hợp khác.
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KẾT LUẬN CHƯƠNG 2

Trong chương này, chúng tôi trình bày các nội dung sau đây.

• Xây dựng toán tử δ (Định nghĩa 2.1.1) như một biến thể của hàm Schur

[20] và đưa ra một số tính chất của toán tử δ, đặc biệt là công thức tính các tác

động lặp của toán tử δ (Mệnh đề 2.1.4) và tổng quát nó trong các trường hợp

tổng quát hơn (Mệnh đề 2.1.7).

• Định nghĩa hàm hữu tỷ Yb (I; J) với hai dãy I, J cho trước (Định nghĩa

2.2.1). Sử dụng các kết quả đã biết về toán tử δ để chứng minh các hàm hữu tỷ

Yb (I; J) với I, J thỏa mãn các điều kiện nhất định, và các đa thức Yb (I; J) này

cũng là các đa thức bất biến dưới tác động của nhóm Bn (Hệ quả 2.3.4 và Hệ

quả 2.4.4).

• Tiếp theo, chúng tôi xây dựng hệ Bm (1n) theo cách quy nạp theo n. Chỉ

ra rằng hệ Bm (1n) chứa các đa thức Yb (I; J) với I và J thỏa mãn các điều kiện

xác định (Mệnh đề 2.2.3).

• Cuối cùng, chúng tôi chứng minh hệ Bm (1n) là cơ sở của không gian bất

biến Qm (n)Bn (Định lý 2.5.4) và chứng minh được giả thuyết của Lewis - Reiner

- Stanton [19] về chuỗi Hilbert-Poincaré của không gian bất biến Qm (n)Bn (Định

lý 2.6.3).
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Chương 3

Bất biến của vành đa thức modulo

lũy thừa Frobenius dưới tác động

của các nhóm con parabolic hạng

thấp

Giả thuyết Parabolic 1.5 của Lewis, Reiner và Stanton [19] đưa ra một

công thức dự đoán cho chuỗi Hilbert-Poincaré của không gian bất biến Qm(n)Pα,

trong đó Pα là một nhóm con parabolic của nhóm tuyến tính tổng quát GLn.

Mặc dù giả thuyết này cung cấp thông tin về số chiều của không gian bất biến,

nhưng nó không đưa ra mô tả cụ thể về cấu trúc tuyến tính và không xác định

một hệ cơ sở tuyến tính tường minh cho không gian này.

Dựa trên giả thuyết về chuỗi Hilbert-Poincaré, chúng tôi đề xuất một giả

thuyết mạnh hơn, không chỉ xác định kích thước của không gian bất biến mà

còn cung cấp mô tả tường minh về một hệ cơ sở tuyến tính cụ thể của không

gian Qm(n)Pα. Trong đó, các toán tử δs;m giữ vai trò trung tâm như phép nâng,

cho phép chuyển các bất biến từ không gian hạng thấp lên các không gian bất

biến có hạng cao hơn. Đồng thời, tập ∆m
s đóng vai trò như một “tập sinh” gồm

các bất biến cơ bản ở bậc thấp, từ đó toàn bộ hệ cơ sở được xây dựng thông

qua sự kết hợp với các toán tử δs;m.
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Giả thuyết tổng quát của chúng tôi về hệ cơ sở tuyến tính của không gian

Qm(n)Pα được trình bày cụ thể như sau.

Giả thuyết 3.0.1. Một cơ sở cho không gian bất biến Qm (n)Pα là tập Bm (α)

gồm các phần tử có dạng

δα1−β1

B1+1;m

(
f1δ

α2−β2

B2+1;m

(
· · · fl−1δ

αl−βl

Bl+1;m (fl) · · ·
))

, 0 ≤ s ≤ min (α1,m) ,

với β ≤ α, |β| ≤ m, Bi = β1 + . . .+ βi (quy ước B0 = 0) và

fi ∈ ΦBi−1∆m−Bi−1

βi
⊂ ∆m−Bi

Bi
.

Ở đây, ∆m
s là một tập con của đại số Dickson được xây dựng theo Định

nghĩa 3.1.1, còn δa;b là toán tử đã được xây dựng trong Định nghĩa 2.1.1. Hàm

Frobenius Φ được định nghĩa theo các quy tắc Φ(Qr,i) = Qr+1,i+1 và được áp

dụng theo phép nhân. Với trường hợp đặc biệt của nhóm parabolic là nhóm

tuyến tính tổng quát GLn ứng với nhóm Pα, α = (n), chúng tôi có giả thuyết.

Giả thuyết 3.0.2. Tập hợp Bm (n) gồm các phần tử có dạng

δn−s
s+1;m (f) , f ∈ ∆m

s , 0 ≤ s ≤ min (m,n)

tạo thành một cơ sở cho không gian véctơ Qm (n)GLn trên Fq.

Nhận xét 3.0.3. i) Theo [28] (công thức 7.1), ta cóm
α


q,t

=

m
α1


q,t

φα1

m− α1

α2


q,t

φα1+α2

m− α1 − α2

α3


q,t

· · ·

· · ·φα1+···+αl−1

m− α1 − · · · − αl−1

αl


q,t

.

Theo kết quả trong Chương 2 thì chuỗi Hilbert-Poincaré trong Giả thuyết

3.0.1 là phù hợp với Giả thuyết 1.4.1 với các giá trị đầu tiên như α =

92



(1), (1, 1), . . .. Giả sử chuỗi Hilbert-Poincaré ứng với Bm(α′) với α′ = (α2, . . . , αl)

là

Cα′,m(t) =
∑

β′≤α′,|β′|≤m−s

te(m−s,α′,β′)

 m− s

β′,m− s− |β′|


q,t

.

Khi đó, chuỗi Hilbert-Poincaré của Bm(α) với α′ = (α1, α2, . . . , αl) là

min(α1,m)∑
s=0

t(q
m−qs)(α1−s)

m
s


q,t

×

× φs

 ∑
β′≤α′,|β′|≤m−s

te(m−s,α′,β′)

 m− s

β′,m− s− |β′|


q,t

 ,

ở đó β′ = (β2, . . . , βl) ≤ α′ = (α2, . . . , αl). Áp dụng công thức 7.1 [28] ở trên

và biến đổi ta thu được, chuỗi Hilbert-Poincaré ứng với Bm(α) là

Cα,m(t) =
∑

β≤α,|β|≤m

te(m,α,β)

 m

β′,m− |β′|


q,t

.

Do đó, chuỗi Hilbert-Poincaré trong Giả thuyết 3.0.1 là phù hợp với Giả

thuyết 1.4.1.

ii) Đặc biệt, chuỗi Hilbert-Poincaré của ∆m
s là

m
s


q,t

và toán tử δn−s
s+1;m(f) làm

tăng bậc của f lên (n− s) (qm − qs) đơn vị. Vì vậy, chuỗi Hilbert-Poincaré

tương ứng với tập Bm(n) là
∑min(m,n)

s=0 t(n−s)(qm−ss)

m
s


q,t

và nó chính là

Cn,m(t) trong Giả thuyết 1.4.2. Do đó, chuỗi Hilbert-Poincaré trong Giả

thuyết 3.0.2 là phù hợp với Giả thuyết 1.4.2.

Vì vậy, cơ sở mà chúng tôi đề xuất có chuỗi Hilbert-Poincaré trùng với

chuỗi Hilbert-Poincaré trong giả thuyết của Lewis, Reiner và Staton. Do đó, giả

thuyết của chúng tôi phù hợp với hai giả thuyết được đề xuất bởi Lewis, Reiner
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và Stanton. Hơn nữa, chúng tôi cũng giải thích lý do tại sao các hạng tử của

chuỗi Hilbert-Poincaré lại xuất hiện trong các giả thuyết ban đầu.

Trong chương này, chúng tôi xây dựng cơ sở tuyến tính và chứng minh Giả

thuyết 3.0.1 và Giả thuyết 3.0.2 đúng với hạng không vượt quá 3. Từ đó, chúng

tôi suy ra Giả thuyết của Lewis, Reiner và Stanton (Giả thuyết 1.4.1 và 1.4.2)

cho không gian bất biến của Qm(n) dưới tác động của các nhóm con parabolic,

trong trường hợp các nhóm này có hạng không vượt quá 3.

3.1. Toán tử δ và tập ∆

Trong lý thuyết bất biến trên trường hữu hạn, các đa thức Dickson giữ

vai trò trung tâm trong việc xây dựng và mô tả các không gian bất biến dưới

tác động của nhóm tuyến tính tổng quát GLn và các nhóm con parabolic của nó.

Không chỉ cung cấp một hệ sinh cho không gian bất biến, các bất biến Dickson

còn là nền tảng cho việc phát triển các cấu trúc đại số, đặc biệt là trong định

nghĩa và vận dụng các toán tử δ cũng như tập ∆m
s , đóng vai trò thiết yếu trong

việc xây dựng các cơ sở tuyến tính cho các không gian bất biến.

Chúng tôi nhắc lại một số khái niệm cơ bản liên quan đến các đa thức

Dickson và đại số bất biến. Với mỗi số nguyên dương k, ký hiệu Vk là tích

Vk(x1, . . . , xk) =
∏
λi∈Fq

(xk + λ1x1 + · · ·+ λk−1xk−1).

Ta biết rằng vành gian bất biến SBn dưới tác động của nhóm con Borel của GLn

là một đại số đa thức được sinh bởi các bất biến V q−1
i với 1 ≤ i ≤ n. Ngoài ra,

phương trình cơ bản theo X là

Vn+1 (x1, . . . , xn, X) = Xqn +

n−1∑
i=0

(−1)n−iQn,iX
qi ,

trong đó các đa thức Qn,i = Qn,i (x1, . . . , xn) là bất biến dưới tác động của nhóm

94



GLn. Theo Dickson [7], ta có

Dn = SGLn = Fq[Qn,0, . . . , Qn,n−1].

Các đa thức này có thể biểu diễn tường minh thông qua định thức của

các lũy thừa Frobenius như sau

[r1, . . . , rn] = det
(
xq

rj

i

)
1≤i,j≤n

, Ln = [0, 1, . . . , n− 1] ,

với 0 ≤ i ≤ n thì

Qn,i =

[
0, . . . , î, . . . , n

]
Ln

.

Đặc biệt Qn,n = 1, Qn,0 = Lq−1
n , và Qn,i = 0 nếu i < 0 hoặc i > n. Một số liên hệ

quan trọng khác là

Ln = V1V2 . . . Vn, Qn,i = Qq
n−1,i−1 +Qn−1,iV

q−1
n .

3.1.1. Toán tử δ và vai trò kết hợp với ∆

Tiếp theo, chúng tôi trình bày định nghĩa và tác động của toán tử δ, cùng

với cách thức kết hợp nó với các đơn thức trong ∆m
s để tạo nên các bất biến

parabolic. Nội dung này sẽ làm sáng tỏ vai trò của ∆m
s như một khối xây dựng

quan trọng trong cấu trúc của không gian bất biến.

Trước khi giới thiệu định nghĩa về tập ∆m
s , chúng tôi nhắc lại khái niệm

đơn thức Dickson có kiểu phân hoạch.

Định nghĩa 3.1.1. Với một số nguyên dương s và phân hoạch (λ1, λ2, . . . , λs)

sao cho λ1 ≥ λ2 ≥ . . . ≥ λs ≥ 0, một đơn thức Dickson Qe1
s,s−1 · · ·Q

es
s,0 trong đại số

Dickson Ds được gọi là có kiểu (λ1, . . . , λs) nếu từng phần tử ei thoả mãn điều

kiện

ei ∈
[
qλi − qλi+1

q − 1
,
qλi+1 − qλi+1

q − 1

)
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với 1 ≤ i ≤ s.

Nhận xét 3.1.2. Mỗi đơn thức Dickson là q-tương thích với một phân hoạch

duy nhất (λ1, . . . , λs) có độ dài không vượt quá s.

Định nghĩa 3.1.3 ([28], Định nghĩa 5.4). Không gian con ∆m
s của đại số Dickson

được xác định là hợp rời rạc của các tập con ∆(λ1,...,λs) trong đó

• Mỗi phân hoạch (λ1, . . . , λs) thỏa mãn điều kiện m− s ≥ λ1.

• ∆(λ1,...,λs) là tập hợp tất cả các đơn thức Dickson có kiểu tương ứng.

• Nếu s > m thì quy ước ∆m
s = ∅.

Các đơn thức Dickson trong ∆m
s với s ≤ min(m,n), cùng với các toán tử δ đóng

vai trò quan trọng để xây dựng cơ sở của không gian bất biến. Ta gọi một đơn

thức Dickson trong ∆m
s là một đơn thức cốt yếu.

Dễ dàng thấy rằng Φ∆m
s ⊂ ∆m

s+1 và Φ biến một đơn thức kiểu (λ1, . . . , λs)

của Ds thành một đơn thức kiểu (λ1, . . . , λs, 0) của Ds+1. Các đơn thức Dickson

trong ∆m
s đóng vai trò là những thành phần “cốt yếu” trong việc xây dựng các

bất biến dưới tác động của nhóm GLn và các nhóm con parabolic của nó. Như

sẽ được trình bày trong phần tiếp theo, khi kết hợp với các toán tử δ, các đơn

thức này cho phép xác định tường minh cơ sở tuyến tính của các không gian

bất biến parabolic.

Khi khảo sát cấu trúc của tập ∆m
s , một số đơn thức Dickson không thuộc

tập này vẫn giữ vai trò quan trọng, đặc biệt trong việc nghiên cứu tính đầy đủ

hoặc độc lập tuyến tính của các hệ sinh bất biến. Các đơn thức như vậy được

gọi là đơn thức biên và được định nghĩa như sau.

Định nghĩa 3.1.4. Ta gọi các đơn thức biên là các đơn thức Dickson không

nằm trong ∆m
s nhưng có tính chất "biên" thoả mãn

ei ∈
[
qλi − qλi+1

q − 1
,
qλi+1 − qλi+1

q − 1

)
với mọi i ̸= j,
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và

ej =
qλj+1 − qλj+1

q − 1

với chỉ số j cố định trước.

Theo Định nghĩa toán tử δ, nếu f(x1, x2) ∈ Fq[x1, x2] thì

δ3(f) =

∣∣∣∣∣∣∣∣∣
x1 x2 x3

xq1 xq2 xq3

xq
m

1 f(x2, x3) xq
m

2 f(x1, x3) xq
m

3 f(x1, x2)

∣∣∣∣∣∣∣∣∣
L3

.

Trong Chương 2 chúng tôi đã chứng minh tổng quát hơn rằng δs(f) thông

thường không phải là đa thức, nhưng trong nhiều trường hợp nó không những

là một đa thức mà còn là một đa thức bất biến của Qm(s+1) dưới tác động của

nhóm Borel Bs+1. Mệnh đề tiếp theo, chúng tôi đưa một phát biểu chính xác

cho trường hợp riêng của toán tử δ3 và trình bày một chứng minh "cơ bản" hơn

về tính đa thức của δ3(f), đồng thời sử dụng kết quả này để chỉ ra tính GL3-bất

biến của δ3(f) khi f là GL2-bất biến.

Mệnh đề 3.1.5. Nếu f là một đa thức GL2-bất biến thì δ3(f) là một đa thức và

là một GL3-bất biến của không gian Qm(3).

Chứng minh. Để chứng minh rằng δ3(f) là một đa thức và là GL3-bất biến, ta

thực hiện các bước sau.

(1) Chứng minh tính đa thức của δ3(f).

Mẫu số L3 của δ3(f) là tích các dạng tuyến tính. Do đó, để chứng minh

rằng δ3(f) là một đa thức, ta cần chỉ ra rằng tử số này sẽ bằng không khi

có một quan hệ tuyến tính không tầm thường giữa các biến x1, x2 và x3.

Giả sử ta có điều kiện tuyến tính

a1x1 + a2x2 + a3x3 = 0,
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trong đó a1, a2, và a3 là các hằng số, không đồng thời bằng không. Giả sử

a3 ̸= 0, không giảm tính tổng quát ta giả sử a3 = −1. Khi đó,

x3 = a1x2 + a2x2.

Tử số của δ3(f) có dạng

L2(x2, x3)x
qm

1 f(x2, x3)− L2(x1, x3)x
qm

2 f(x1, x3) + L2(x1, x2)x
qm

3 f(x1, x2).

– Khi a1 và a2 đều khác 0. Vì f là GL2-bất biến nên

f(x1, x3) = f(x1, a1x2 + a2x2) = f(x1, x2),

f(x2, x3) = f(x2, a1x2 + a2x2) = f(x1, x2)

và

L2(x1, x3) = L2(x1, a1x1 + a2x2) = a2L2(x1, x2),

L2(x2, x3) = L2(x2, a1x1 + a2x2) = −a1L2(x1, x2).

Do đó, khi x3 = a1x1 + a2x2 thì tử số của δ3(f) trở thành

L2(x2, x3) x
qm

1 f(x2, x3)− L2(x1, x3) x
qm

2 f(x1, x3) + L2(x1, x2) x
qm

3 f(x1, x2)

=
(
−a1x

qm

1 − a2x
qm

2 + xq
m

3

)
L2(x1, x2) f(x1, x2) = 0.

– Khi a1 = 0 hoặc a2 = 0, chẳng hạn a1 = 0. Khi đó,

f(x2, x3) = f(x2, ax2) = 0; f(x1, x3) = f(x1, a2x2) = f(x1, x2).

L2(x1, x3) = aL2(x1, x2) và L2(x2, x3) = L2(x2, a2x2) = 0.

Do đó, tử số của δ3(f) là(
−a2x

qm

2 + xq
m

3

)
L2(x1, x2)f(x1, x2) = 0.
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– Khi a1 = a2 = 0 thì hiển nhiên tử số của δ3(f) bằng 0.

Vậy tử số của δ(f) sẽ bằng 0 nếu tồn tại một quan hệ tuyến tính giữa x1, x2

và x3. Điều này chỉ ra rằng δ3(f) là một đa thức.

(2) Chứng minh tính bất biến.

Trước hết, δ3(f) là đa thức đối xứng. Vì vậy, để chứng minh δ3(f) là GL3-

bất biến của Qm(3) thì ta chỉ cần chỉ ra δ3(f) bất biến đối với phép biến

đổi x1 7→ x1 + x2 và giữ nguyên x2, x3. Ta có,

L3(x1 + x2, x2, x3) = L3(x1, x2, x3).

Vì vậy, tử số của δ3(f)(x1 + x2, x2, x3)− δ3(f)(x1, x2, x3) là∣∣∣∣∣∣∣∣∣
x1 + x2 x2 x3

xq1 + xq2 xq2 xq3(
xq

m

1 + xq
m

2

)
f(x2, x3) xq

m

2 f(x1 + x2, x3) xq
m

3 f(x1 + x2, x2)

∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣
x1 x2 x3

xq1 xq2 xq3

xq
m

1 f(x2, x3) xq
m

2 f(x1, x3) xq
m

3 f(x1, x2)

∣∣∣∣∣∣∣∣∣
.

Sau khi thu gọn ta thu được

xq
m

2

∣∣∣∣∣∣∣∣∣
x1 x2 x3

xq1 xq2 xq3

f(x2, x3)− f(x1 + x2, x3) f(x1 + x2, x3)− f(x1, x3) 0

∣∣∣∣∣∣∣∣∣
.

Lập luận tương tự bước 1, ta có∣∣∣∣∣∣∣∣∣
x1 x2 x3

xq1 xq2 xq3

f(x2, x3)− f(x1 + x2, x3) f(x1 + x2, x3)− f(x1, x3) 0

∣∣∣∣∣∣∣∣∣
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chia hết cho L3. Vì vậy,

δ3(f)(x1 + x2, x2, x3)− δ3(f)(x1, x2, x3) = 0

trong Qm(3). Do đó, δ3(f) là một đa thức và là GL3-bất biến trong không

gian Qm(3).

Chú ý 3.1.6. Theo Mệnh đề 4.1 [12] thì kết quả trên đúng cho trường hợp hạng

2 với toán tử δ2, trường hợp hạng 1 được suy ra một cách dễ dàng từ định nghĩa

của toán tử δ1.

Ví dụ 3.1.7. Các đa thức GL1-bất biến có dạng f(x) = xs(q−1) = Qs
1,0, s ≥ 0. Do

đó, δ2
(
Qs

1,0

)
là một đa thức và là GL2-bất biến của Qm(2). Họ bất biến δ2

(
Qs

1,0

)
chính là họ bất biến ys với s < [m]q mà Goyal xây dựng trong [12]. Trong đó, ys

được định nghĩa là

ys = xq
m−q
1 x

s(q−1)
2 + x

qm−q−(q−1)
1 x

(s+1)(q−1)
2 + · · ·+ x

s(q−1)
1 xq

m−q
2 .

Kết quả này vẫn đúng khi s ≥ [m]q. Tuy nhiên, khi đó các bất biến biến này là

tầm thường trong Qm ngoại trừ trường hợp s = [m]q + 1, trong đó

δ2

(
Q

[m]q+1

1,0

)
=

∣∣∣∣∣∣ x1 x2

xq
m

1 xq
m−1+q−1
2 xq

m

2 xq
m−1+q−1
1

∣∣∣∣∣∣∣∣∣∣∣∣x1 x2

xq1 xq2

∣∣∣∣∣∣
= −xq

m−1
1 xq

m−1
2 = −δ21(1).

Ví dụ 3.1.8. Đối với s ≤ [m]q, δ
2
2

(
Qs

1,0

)
là một đa thức GL3-bất biến có bậc

2(qm− q) + s(q− 1) trong Qm. Họ bất biến này chính là họ các đa thức am,3,s mà

Goyal đã xây dựng trong ([12], Hệ quả 4.3), theo đó thì công thức tường minh
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của am,3,s là

am,3,s = δ22
(
Qs

1,0

)
=

∑
i1+i2+i3=

2(qm−q)
q−1

+s

s≤i1,i2,i3≤ qm−q
q−1

x
i1(q−1)
1 x

i2(q−1)
2 x

i3(q−1)
3 .

Kết quả này vẫn đúng cho trường hợp s ≥ [m]q. Tuy nhiên, các bất biến này đều

là tầm thường, ngoại trừ trường hợp

δ22

(
Q

[m]q+2

1,0

)
= xq

m−1
1 xq

m−1
2 xq

m−1
3 = δ31(1).

3.1.2. Toán tử δ và Đại số Dickson

Với mỗi hợp thành α của n, không gian bất biến Qm(n)Pα là một môđun

trên đại số Dickson Dn. Kết quả sau đây mô tả cách toán tử δ tương tác với đại

số Dickson trong trường hợp hạng thấp.

Mệnh đề 3.1.9. Ta có các đẳng thức sau trong Qm.

(1) Qs,0δs(f) = 0 với mọi f .

(2) Q2,1δ2(f) = δ2
(
Qq

1,0f
)
với mọi f ∈ D1.

(3) Q3,iδ3(f) = δ3
(
Qq

2,i−1f
)
với i = 1 hoặc 2 và mọi f ∈ D2.

(4) Q3,2δ
2
2(f) = δ22

(
Qq2

1,0f
)
với mọi f ∈ D1.

(5) Q3,1δ
2
2(f) = 0 với mọi f ∈ D1.

Chứng minh. Ta sẽ chứng minh (3) cho trường hợp i = 1 và hai trường hợp cuối.

Việc chứng minh (1), (2) được thực hiện dựa vào định nghĩa toán tử δs và biến

đổi định thức tương tự trong chứng minh (3), (4) và (5).

• Chứng minh (3).

Xét hiệu Q3,1δ3(f) − δ3(Q
q
2,0f). Sử dụng đẳng thức Q3,1 = V q−1

3 Q2,1 + Qq
2,0,
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phần tử (3, 1) trong hàng cuối của định thức trong tử số có thể được viết

đơn giản thành

xq
m

1 V q−1
3 (x2, x3, x1)Q2,1(x2, x3).

Vì

V3(x2, x3, x1)L2(x2, x3) = L3(x2, x3, x1) = L3(x1, x2, x3),

nên khai triển Laplace theo hàng cuối của định thức trong tử số cho thấy

rằng đa thức thu được thuộc Im, điều này dẫn đến nó bằng không trong

Qm. Do đó, ta thu được (3).

• Chứng minh (4).

Xét Q3,2 = V q−1
3 +Qq

2,1. Theo (1) và (2), trong Qm ta có

Q3,2δ2 (δ2(f)) = δ2
(
Qq

2,1δ2(f)
)
.

Sử dụng công thức Q2,1 = V q−1
2 +Qq

1,0 và khai triển định thức, ta thấy hiệu

δ2
(
Qq

2,1δ2(f)
)
− δ22

(
Qq2

1,0f
)
có thể được viết dưới dạng

xq
m

3 ·
xq

m−1

1 x2f(x2)V
q2−q−1
2 (x2, x3)− xq

m

2 x1f(x1)V
q2−q−1
2 (x1, x3)

L2(x1, x2)

+ xq
m

1 xq
m

2 f(x3) ·
x2V

q2−q−1
2 (x3, x2)− x1V

q2−q−1
2 (x3, x1)

L2(x1, x2)
.

Ta thấy rằng số hạng đầu tiên là một đa thức và là bội của xq
m

3 . Số hạng

thứ hai thuộc iđêan (xq
m

1 , xq
m

2 ). Vậy, (4) được chứng minh.

• Chứng minh (5).

Trong Qm, ta có

Q3,1δ2(f) = δ2
(
Qq

2,0f
)
,

102



và

Q2,0δ2(f) = Lq2−q−1
2 (x1, x2)x1f(x1)x

qm

2 − Lq2−q−1
2 (x1, x2)x2f(x2)x

qm

1

Lập luận tương tự như chứng minh của (4) ta suy ra điều phải chứng minh.

3.2. Chặn trên của tổng số chiều của các không gian

con bất biến

Giả thuyết Parabolic dự đoán rằng chuỗi Hilbert-Poincaré cho không gian

bất biến Qm(n)Pα, trong đó α là một hợp thành của n, là đa thức (hữu hạn)

Cα,m(t) có công thức tường minh được nhắc lại trong Giả thuyết 1.4.2. Đặc biệt,

giá trị của Cα,m(t) khi t = 1 là tổng số chiều của các Fq-không gian véctơ phân

bậc Qm(n)Pα. Chúng tôi chỉ ra kết quả sau.

Mệnh đề 3.2.1. Với mỗi m,n ≥ 1 và hợp thành α bất kỳ của n, tổng số chiều

của không gian véctơ phân bậc Qm(n)Pα không nhỏ hơn Cα,m(1).

Chứng minh. Xét thương đại số đa thức không phân bậc

R = Fq [x1, . . . , xn] /
(
xq

m

1 − x1, . . . , x
qm

n − xn

)
.

Tác động của GLn lên Fq [x1, . . . , xn] sẽ cảm sinh tác động xuống thương này. Ta

có một lọc tự nhiên

{0} = F−1 ⊂ F0 ⊂ F1 ⊂ · · · ⊂ Fn(qm−1) = R,

trong đó Fi là ảnh của tập hợp tất cả các đa thức có bậc không vượt quá i dưới

phép chiếu chính tắc Fq[x1, . . . , xn] → R. Gọi grFR là không gian véctơ phân bậc

liên kết
⊕

i≥0 Fi/Fi−1 và trang bị cho grFR một cấu trúc vành mà phép nhân
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được xác định bởi tích FiFj → Fi+j. Ánh xạ Fq-đại số chính tắc

Fq[x1, . . . , xn] → R → grFR, xi 7→ x̄i ∈ F1/F0,

cảm sinh một đẳng cấu Fq-đại số của các GLn-bất biến

Qm(n) ∼= grFR.

Mặt khác, áp dụng hàm tử lấy GLn-bất biến trên mỗi dãy khớp ngắn của các

GLn-môđun,

0 → Fi−1 → Fi → Fi/Fi−1 → 0,

và tính theo số chiều, ta thu được bất đẳng thức

dim (Fi)
GLn ≤ dim (Fi−1)

GLn + dim (Fi/Fi−1)
GLn ,

do đó

dimRGLn ≤ dim(grFR)GLn = dimQm(n)GLn .

Để tính số chiều của RGLn, ta mở rộng trường Fq thành một trường F

chứa Fqm. Khi đó ánh xạ đánh giá

f(x1, . . . , xn) 7→
[
(v1, . . . , vn) ∈ Fn

qm 7→ f(v1, . . . , vn) ∈ F
]
,

cảm sinh một đẳng cấu của các Fq-đại số

F⊗Fq
R ∼= Map

(
Fn
qm ,F

)
.

Đẳng cấu này cũng là GLn-tương thích, trong đó GLn tác động lên vế phải thông

qua việc nhúng GLn (Fq) ⊂ GLn (Fqm). Từ đó suy ra rằng tồn tại đẳng cấu

(
F⊗Fq

R
)GLn ∼= Map

(
Fn
qm/GLn,F

)
.
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Số chiều của (F⊗Fq
R)GLn bằng với số lượng của các quỹ đạo của tập Fn

qm/GLn.

Mặt khác, số lượng này bằng tổng
∑min(m,n)

s=0

 m

s


q

, trong đó

 m

s


q

là q-hệ

số nhị thức bằng số các không gian con có s chiều của Fq-không gian véctơ Fqm.

Vậy, ta đã chỉ ra rằng

dimFq
RGLn = dimFq

(F⊗Fq
RGLn)

=

min(m,n)∑
s=0

 m

s


q

= Cm,n(1) ≤ dimQm(n)GLn .

Lập luận trên vẫn đúng nếu ta thay nhóm tuyến tính tổng quát GLn bằng

nhóm con parabolic Pα. Vậy, mệnh đề đã được chứng minh.

Tiếp theo, chúng tôi có kết quả sau về chuỗi chuỗi Hilbert-Poincaré sinh

bởi tập Bm(α).

Bổ đề 3.2.2. Với mỗi hợp thành α của n, chuỗi Hilbert-Poincaré của Fq-không

gian véctơ sinh bởi tập Bm(α) không lớn hơn Cα,m(t).

Chứng minh. Ta có

Cα,m(t) =
∑

β≤α,|β|≤m

te(m,α,β)

 m

β,m− |β|


q,t

,

trong đó

e(m,α, β) =
∑

(αi − βi)(q
m − qβi)

= (α1 − β1)(q
m − qβ1) + qβ1

∑
i≥2

(αi − βi)(q
m−β1 − qβ2+···+βi).

Ngoài ra, theo [28] (Công thức 7.1), ta có công thức cho (q, t)-đa hệ số nhị thức
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là  m

β,m− |β|


q,t

=

 m

β1


q,t


 m

β2, . . . , βℓ,m− |β|


q,t


qβ1

.

Do đó, đặt β′ = (β2, . . . , βℓ) và α′ = (α2, . . . , αℓ), khi đó Cα,m(t) được biểu diễn

thành

∑
β1≤min(α1,m)

t(α1−β1)(q
m−qβ1)

 m

β1


q,t

×

×

 ∑
β′≤α′,|β′|≤m−β1

te(m−β1,β
′,α′)

 m− β1

β′,m− β1 − |β′|


q,t


qβ1

.

So sánh công thức cuối cùng này với định nghĩa quy nạp của tập Bm(α),

và lưu ý rằng toán tử δα1−s
s+1;m nâng bậc thêm (α1−s)(qm−qs), bội Frobenius nhân

bậc thêm q lần, và chuỗi Hilbert-Poincaré của tập ∆m
s chính là

 m

s


q

, ta suy

kết quả cần chứng minh bằng quy nạp.

Nhận xét 3.2.3. i) Giả sử ta có thể xây dựng một hệ sinh cho không gian

bất biến Qm(n)Pα sao cho sau khi tính toán số chiều thì chuỗi Hilbert-

Poincaré C ′
m,α(t) của Qm(n)Pα không lớn hơn Cα,m(t) (ở đó, f(t) ≤ g(t) nếu

g − f là một đa thức với các hệ số không âm). Sau đó, vì có một bất đẳng

thức ngược lại C ′
m,α(1) ≥ Cα,m(1) khi xét tại t = 1, ta có thể kết luận rằng

hai chuỗi này là đồng nhất vì cả hai đều là các đa thức có bậc hữu hạn với

hệ số không âm. Do đó, hệ sinh của ta thực chất là một cơ sở cho Qm(n)Pα.

ii) Từ đó, ta có thể đơn giản hóa công việc xác định cơ sở. Cụ thể, để chứng

minh rằng Bm(α) là một cơ sở của Qm(n)Pα thì chúng chỉ cần xác minh

rằng nó là một hệ sinh là đủ.
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3.3. Cơ sở của không gian bất biến của Qm(2) dưới

tác động của các nhóm con parabolic

Trường hợp hạng 2 thì nhóm tuyến tính tổng quát GL2 chỉ có hai nhóm

con là chính nó và nhóm Borel B2. Không gian bất biến dưới tác động của nhóm

con Borel B2 là trường hợp riêng của Định lý 2.5.4, theo đó ta có kết quả sau.

Hệ quả 3.3.1. Hệ gồm 2 họ các phần tử lập thành một Fq-cơ sở của Qm(2)B2

(m ≥ 1).

(1) δ1;m (Da
1) = δ1;m

(
Qa

1,0

)
, a ≤ [m]q.

(2) Da
1D

b
2 = Qa

1,0Q
b
2,1, a < [m]q , b ≤ [m− 1]q.

Tiếp theo, chúng tôi trình bày một nhận xét quan trọng liên quan đến

các đơn thức Dickson có dạng Q
qm−1−qi

q−1

2,1 Q
qi−1
q−1

2,0 nằm ở "biên" của ∆m
2 . Kết quả này

rất quan trọng trong việc xác định hệ sinh của không gian bất biến Qm(2)GL2.

Mệnh đề 3.3.2. Với mỗi 0 ≤ i ≤ m− 1, ta có phép phân tích trong Qm(2)

Q
qm−1−qi

q−1

2,1 Q
qi−1
q−1

2,0 = δ2(Q
qi−1
q−1

1,0 ) + đơn thức cốt yếu chia hết cho Q2,0.

Chứng minh. Theo định nghĩa toán tử δ, ta có

δ2

(
Q

qi−1
q−1

1,0

)
=

∣∣∣∣∣∣ x1 x2

xq
m

1 xq
i−1
2 xq

m

2 xq
i−1
1

∣∣∣∣∣∣∣∣∣∣∣∣x1 x2

xq1 xq2

∣∣∣∣∣∣
=

∣∣∣∣∣∣x
qi

1 xq
i

2

xq
m

1 xq
m

2

∣∣∣∣∣∣∣∣∣∣∣∣x1 x2

xq1 xq2

∣∣∣∣∣∣
=

[i,m]

[0, 1]
.

Do đó, δ2

(
Q

qi−1
q−1

1,0

)
là một GL2-bất biến của S, vì vậy nó là đa thức Dickson. Khi

i = 0, đơn thức Dickson δ2(1) phải chứa Q
qm−1−1

q−1

2,1 là một hạng tử đơn tầm thường

vì cả hai đều trở thành xq
m−q
1 khi cho x2 = 0. Do đó, δ2(1) − Q

qm−1−1
q−1

2,1 chia hết
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cho Q2,0. Hơn nữa, dễ thấy rằng trong các đơn thức Dickson có bậc qm − q thì

Q
qm−1−1

q−1

2,1 là đơn thức Dickson duy nhất không cốt yếu. Vậy, ta có

δ2(1) = Q
qm−1−1

q−1

2,1 + đơn thức cốt yếu chia hết cho Q2,0.

Tổng quát hơn, sử dụng các phép biến đổi định thức ta có đẳng thức

δ2

(
Q

qi−1
q−1

1,0

)
= Q

qi−1
q−1

2,0 (δ2;m−i(1))
qi .

Do đó,

δ2

(
Q

qi−1
q−1

1,0

)
= Q

qm−1−qi

q−1

2,1 Q
qi−1
q−1

2,0 + (fQ2,0)
qiQ

qi−1
q−1

2,0 ,

với f là một đa thức Dickson nào đó. Một đơn thức Dickson xuất hiện trong

hạng tử thứ hai của tổng ở trên có dạng Qi2
2,1Q

i2
2,0 với i2 ≥

qi+1−1
q−1 . So sánh bậc ta

có i1 ≤ qm−1−qi+1

q−1 , do đó Qi1
2,1Q

i2
2,0 là đơn thức cốt yếu. Vậy, ta có điều phải chứng

minh.

Trong [12] (Mệnh đề 4.1), Goyal đã xây dựng một họ các đa thức bất biến

dưới tác động của nhóm GL2 trong không gian Qm(2). Tập hợp các đa thức bất

biến này được ký hiệu là yk′, với k′ từ 0 đến qm−q
q−1 . Thực ra, họ bất biến này

chính là họ GL2-bất biến δ2(∆
m
1 ) mà chúng tôi xây dựng. Kết quả sau đây của

chúng tôi về cơ sở cho không gian bất biến Qm(2)GL2 là tổng quát kết quả của

Goyal, chúng tôi chỉ ra Fq-cơ sở không gian bất biến Qm(2)GL2.

Mệnh đề 3.3.3. Tập hợp Bm(2), bao gồm 3 họ phần tử

(1) δ1(δ1(1)) = xq
m−1

1 xq
m−1

2 ,

(2) δ2(∆
m
1 ),

(3) ∆m
2

lập thành một Fq-cơ sở của không gian con bất biến Qm(2)GL2.
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Chứng minh. Theo Nhận xét 3.2.3, để chứng minh Bm(2) là một cơ sở của

Qm(2)GL2, ta chỉ cần chứng minh rằng tập Bm(2) là một hệ sinh của Qm(2)GL2.

Để chứng minh, ta thực hiện theo hai bước.

i) Thứ nhất, xét ánh xạ chuyển

TrGL2

B2
: Qm(2)B2 → Qm(2)GL2

từ không gian bất biến Qm(2)B2 lên không gian bất biến Qm(2)GL2. Ta sẽ

chứng minh ảnh của hệ sinh của Qm(2)B2 là tập B′, bao gồm 3 họ phần tử

(1) δ2(1) = xq
m−1

1 xq
m−1

2 ,

(2) δ2(Q
s
1,0) = ys, 0 ≤ s < [m]q,

(3) D2.

Thật vậy, theo Fq-cơ sở Bm(1, 1) cho không gian bất biến dưới tác động của

nhóm con Borel bao gồm hai họ phần tử

(1) δ1 (D
a
1) = δ1

(
Qa

1,0

)
, a ≤ [m]q,

(2) Da
1D

b
2 = Qa

1,0Q
b
2,1, a < [m]q , b ≤ [m− 1]q.

Theo Ví dụ 3.1.7, với a = [m]q thì δ2
(
Dq

1

)
= xq

m−1
1 xq

m−1
2 = δ21(q) là GL2-bất

biến nên với họ thứ nhất thì ta chỉ cần xác định ảnh của ánh xạ chuyển

với trường hợp số mũ của D1 nhỏ hơn a = [m]q. Sử dụng khai triển của δ2

theo định nghĩa, ta có đẳng thức trong Qm

xq
m−1
1 x

s(q−1)
2 = x

(s+1)(q−1)
1 δ2(1)− δ2(Q

s+1
1,0 ),

với mọi 0 ≤ s < [m]q. Vì δ2(Q
s
1,0) đã là một GL2-bất biến, nên ảnh của ánh

xạ chuyển tác động lên họ đầu tiên là

TrGL2

B2

(
xq

m−1

1 x
s(q−1)
2

)
= δ2(1)Tr

GL2

B2

(
x
(s+1)(q−1)
1

)
− δ2

(
Qs+1

1,0

)
.
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Rõ ràng, TrGL2

B2

(
x
(s+1)(q−1)
1

)
lại là một đa thức Dickson trong D2. Theo

Mệnh đề 3.1.9, tích của δ2(1) với một đa thức Dickson là bằng không hoặc

là một phần tử khác trong họ δ2(∆
m
1 ). Do đó, ta có

TrGL2

B2

(
xq

m−1

1 x
s(q−1)
2

)
= −δ2

(
Qs+1

1,0

)
,

hoặc

TrGL2

B2

(
xq

m−1

1 x
s(q−1)
2

)
= 0.

Đối với họ thứ hai thì

TrGL2

B2

(
Qa

1,0Q
b
2,1

)
= Qb

2,1Tr
GL2

B2

(
Qa

1,0

)
∈ D2.

Hơn nữa, TrGL2

B2

(
x
(s+1)(q−1)
1

)
là một toàn cấu. Vì vậy, B′ là một hệ sinh cho

Qm(2)GL2.

ii) Tiếp theo, ta chứng minh rằng để sinh ra không gian bất biến Qm(2)GL2,

có thể thay thế đại số Dickson D2 trong họ thứ ba của B′ bằng không gian

con nhỏ hơn ∆m
2 .

Giả sử phản chứng rằng Qi1
2,1Q

i2
2,0 không nằm trong không gian Bm(2), và

giả sử thêm rằng đây là đơn thức nhỏ nhất trong theo thứ tự grevlex có

tính chất này. Vì Qk
2,0 = 0 nếu k > [m − 1]q, nên ta chỉ cần xét trường

hợp i2 ≤ qm−1−1
q−1 = [m − 1]q. Gọi i ≤ m − 1 là số nguyên duy nhất sao cho

[i]q ≤ i2 ≤ [i + 1]q. Khi đó, điều này suy ra rằng i1 ≥ qm−1−qi2

q−1 . Theo Mệnh

đề 3.3.2, ta suy ra

Qi1
2,1Q

i2
2,0 −Q

i1− qm−1−qi

q−1

2,1 Q
i2− qi−1

q−1

2,0 δ2

(
Q

qi−1
q−1

1,0

)

là tổng của các đơn thức Dickson có bậc theo thứ tự grevlex nhỏ hơn (i1, i2).

Và ít nhất một đơn thức trong đó lại không thuộc Bm(2) điều này là mâu
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thuẫn với giả thiết phản chứng về thứ tự grevlex nhỏ nhất của (i1, i2). Vậy,

ta có điều phải chứng minh.

3.4. Cơ sở của không gian bất biến của Qm(3) dưới

tác động của các nhóm con parabolic

Trường hợp hạng 3 thì nhóm tuyến tính tổng quát GL3 có bốn nhóm con

gồm nhóm Borel B3 = P(1,1,1), nhóm con parabolic P(2,1), nhóm con parabolic

P(1,2) và nhóm tuyến tính tổng quát GL3 = P(3). Không gian bất biến dưới tác

động của nhóm con Borel B3 là trường hợp riêng của Định lý 2.5.4, theo đó ta

có kết quả sau.

Hệ quả 3.4.1. Hệ gồm 4 họ phần tử sau tạo thành một Fq-cơ sở của Qm(3)B3

(m ≥ 2).

(1) δ21 (D
a
1) = δ21

(
Qa

1,0

)
, a ≤ [m]q.

(2) δ1
(
Da

1D
b
2

)
= δ1

(
Qa

1,0Q
b
2,1

)
, a < [m]q , b ≤ [m− 1]q.

(3) Da
1δ2
(
Db

2

)
= Qa

1,0δ2
(
Qb

2,1

)
, a < [m]q , b ≤ [m− 1]q.

(4) Da
1D

b
2D

c
3 = Qa

1,0Q
b
2,1Q

c
3,2, a < [m]q , b < [m− 1]q, c ≤ [m− 2]q.

3.4.1. Đối với nhóm con parabolic P(2,1)

Trong phần này, chúng tôi phát biểu và chứng minh Giả thuyết 3.0.1 cho

trường hợp nhóm con parabolic P(2,1).

Mệnh đề 3.4.2. Tập hợp Bm(2, 1) bao gồm 6 nhóm dưới đây tạo thành một

Fq-cơ sở cho không gian bất biến Qm(3)P(2,1).

(1) Qi1
2,1Q

i2
2,0Q

i
3,2, (i1, i2) ∈ ∆m

2 , i < [m− 2]q.
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(2) Qi1
2,1Q

i2
2,0δ3(1), (i1, i2) ∈ ∆m

2 .

(3) δ2
(
Qi1

1,0Q
i
2,1

)
, i1 < [m]q , i < [m− 1]q.

(4) δ2
(
Qi1

1,0δ2(1)
)
, i1 < [m]q .

(5) δ1
(
δ1(Q

i
1,0)
)
, i < [m]q .

(6) δ1 (δ1(δ1(1))) .

Chứng minh. Các họ (1) và (2) là các đơn thức Dickson nên rõ ràng là P(2,1)-bất

biến. Theo Hệ quả 2.4.4 thì các họ (3), (4), (5) và (6) là B3-bất biến. Hơn nữa,

các họ này là các đa thức đối xứng theo hai ẩn đầu tiên nên suy ra tất cả các

phần tử trong 6 nhóm trên là P(2,1)-bất biến. Do đó, để chứng minh mệnh đề

này, ta chỉ cần chứng minh rằng Bm(2, 1) là một hệ sinh cho Qm(3)P(2,1).

Giả sử f là một đa thức khác không trong Qm(3)P(2,1). Nếu coi f là một

đa thức theo ẩn x3, thì hệ số của nó là GL2-bất biến đối với hai ẩn x1, x2. Theo

Mệnh đề 3.3.3 thì các hệ số này thuộc một trong các trường hợp

(1) δ1(δ1(1)) = xq
m−1

1 xq
m−1

2 ,

(2) δ2(∆
m
1 ),

(3) ∆m
2 .

Nếu một trong các hệ số này có dạng xq
m−1
1 xq

m−1
2 , thì phần tử tương ứng

sẽ thuộc vào hai nhóm cuối cùng trong danh sách. Bằng cách trừ đi nếu cần, giả

sử rằng phần tử này không xuất hiện trong f .

Do đó, giả sử rằng bậc của x1 trong f nhỏ hơn qm − 1 (và do đó bậc của

x2 cũng nhỏ hơn qm − 1 bởi tính đối xứng của f với hai ẩn đầu tiên). Tiếp theo,

có thể coi f là B3-bất biến nên f là một tổ hợp tuyến tính của các đa thức thuộc

hai loại cuối cùng trong danh sách các bất biến Borel trong Hệ quả 3.4.1. Đặc
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biệt, bậc x3 của f phải chia hết cho q2 − q, ta có biểu diễn f dưới dạng

f = x
aq(q−1)
3 faq + x

(aq−1)(q−1)
3 faq−1 + · · · ,

trong đó fi = fi(x1, x2) ∈ Qm(2)GL2. Nếu faq chứa δ2
(
Qt

1,0

)
với một số t ≥ 0, thì

ta có thể thay f bởi f trừ cho một đa thức thích hợp trong nhóm thứ ba hoặc

thứ tư trong danh sách 6 họ trên. Do đó, ta có thể giả sử faq thuộc ∆m
2 . Nhưng

điều này có nghĩa là đơn thức bậc cao nhất là một tổng không tầm thường của

một đa thức B3-bất biến có dạng x
j1(q−1)
1 Qj2

2,1Q
j3
3,2. Đặc biệt, điều này cho thấy a

chia hết cho q, giả sử a = bq. Sau đó, thay f bằng cách đa thức f trừ cho một

tổ hợp tuyến tính thích hợp của hai nhóm đầu tiên của Bm(2, 1), ta sẽ thu được

một đa thức P(2,1)-bất biến có bậc x3 nhỏ hơn đa thức ban đầu. Quy nạp theo

bậc của x3 ta suy ra tập Bm(2, 1) là hệ sinh của không gian bất biến Qm(3)P(2,1).

Từ đó, theo Nhận xét 3.2.3 ta suy ra điều phải chứng minh.

Nhận xét 3.4.3. Ta có thể chứng minh rằng Bm(2, 1) là độc lập tuyến tính trực

tiếp như sau. Xem các phần tử của Bm(2, 1) như là các đa thức theo ẩn x3. Bằng

cách tính toán trực tiếp, ta thu kết quả dưới đây theo hệ số của bậc cao nhất

theo x3 của 6 họ trong Bm(2, 1).

Bm(2, 1) Bậc theo ẩn x3 Hệ số

(1) Qi1
2,1Q

i2
2,0Q

i
3,2 i(q3 − q2) < qm − q2 Qi1

2,1Q
i2
2,0, (i1, i2) ∈ ∆m

2

(2) Qi1
2,1Q

i2
2,0δ3(1) qm − q2 Qi1

2,1Q
i2
2,0, (i1, i2) ∈ ∆m

2

(3) δ2
(
Qi1

1,0Q
i
2,1

)
i(q2 − q) < qm − q δ2(Q

i1
1,0), i1 < [m]q

(4) δ2
(
Qi1

1,0δ2(1)
)

qm − q δ2(Q
i1
1,0), i1 < [m]q

(5) δ1
(
δ1(Q

i
1,0)
)

i(q − 1) < qm − 1 xq
m−1
1 xq

m−1
2

(6) δ1 (δ1(δ1(1))) qm − 1 xq
m−1
1 xq

m−1
2

Từ bảng trên, ta thấy hệ số của bậc cao nhất của x3 là độc lập tuyến tính. Từ

đó, suy ra rằng các đa thức trong Bm(2, 1) là độc lập tuyến tính.

113



3.4.2. Đối với nhóm con parabolic P(1,2)

Trong phần này, chúng tôi phát biểu và chứng minh Giả thuyết 3.0.1 cho

trường hợp nhóm con parabolic P(1,2).

Mệnh đề 3.4.4. Tập hợp Bm(1, 2) bao gồm 6 họ dưới đây tạo thành một cơ sở

cho không gian con bất biến Qm(3)P(1,2).

(1) Qj1
1,0Q

i1
3,2Q

i2
3,1, j1 < [m]q , (i1, i2) ∈ ∆m−1

2 .

(2) Qj1
1,0δ3

(
Qj2

2,1

)
, j1 < [m]q , j2 < [m− 1]q.

(3) Qj1
1,0δ2 (δ2(1)) , j1 < [m]q .

(4) δ1
(
Qi1

2,1Q
i2
2,0

)
, (i1, i2) ∈ ∆m

2 .

(5) δ1

(
δ2(Q

j1
1,0)
)
, j1 < [m]q .

(6) δ1 (δ1(δ1(1))) .

Chứng minh. Ta sẽ chứng minh Bm(1, 2) là một hệ sinh bằng phương pháp quy

nạp lùi theo bậc nhỏ nhất của x1. Biểu diễn f dưới dạng

f = x
i(q−1)
1 gi(x2, x3) + x

(i+1)(q−1)
1 gi+1(x2, x3) + · · ·

Khi đó, tất cả các đa thức hệ số gj trong biểu diễn trên đều là các đa thức

GL2-bất biến theo x2 và x3. Nếu i(q−1) = qm−1, thì xq
m−1

1 g(x2, x3) là một tổ hợp

tuyến tính của các đa thức từ 3 nhóm cuối trong Bm(1, 2). Ta có thể thay đa thức

f bằng đa thức f trừ đi các họ này. Vì vậy, có thể giả sử rằng i(q − 1) ≤ qm − q.

Vì f cũng là B3-bất biến nên f là tổ hợp tuyến tính của các đa thức họ 3

và 4 thuộc Fq-cơ sở của không gian bất biến Qm(3)B3 theo Hệ quả 3.4.1. Cụ thể, f

là tổ hợp tuyến tính của các đa thức có dạng x
j1(q−1)
1 δ2

(
Qj2

2,1

)
hoặc Qj1

1,0Q
j2
2,1Q

j3
3,2.

Mặc khác, bậc nhỏ nhất của x1 trong các đa thức này lần lượt là

x
j1(q−1)
1 xq

m−q
2 x

j2q(q−1)
3 và x

j1(q−1)
1 x

j2q(q−1)
2 Qj3q

2,1 (x2, x3) .
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Trong cả hai trường hợp, số mũ của x2 và x3 trong hệ số của bậc nhỏ nhất

của x1 chia hết cho q(q − 1).

Vậy, gi(x2, x3) là một đa thức mà trong đó tất cả số mũ của x2 và x3 đều

chia hết cho q(q−1). Hơn nữa, gi ∈ Qm(2)GL2(x2, x3) nên nó phải là một lũy thừa

bậc q của một đa thức thuộc Qm−1(2) theo ẩn x2, x3.

Mặt khác, các hạng tử có bậc thấp nhất theo x1 của 3 họ đầu tiên trong

Bm(1, 2) là

1. x
j1(q−1)
1

[
Qi1

2,1(x2, x3)Q
i2
2,0(x2, x3)

]q
, với (i1, i2) ∈ ∆m−1

2 ,

2. x
j1(q−1)
1

[
δ2;m−1

(
Qj2

1,0

)]q
, với j2 < [m− 1]q,

3. x
j1(q−1)
1

[
xq

m−1−1
2 xq

m−1−1
3

]q
.

Do đó, xi1(q−1)
1 gi(x2, x3) là đa thức có bậc theo x1 nhỏ nhất trong không

gian tuyến tính sinh bởi Bm(1, 2). Vì vậy, bằng cách trừ đi từ f một tổ hợp tuyến

tính thích hợp của các đa thức trong Bm(1, 2), ta có thể thu được một đa thức

bất biến P(1,2) khác, trong đó bậc thấp nhất theo x1 lớn hơn thực sự bậc thấp

nhất theo x1 trong f . Bằng phương pháp quy nạp, ta suy ra tập hợp Bm(1, 2) là

một hệ sinh của không gian con bất biến Qm(3)P(1,2). Từ đó, theo Nhận xét 3.2.3

ta có được điều cần chứng minh.

Nhận xét 3.4.5. Tương tự như đối với nhóm parabolic P(2,1), ta cũng có thể

chứng minh trực tiếp rằng Bm(1, 2) là độc lập tuyến tính. Thật vậy, các phần tử

sinh của Bm(1, 2) có thể được phân biệt theo hệ số của hạng tử chứa bậc nhỏ

nhất của x1. Cụ thể, các hệ số tương ứng như được trình bày trong bảng sau.

115



Bm(1, 2) Bậc theo ẩn x1 Hệ số

(1) Qj1
1,0Q

i1
3,2Q

i2
3,1 j1(q − 1) < qm − 1 Qi1q

2,1(x2, x3)Q
i2q
2,0(x2, x3), (i1, i2) ∈ ∆m−1

2

(2) Qj1
1,0δ3

(
Qj2

2,1

)
j1(q − 1) < qm − 1 δ2;m−1(Q

j2
1,0)

q(x2, x3), j2 < [m− 1]q

(3) Qj1
1,0δ2 (δ2(1)) j1(q − 1) < qm − 1 xq

m−q
2 xq

m−q
3

(4) δ1
(
Qi1

2,1Q
i2
2,0

)
qm − 1 Qi1

2,1(x2, x3)Q
i2
2,0(x2, x3), (i1, i2) ∈ ∆m

2

(5) δ1

(
δ2(Q

j1
1,0)
)

qm − 1 δ2(Q
j1
1,0)(x2, x3)j1 < [m]q

(6) δ1 (δ1(δ1(1))) qm − 1 xq
m−1
2 xq

m−1
3

3.4.3. Đối với nhóm tuyến tính tổng quát GL3

Trong phần này, chúng tôi sẽ chứng minh Giả thuyết 3.0.2 cho trường hợp

nhóm tuyến tính tổng quát hạng 3. Cụ thể, chúng tôi sẽ chỉ ra Bm(3) là một hệ

sinh của Qm(3)GL3, từ đó suy ra nó cũng là một cơ sở của Qm(3)GL3. Phương

pháp chứng minh được tiến hành tương tự như trong trường hợp hạng 2. Chứng

minh được chia thành ba bước. Đầu tiên, sử dụng ánh xạ chuyển để xây dựng

một hệ sinh B′ lớn hơn so với hệ sinh mong muốn là Bm(3) mà trong B′ không

hạn chế các đa thức Dickson

B′ = δ31 (∆
m
0 )
∐

δ22 (∆
m
1 )
∐

δ3 (D2)
∐

D3.

Sau đó, ta chứng minh rằng δ3(D2) thuộc trong không gian sinh bởi

δ31 (∆
m
0 )
∐

δ22 (∆
m
1 )
∐

δ3 (∆
m
2 ) ,

tức là D2 có thể được thay thế bằng tập con nhỏ hơn ∆m
2 . Cuối cùng, ta chứng

minh rằng khi giới hạn trong Qm(3) thì đại số Dickson hạng 3 thuộc không gian

con sinh bởi Bm(3). Điều này được chứng minh bằng cách chỉ ra rằng tất cả các

đơn thức "biên" của ∆m
3 đều thuộc vào trong không gian này. Do đó, không gian

con sinh bởi Bm(3) là một D3-môđun con của Qm(3)GL3. Vì nó chứa ∆m
3 nên nó
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sẽ chứa toàn bộ D3. Trước hết, ta có kết quả sau.

Bổ đề 3.4.6. Tập B′ gồm 4 họ phần tử sau là một hệ sinh của Qm(3)GL3.

(1) δ31(∆
m
0 ) = xq

m−1
1 xq

m−1
2 xq

m−1
3 .

(2) δ22(∆
m
1 ) =

{
am,3,s, 0 ≤ s < [m]q

}
.

(3) δ3(D2).

(4) D3.

Chứng minh. Ta sử dụng ánh xạ chuyển từ P(1,2) lên GL3. Trong sáu họ của tập

Bm(1, 2) thì họ cuối cùng là GL3-bất biến. Theo Mệnh đề 3.1.5 và chú ý 3.1.6 thì

δ3

(
Qj2

2,1

)
và δ22(1) cũng là GL3-bất biến. Mặt khác, TrGL3

P(1,2)

(
x
j1(q−1)
1

)
thuộc D3 và

là bội của Q3,0, hơn nữa

Q3,0δ3

(
Qj2

2,1

)
= Q3,0δ

2
2(1) = 0 trong Qm.

Do đó, ánh xạ chuyển tác động lên họ thứ hai và thứ ba của Bm(1, 2) tạo ra các

GL3-bất biến có dạng δ3

(
Qj2

2,1

)
, j2 < [m− 1]q và δ22(1). Tiếp tục, ta xét ảnh của

ánh xạ chuyển tác động lên họ thứ tư δ1
(
Qi1

2,1Q
i2
2,0

)
= xq

m−1
1 Qi1

2,1(x2, x3)Q
i2
2,0(x2, x3).

Ta sẽ chỉ ra rằng

TrGP(1,2)
(δ1(Q

i1
2,1Q

i2
2,0)) = δ3(Q

i1
2,1Q

i2+1
2,0 ).

Thật vậy, khai triển định theo dòng cuối cùng ta có

Q2,0δ3
(
Qi1

2,1Q
i2
2,0

)
− δ3

(
Qi1

2,1Q
i2+1
2,0

)
=

=
xq

m

1 xq−1
2 Qi1

2,1(x2, x3)Q
i2
2,0(x2, x3)

(
V2(x2, x1)

q−1 − V2(x2, x3)
q−1
)
L2(x2, x3)

L3(x1, x2, x3)

−
xq

m

2 xq−1
1 Qi1

2,1(x1, x3)Q
i2
2,0(x1, x3)

(
V2(x1, x2)

q−1 − V2(x1, x3)
q−1
)
L2(x1, x3)

L3(x1, x2, x3)
.

117



Hơn nữa, ta có

V3(x1, x2, x3) = V2(x2, x3)
q − V2(x2, x3)V2(x2, x1)

q−1

= V2(x1, x3)
q − V2(x1, x3)V2(x1, x2)

q−1,

nên biểu diễn Q2,0δ3
(
Qi1

2,1Q
i2
2,0

)
− δ3

(
Qi1

2,1Q
i2+1
2,0

)
được rút gọn thành

Q2,0δ3
(
Qi1

2,1Q
i2
2,0

)
− δ3

(
Qi1

2,1Q
i2+1
2,0

)
=

= −
xq

m

1 xq2Q
i1
2,1(x2, x3)Q

i2
2,0(x2, x3)V3(x2, x1, x3)

L3(x1, x2, x3)

+
xq

m

2 xq1Q
i1
2,1(x1, x3)Q

i2
2,0(x1, x3)V3(x1, x2, x3)

L3(x1, x2, x3)

= −
xq

m

1 xq2Q
i1
2,1(x2, x3)Q

i2
2,0(x2, x3)

L2(x1, x2)
+

xq
m

2 xq1Q
i1
2,1(x1, x3)Q

i2
2,0(x1, x3)

L2(x1, x2)

=

∣∣∣∣∣∣ x1 x2

xq
m

1 xq2Q
i1
2,1(x2, x3)Q

i2
2,0(x2, x3) xq

m

2 xq1Q
i1
2,1(x1, x3)Q

i2
2,0(x1, x3)

∣∣∣∣∣∣
L2(x1, x2)

= δ2
(
Q1,0Q

i1
2,1Q

i2
2,0

)
.

Do đó,

δ3
(
Qi1

2,1Q
i2+1
2,0

)
= Q2,0δ3

(
Qi1

2,1Q
i2
2,0

)
− δ2(Q1,0Q

i1
2,1Q

i2
2,0).

Tiếp theo, ta xem δ1
(
Qi1

2,1(x2, x3)Q
i2
2,0

)
= xq

m−1
1 Qi1

2,1(x2, x3)Q
i2
2,0(x2, x3) như là một

B3-bất biến, và xét tác động ánh xạ chuyển từ B3 lên P(2,1). Theo Mệnh đề 3.3.3,

ta có

TrGL2

B2
(xq

m−1
1 x

a(q−1)
2 ) = −δ2(Q

a+1
1,0 ) = −ya+1(x1, x2).

Ta biểu diễn Qi1
2,1(x2, x3)Q

i2
2,0(x2, x3) dưới dạng

Qi1
2,1(x2, x3)Q

i2
2,0(x2, x3) =

∑
(a,b)

λ(a, b)x
a(q−1)
2 x

b(q−1)
3 ,
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với λ(a, b) ∈ Fq. Khi đó,

Tr
P(2,1)

B3

(
xq

m−1
1 Qi1

2,1(x2, x3)Q
i2
2,0(x2, x3)

)
= −

∑
(a,b)

λ(a, b)δ2(Q
a+1
1,0 )x

b(q−1)
3

= −δ2

∑
(a,b)

λ(a, b)Qa+1
1,0 x

b(q−1)
2


= −δ2

Q1,0

∑
(a,b)

λ(a, b)x
a(q−1)
1 x

b(q−1)
2


= −δ2

(
Q1,0Q

i1
2,1Q

i2
2,0

)
= δ3(Q

i1
2,1Q

i2+1
2,0 )−Q2,0δ3(Q

i1
2,1Q

i2
2,0).

Mặt khác, ta có TrG3

P(2,1)

(
Q2,0δ3(Q

i1
2,1Q

i2
2,0)
)
= 0. Vậy,

TrGP(1,2)
(δ1(Q

i1
2,1Q

i2
2,0)) = δ3(Q

i1
2,1Q

i2+1
2,0 ).

Cuối cùng, ta xét ảnh của ánh xạ chuyển tác động lên họ thứ năm. Ta sẽ chỉ ra

rằng nếu j < [m]q thì

TrGL3

P(1,2)

(
xq

m−1
1 · δ2(Qj

1,0)(x2, x3)
)
= δ22

(
Qj+1

1,0

)
.

Thật vậy, xét xq
m−1
1 · δ2

(
Qj

1,0

)
(x2, x3) như một B3-bất biến và xét tác động của

ánh xạ chuyển từ B3 sang P(2,1). Lại theo Mệnh đề 3.3.3, ta có

TrGL2

B2

(
xq

m−1
1 x

a(q−1)
2

)
= −δ2

(
Qa+1

1,0

)
.

Do đó,

Tr
P(2,1)

B3

(
xq

m−1
1 δ2(Q

j
1,0)(x2, x3)

)
=

qm−q
q−1∑
a=j

δ2
(
Qa+1

1,0

)
(x1, x2) · xq

m−q+j(a−1)−a(q−1)
3 .

Tổng này chính là δ22

(
Qj+1

1,0

)
= am,3,j+1 và nó cũng là GL3-bất biến (theo [12], Hệ

quả 4.3). Theo tính chất bắc cầu của ánh xạ chuyển, ta suy ra điều phải chứng
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minh.

Tiếp theo, ta sẽ chỉ ra trong họ thứ 3 của B′ thì không cần toàn bộ D2

mà chỉ cần ∆m
2 là đủ. Trước hết, ta chứng minh Bổ đề kỹ thuật sau.

Bổ đề 3.4.7. Cho s, t là các số nguyên không âm và 0 ≤ i ≤ [m]q. Khi đó, trong

Qm(3) ta có đẳng thức

δ2(V
s(q−1)
1 V

t(q−1)
2 δ2(Q

i
1,0)) =

=



0 khi t ≥ 1 và s > 1,

xq
m−1
1 xq

m−1
2 x

(qt+i−1)(q−1)
3 khi t ≥ 1 và s = 1,

(t+ 1)xq
m−1
1 xq

m−1
2 x

(qt+i−2)(q−1)
3 khi t ≥ 1 và s = 0,

δ22(Q
i+s
1,0 ) khi t = 0 và s ≤ 1,

δ22(Q
i+s
1,0 )− xq

m−1
1 xq

m−1
2 x

(s+i−2)(q−1)
3 khi t = 0 và s ≥ 2.

Chứng minh. Theo Chú ý 3.1.6 thì δ2(f) là một đa thức nếu f là một đa thức

B1-bất biến theo ẩn x1. Do đó, biểu thức δ2

(
V

s(q−1)
1 V

t(q−1)
2 δ2

(
Qi

1,0

))
là một đa

thức.

• Khi t ≥ 1, theo định nghĩa toán tử δ2 ta có δ2

(
V

s(q−1)
1 V

t(q−1)
2 δ2(Q

i
1,0)
)
là

1

L2(x1, x2)

(
xq

m

2 x
s(q−1)
1 V

t(q−1)−1
2 (x1, x3)

∣∣∣∣∣∣ x1 x3

xq
m

1 x
i(q−1)
3 xq

m

3 x
i(q−1)
1

∣∣∣∣∣∣
− xq

m

1 x
s(q−1)
2 V

t(q−1)−1
2 (x2, x3)

∣∣∣∣∣∣ x2 x3

xq
m

2 x
i(q−1)
3 xq

m

3 x
i(q−1)
2

∣∣∣∣∣∣
)

= xq
m

3

xq
m

2 x
(s+i)(q−1)+1
1 V

t(q−1)−1
2 (x1, x3)− xq

m

1 x
(s+i)(q−1)+1
2 V

t(q−1)−1
2 (x2, x3)

L2(x1, x2)

− xq
m

1 xq
m

2 x
i(q−1)+1
3

x
s(q−1)
1 V

t(q−1)−1
2 (x1, x3)− x

s(q−1)
2 V

t(q−1)−1
2 (x2, x3)

L2(x1, x2)
.
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Tử thức của số hạng thứ nhất trong tổng trên là

xq
m

2 x
(s+i)(q−1)+1
1 V

t(q−1)−1
2 (x1, x3)− xq

m

1 x
(s+i)(q−1)+1
2 V

t(q−1)−1
2 (x2, x3).

Ta có tử thức là triệt tiêu khi x2 = cx1 với c ∈ Fq. Do đó, phân thức

của số hạng thứ nhất là một đa thức. Vì vậy, số hạng đầu tiên trong

tổng trên là triệt tiêu trong Qm(3). Đối với số hạng thứ hai, khi s > 1

thì lập luận tương tự như trên số hạng này là triệt tiêu trong Qm(3). Khi

s = 1 và s = 0 thì số hạng này lần lượt là xq
m−1
1 xq

m−1
2 x

(qt+i−1)(q−1)
3 và

−(t(q − 1)− 1)xq
m−1
1 xq

m−1
2 x

(qt+i−2)(q−1)
3 .

• Khi t = 0, ta có δ2(V
s(q−1)
1 δ2(Q

i
1,0)) là

δ2

(
V

s(q−1)
1 δ2(Q

i
1,0)
)
=

1

L2(x1, x2)

(
xq

m

1 x
s(q−1)
2 ·

∣∣∣∣∣∣ x2 x3

xq
m

2 x
i(q−1)
3 xq

m

3 x
i(q−1)
2

∣∣∣∣∣∣
V2(x2, x3)

− xq
m

2 x
s(q−1)
1 ·

∣∣∣∣∣∣ x1 x3

xq
m

1 x
i(q−1)
3 xq

m

3 x
i(q−1)
1

∣∣∣∣∣∣
V2(x1, x3)

)

=
1

L2(x1, x2)

(
xq

m

1 x2 ·

∣∣∣∣∣∣ x2 x3

xq
m

2 x
(s+i)(q−1)
3 xq

m

3 x
(s+i)(q−1)
2

∣∣∣∣∣∣
L2(x2, x3)

− xq
m

2 x1 ·

∣∣∣∣∣∣ x1 x3

xq
m

1 x
(s+i)(q−1)
3 xq

m

3 x
(s+i)(q−1)
1

∣∣∣∣∣∣
L2(x1, x3)

)

+
xq

m

1 xq
m

2 x
i(q−1)
3

L2(x1, x2)

(
x
s(q−1)
2 − x

s(q−1)
3

xq−1
2 − xq−1

3

−
x
s(q−1)
1 − x

s(q−1)
3

xq−1
1 − xq−1

3

)
.

Số hạng thứ nhất chính là δ22(Q
s+i
1,0 ). Số hạng thứ hai là tầm thường khi
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s ≤ 1 (trong Qm(3)) và khi s ≥ 2 thì số hạng thứ hai là

−xq
m−1
1 xq

m−1
2 x

(s−2+i)(q−1)
3 .

Vì vậy, Bổ đề được chứng minh.

Tiếp theo, chúng tôi trình bày một kết quả kỹ thuật hỗ trợ việc mô tả

tường minh các phần tử trong không gian bất biến.

Hệ quả 3.4.8. Với g ∈ D2 và i ≥ 0, thì δ3
(
gδ2
(
Qi

1,0

))
là tổ hợp tuyến tính của

các họ sau.

i) δ22
(
Qs

1,0

)
, 0 ≤ s < [m]q .

ii) xq
m−1
1 xq

m−1
2 x

s(q−1)
3 , 0 ≤ s ≤ [m]q .

Chứng minh. Với g ∈ D2, theo định nghĩa của toán tử δ3 và δ2 ta có

δ3
(
gδ2
(
Qi

1,0

))
=

∣∣∣∣∣∣∣∣∣
x
i(q−1)+1
1 x

i(q−1)+1
2 x

i(q−1)+1
3

xq
m

1 xq
m

2 xq
m

3

xq
m

1 g(x2, x3) xq
m

2 g(x1, x3) xq
m

3 g(x1, x2)

∣∣∣∣∣∣∣∣∣
L3(x1, x2, x3)

.

Mặt khác,

L3(x1, x2, x3) = V3(x1, x2, x3)L2(x1, x2)

=
(
V2(x2, x3)

q−1 − V2(x2, x1)
q−1
)
V2(x2, x3)L2(x1, x2)

=
(
V2(x1, x3)

q−1 − V2(x1, x2)
q−1
)
V2(x1, x3)L2(x1, x2)
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Do đó, định thức trên được viết lại dưới dạng

1

L2(x1, x2)

(
xq

m

1 x2h(x1, x2, x3)

∣∣∣∣∣∣x
i(q−1)+1
2 x

i(q−1)+1
3

xq
m

2 xq
m

3

∣∣∣∣∣∣
V2(x2, x3)

− xq
m

2 x1h(x2, x1, x3)

∣∣∣∣∣∣x
i(q−1)+1
1 x

i(q−1)+1
3

xq
m

1 xq
m

3

∣∣∣∣∣∣
V2(x1, x3)

)
,

với

h(x1, x2, x3) =
g(x2, x3)− g(x2, x1)

V2(x2, x3)q−1 − V2(x2, x1)q−1
.

Do g ∈ D2 nên g có thể biểu diễn theo các đa thức bất biến tam giác trên, giả sử

g(x1, x2) =
∑

(s,t)∈A

V
s(q−1)
1 (x1)V

t(q−1)
2 (x1, x2).

Trong đó, A ⊂ N2. Khi đó

h(x1, x2, x3) =
∑

(s,t)∈A, t≥1

x
s(q−1)
2

(
t−1∑
j=0

V2(x2, x3)
(t−1−j)(q−1)V2(x2, x1)

j(q−1)

)
.

Nhận thấy rằng, nếu j > 0, thì cả hai biểu thức
xq

m

1 x2V2(x2, x1)
j(q−1)

L2(x1, x2)
và

xq
m

2 x1V2(x1, x2)
j(q−1)

L2(x1, x2)
đều bằng 0 trong Qm. Vì vậy, các hạng tử này trong h không

đóng góp vào φ(h). Suy ra φ(h) được rút gọn thành tổng

∑
(s,t)∈A, t≥1

φ
(
x
s(q−1)
2 V2(x2, x3)

(t−1)(q−1)
)
.

Mặt khác, theo định nghĩa toán tử δ2 thì φ chính là

φ(x
s(q−1)
2 V2(x2, x3)

(t−1)(q−1)) = δ2

(
V

s(q−1)
1 V

(t−1)(q−1)
2 δ2(Q

i
1,0)
)
.
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Do đó, theo Bổ đề 3.4.7 thì

δ3(gδ2(Q
i
1,0)) ∈ Span

{
δ22(∆

m
1 ), δ21(Q

a
1,0), a ≥ 0

}
.

Vậy, ta có điều phải chứng minh.

Từ kết quả trên, chúng tôi thu được mô tả tường minh về hệ sinh của

không gian con của không gian bất biến Qm(3)GL3, được trình bày trong mệnh

đề sau.

Bổ đề 3.4.9. Không gian con của Qm(3)GL3 được sinh bởi ba họ phần tử gồm

(1) δ31(∆
m
0 ),

(2) δ23(∆
m
1 ),

(3) δ3(∆
m
2 )

chứa không gian con bất biến δ3(D2).

Chứng minh. Giả sử f là một đơn thức Dickson trong D2 nhưng không phải là

cốt yếu. Khi đó, nó có thể được viết dưới dạng

Q
qm−1−qi

q−1

2,1 Q
qi−1
q−1

2,0 Qa
2,1Q

b
2,0,

với một số 0 ≤ i ≤ m− 1, 0 ≤ a, b. Theo Mệnh đề 3.3.2 ta có

Q
qm−1−qi

q−1

2,1 Q
qi−1
q−1

2,0 = δ2

(
xq

i−1
)
+ các đơn thức cốt yếu chia hết cho Q

qi+1−1
q−1

2,0 .

Bằng cách lặp lại quá trình này (nếu cần), ta có thể viết f dưới dạng tổng của

các đơn thức cốt yếu và các đa thức Dickson dưới dạng

δ2

(
xq

i−1
)
Q

aj

2,1Q
bj
2,0, j ≥ i.

Vì vậy, ta chỉ cần xét δ3(f) với f = gδ2

(
Q

qi−1
q−1

1,0

)
, trong đó g ∈ D2 và

0 ≤ i ≤ m− 1.
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Theo Hệ quả 3.4.8, ta có δ3

(
gδ2

(
Q

qi−1
q−1

1,0

))
là tổ hợp tuyến tính của các

đa thức thuộc các họ phần tử sau.

• δ22 (∆
m
1 ),

• xq
m−1

1 xq
m−1

2 x
s(q−1)
3 , 0 ≤ s ≤ [m]q.

Vì δ2

(
Q

qi−1
q−1

1,0

)
là một đa thức Dickson thực sự, nên δ3

(
gδ2(Q

qi−1
q−1

1,0 )

)
là GL3-bất

biến của Qm(3). Hơn nữa, vì mọi đơn thức dạng xq
m−1

1 xq
m−1

2 x
i(q−1)
3 với 0 ≤ i < [m]q

không là GL3-bất biến theo của Qm(3). Do đó, ta có

δ3

(
gδ2(Q

qi−1
q−1

1,0 )

)
∈ Span

{
δ22(∆

m
1 ), δ13(1)

}
.

Cuối cùng, ta sẽ thay thế toàn bộ đại số Dickson D3 bằng các tập hợp

được tạo ra từ các toán tử δ tác động lên các không gian ∆m
s , cụ thể là δ31(∆

m
0 ),

δ22(∆
m
1 ), δ3(∆m

2 ) và ∆m
3 . Trước khi trình bày kết quả tổng quát, ta xét một số

trường hợp cụ thể sau.

Bổ đề 3.4.10. Trong Qm(3) ta có các đẳng thức sau.

(1) δ3

(
Q

qi−1
q−1

2,0

)
= (δ3;m−i(1))

qi Q
qi−1
q−1

3,0 , với mọi i ≥ 0. Đặc biệt,

δ3

(
Q

qm−2−1
q−1

2,0

)
= Q

qm−2−1
q−1

3,0 và δ3

(
Q

qm−3−1
q−1

2,0

)
= Qqm−3

3,2 Q
qm−3−1

q−1

3,0 .

(2) Qk
3,0 = 0 trong Qm(3) với mọi k > qm−2−1

q−1 .

(3) δ3

(
Qqm−3

2,1 Q
qm−3−1

q−1

2,0

)
= Qqm−3

3,1 Q
qm−3−1

q−1

3,0 .

(4) Trong trường hợp tổng quát, với λ2 ≥ λ3 ≥ 0 thì

δ3

(
Q

qλ2−qλ3

q−1

2,1 Q
qλ3−1
q−1

2,0

)
=

(
δ3;m−λ3

(
Q

qλ2−λ3−1
q−1

2,1

))qλ3

Q
qλ3−1
q−1

3,0 .
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Chứng minh. Ta có

δ3

(
Q

qλ2−qλ3

q−1

2,1 Q
qλ3−1
q−1

2,0

)
=∣∣∣∣∣∣∣∣∣∣

x1 x2 x3

xq1 xq2 xq3

xq
m

1

(
Q

qλ2−qλ3

q−1

2,1 Q
qλ3−1
q−1

2,0

)
(x2, x3) xq

m

2

(
Q

qλ2−qλ3

q−1

2,1 Q
qλ3−1
q−1

2,0

)
(x1, x3) xq

m

3 Q
qλ2−qλ3

q−1

2,1 Q
qλ3−1
q−1

2,0

∣∣∣∣∣∣∣∣∣∣
L3(x1, x2, x3)

,

Khai triển Laplace theo hàng cuối của định thức trong tử số trên ta được kết

quả sau

xq
m

1 Q
qλ2−qλ3

q−1

2,1 (x2, x3)L
qλ3

2 (x2, x3)− xq
m

2 Q
qλ2−qλ3

q−1

2,1 (x1, x3)L
qλ3

2 (x1, x3)

+ xq
m

3 Q
qλ2−qλ3

q−1

2,1 (x1, x2)L
qλ3

2 (x1, x2)

=

(
xq

m−λ3

1 Q
qλ2−λ3−1

q−1

2,1 (x2, x3)L2(x2, x3)− xq
m−λ3

2 Q
qλ2−λ3−1

q−1

2,1 (x1, x3)L2(x1, x3)

+ xq
m−λ3

3 Q
qλ2−λ3−1

q−1

2,1 (x1, x2)L2(x1, x2)

)qλ3

Mặt khác, L3(x1, x2, x3)
qλ3−1−1 = Q

qλ3−1

q−1

3,0 . Từ đó suy ra phân thức trên được viết

thành



∣∣∣∣∣∣∣∣
x1 x2 x3

xq1 xq2 xq3

xq
m−λ3

1 Q
qλ2−λ3−1

q−1

2,1 (x2, x3) xq
m−λ3

2 Q
qλ2−λ3−1

q−1

2,1 (x1, x3) xq
m−λ3

3 Q
qλ2−λ3−1

q−1

2,1

∣∣∣∣∣∣∣∣
L3(x1, x2, x3)



qλ3

×Q
qλ3−1

q−1

3,0

=

(
δ3;m−λ3

(
Q

qλ2−λ3−1
q−1

2,1

))qλ3

Q
qλ3−1
q−1

3,0

Vậy, đẳng thức (4) được chứng minh. Đẳng thức (1) là trường hợp riêng của

(4) khi λ2 = λ3 = i. Đẳng thức (3) là trường hợp riêng của đẳng thức (4) khi
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λ3 = m− 2 và λ2 = m− 3 và kết hợp với đẳng thức δ3;3(Q2,1) = Q3,1. Cuối cùng,

ta có

Q3,0 = L3(x1, x2, x3)
q−1,

nên

Qk
3,0 = L

k(q−1)
3 .

khi k > qm−2−1
q−1 thì k(q − 1) > qm + q − 2 ≥ qm−2. Mà mỗi đơn thức trong khai

triển của L3(x1, x2, x3) đều có một ẩn có số mũ q2 nên suy ra

Qk
3,0 = 0 trong Qm(3),

với mọi k > qm−2−1
q−1 . Vậy, đẳng thức (2) được chứng minh.

Kết quả tiếp theo đóng vai trò tương ứng với Mệnh đề 3.3.2 trong trường

hợp có hạng bằng 3.

Mệnh đề 3.4.11. Với m ≥ 2 thì ta có các đẳng thức sau trong S.

i)

[0, 1,m− 1]

[0, 1, 2]
δ3;m(Q2,1)−

[0, 2,m− 1]

[0, 1, 2]
δ3;m(1)

= Q
qm−2−1

q−1

3,1 + các hạng tử khác,

trong đó các hạng tử khác thuộc iđêan (Q3,0) của D3.

ii) Với 0 ≤ ℓ ≤ m− 2,

[0, 1, ℓ+ 1]

[0, 1, 2]
δ3;m(Q2,1)−

[0, 2, ℓ+ 1]

[0, 1, 2]
δ3;m(1)

= Q
qm−2−qℓ

q−1

3,2 Q
qℓ−1
q−1

3,1 + các hạng tử khác,

trong đó các hạng tử khác thuộc iđêan

(
Q

qℓ+1−1
q−1

3,1 , Q3,0

)
của D3.
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Chứng minh. i) Trước hết, ta có

δ3;m(Q2,1) =

∣∣∣∣∣∣∣∣∣
x1 x2 x3

xq1 xq2 xq3

xq
m

1 Q2,1(x2, x3) xq
m

2 Q2,1(x1, x3) xq
m

3 Q2,1(x1, x2)

∣∣∣∣∣∣∣∣∣
L3

=

∣∣∣∣∣∣∣∣∣
x1 x2 x3

xq
2

1 xq
2

2 xq
2

3

xq
m

1 xq
m

2 xq
m

3

∣∣∣∣∣∣∣∣∣
L3

=
[0, 2,m]

[0, 1, 2]
.

Tương tự, ta có

δ3;m(1) =
[0, 1,m]

[0, 1, 2]
.

Do đó, vế trái của đẳng thức trong i) là GL3-bất biến của S, nên nó là đa

thức của các đa thức Dickson. Tiếp theo, nếu cho x3 = 0 thì nó trở thành

[1,m− 1]

[1, 2]
· [2,m]

[1, 2]
− [2,m− 1]

[1, 2]
· [1,m]

[1, 2]
=

[1,m− 1][2,m]− [2,m− 1][1,m]

[1, 2][1, 2]
.

Biến đổi tử thức ta thu được

[1,m− 1][2,m]− [2,m− 1][1,m]

=

∣∣∣∣∣∣ xq1 xq2

xq
m−1

1 xq
m−1

2

∣∣∣∣∣∣ ·
∣∣∣∣∣∣x

q2

1 xq
2

2

xq
m

1 xq
m

2

∣∣∣∣∣∣−
∣∣∣∣∣∣ xq

2

1 xq
2

2

xq
m−1

1 xq
m−1

2

∣∣∣∣∣∣ ·
∣∣∣∣∣∣ x

q
1 xq2

xq
m

1 xq
m

2

∣∣∣∣∣∣
= [1, 2][m− 1,m].

Vì vậy, trong trường hợp này thì vế trái của đẳng thức trong i) trở thành

[1, 2][m− 1,m]

[1, 2][1, 2]
= [0, 1]q

m−1−q = Q
qm−1−q

q−1

2,0 .

Mặt khác, nếu cho x3 = 0 thì Q3,0 trở thành 0, Q3,1 trở thành Qq
2,0 và Q3,2
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trở thành Qq
2,1. Vì vậy, trong biểu diễn của vế trái trong đẳng thức i) qua

các đa thức Dickson thì phải chứa Q
qm−2−1

q−1

3,2 . Tức là, ta có

[0, 1,m− 1]

[0, 1, 2]
δ3;m(Q2,1)−

[0, 2,m− 1]

[0, 1, 2]
δ3;m(1)

= Q
qm−2−1

q−1

3,1 + các hạng tử khác.

Theo lập luận trên, khi x3 = 0 thì "các hạng tử khác" trở thành 0 nên nó

chia hết cho Q3,0.

ii) Vế trái của đẳng thức trong ii) được viết dưới dạng

[0, 1, ℓ+ 1]

[0, 1, 2]
· [0, 2,m]

[0, 1, 2]
− [0, 2, ℓ+ 1]

[0, 1, 2]
· [0, 1,m]

[0, 1, 2]
.

Do đó, vế trái trong ii) là GL3-bất biến của S nên nó là đa thức của các đa

thức Dickson. Cho x3 = 0 và biến đổi tương tự i), vế trái của ii) trở thành

[1, ℓ+ 1]

[1, 2]
· [2,m]

[1, 2]
− [2, ℓ+ 1]

[1, 2]
· [1,m]

[1, 2]
=

[ℓ+ 1,m]

[1, 2]
.

Tiếp tục, biến đổi ta có

[ℓ+ 1,m]

[1, 2]
=

[0,m− ℓ− 1]q
ℓ+1

[0, 1]q

=
[0,m− ℓ− 1]q

ℓ+1

[0, 1]q
ℓ+1 · [0, 1]q

ℓ+1−q

= δ2;m−ℓ−1(1)
qℓ+1

Q
qℓ+1−q

q−1

2,0 .

Lập luận tương tự trường hợp hạng 3, cho x2 = 0 thì δ2;m−ℓ−1(1) =
[0,m−ℓ−1]

[0,1]

trở thành Q
qm−ℓ−1−q

q−1

1,0 nên δ2;m−ℓ−1(1) được viết dưới dạng

δ2;m−ℓ−1(1) = Q
qm−ℓ−2−1

q−1

2,1 + các hạng tử khác,
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mà các số hạng khác chia hết cho Q2,0. Do đó, ta kết luận vế trái bằng

Q
qm−2−qℓ

q−1

3,2 Q
qℓ−1
q−1

3,1 + các hạng tử khác,

trong đó các số hạng khác gồm các đa thức đơn Dickson chia hết cho Q
qℓ+1−1

q−1

3,1

hoặc cho Q3,0.

Hệ quả 3.4.12. Giả sử 0 ≤ ℓ ≤ m− 2 và m− 3 ≥ λ2 ≥ λ3 ≥ 0, ta có đẳng thức

sau đây trong S.

i)

(
δ3;m−ℓ−1(1)

)qℓ
δ3;m

(
Qqℓ

2,1Q
qℓ−1
q−1

2,0

)
−
(
δ3;m−ℓ−1 (Q2,1)

)qℓ
δ3;m

(
Q

qℓ−1
q−1

2,0

)
= Q

qm−2−qℓ

q−1

3,1 Q
qℓ−1
q−1

3,0 + các hạng tử khác,

trong đó các hạng tử khác thuộc iđêan

(
Q

qℓ+1−1
q−1

3,0

)
.

ii) Tổng quát hơn, ta có

(
δ3;λ2−λ3+1(1)

)qλ3
δ3;m

(
Qqλ3

2,1Q
qλ3−1
q−1

2,0

)
−
(
δ3;λ2−λ3+1 (Q2,1)

)qλ3
δ3;m

(
Q

qλ3−1
q−1

2,0

)
= Q

qm−2−qλ2

q−1

3,2 Q
qλ2−qλ3

q−1

3,1 Q
qλ3−1
q−1

3,0 + các hạng tử khác,

trong đó các hạng tử khác thuộc iđêan

(
Q

qλ3+1−1
q−1

3,0 , Q
qλ2+1−qλ3

q−1

3,1 Q
qλ3−1
q−1

3,0

)
.

Chứng minh. Kết quả trên được suy ra từ Bổ đề 3.4.10 và Mệnh đề 3.4.11. Thật

vậy, theo (4) Bổ đề 3.4.10, áp dụng cho trường hợp λ2 = ℓ+ 1, λ3 = ℓ ta có

δ3;m

(
Qqℓ

2,1Q
qℓ−1
q−1

2,0

)
= δ3;m

(
Q

qq
ℓ+1−qℓ

q−1

2,1 Q
qℓ−1
q−1

2,0

)
=
(
δ3;m−ℓ (Q2,1)

)qℓ
Q

qℓ−1
q−1

3,0 .
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Tương tự, theo (1) Bổ đề 3.4.10 ta có

δ3;m

(
Q

qℓ−1
q−1

2,0

)
=
(
δ3;m−ℓ(1)

)qℓ
Q

qℓ−1
q−1

3,0 .

Do đó, vế trái của i) trở thành

(
δ3;m−ℓ−1(1)

)qℓ (
δ3;m (Q2,1)

qℓ Q
qℓ−1
q−1

2,0

)
− δ3;m−ℓ−1 (Q2,1)

qℓ δ3;m

(
Q

qℓ−1
q−1

2,0

)
=
(
δ3;m−ℓ−1(1)

)qℓ (
δ3;m−ℓ (Q2,1)

)qℓ
Q

qℓ−1
q−1

3,0 −
(
δ3;m−ℓ−1 (Q2,1)

)qℓ (
δ3;m−ℓ(1)

)qℓ
Q

qℓ−1
q−1

3,0

=
(
δ3;m−ℓ−1(1)δ3;m−ℓ (Q2,1)− δ3;m−ℓ−1 (Q2,1) δ3;m−ℓ(1)

)qℓ
Q

qℓ−1
q−1

3,0

=

(
[0, 1,m− ℓ− 1]

[0, 1, 2]
δ3;m−ℓ(Q2,1)−

[0, 2,m− ℓ− 1]

[0, 1, 2]
δ3;m−ℓ(1)

)qℓ

Q
qℓ−1
q−1

3,0 .

Theo i) Mệnh đề 3.4.11 cho trường hợp m− ℓ ta có

[0, 1,m− ℓ− 1]

[0, 1, 2]
δ3;m−ℓ (Q2,1)−

[0, 2,m− ℓ− 1]

[0, 1, 2]
δ3;m−ℓ(1)

= Q
qm−ℓ−2−1

q−1

3,1 + các hạng tử khác chia hết cho Q3,0.

Từ đó, suy ra

(
δ3;m−ℓ−1(1)

)qℓ
δ3;m

(
Qqℓ

2,1Q
qℓ−1
q−1

2,0

)
−
(
δ3;m−ℓ−1 (Q2,1)

)qℓ
δ3;m

(
Q

qℓ−1
q−1

2,0

)
= Q

qm−2−qℓ

q−1

3,1 Q
qℓ−1
q−1

3,0 + các hạng tử khác,

mà các hạng tử khác chia hết cho Qqℓ

3,0 · Q
qℓ−1
q−1

3,0 = Q
qℓ+1−1

q−1

3,0 . Vậy i) đã được chứng

minh. Tiếp theo, ta sẽ chứng minh ii). Từ (4) Bổ đề 3.4.10 ta có

(
δ3;λ2−λ3+1(1)

)qλ3
δ3;m

(
Qqλ3

2,1Q
qλ3−1
q−1

2,0

)
−
(
δ3;λ2−λ3+1 (Q2,1)

)qλ3
δ3;m

(
Q

qλ3−1
q−1

2,0

)
=

(
δ3;λ2−λ3+1(1)

)qλ3 (
δ3;m−λ3

(Q2,1)
)qλ3

Q
qλ3−1
q−1

3,0

−
(
δ3;λ2−λ3+1 (Q2,1)

)qλ3 (
δ3;m−λ3

(1)
)qλ3

Q
qλ3−1
q−1

3,0

=
(
δ3;λ2−λ3+1(1)δ3;m−λ3

(Q2,1)− δ3;λ2−λ3+1 (Q2,1) δ3;m−λ3
(1)
)qλ3

Q
qλ3−1
q−1

3,0 .
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Áp dụng ii) Mệnh đề 3.4.11 cho trường hợp m và ℓ lần lượt là m−λ3 và λ2−λ3,

ta có

δ3;λ2−λ3+1(1)δ3;m−λ3
(Q2,1)− δ3;λ2−λ3+1(Q2,1)δ3;m−λ3

(1)

=
[0, 1, λ2 − λ3]

[0, 1, 2]
δ3;m−λ3

(Q2,1)−
[0, 2, λ2 − λ3]

[0, 1, 2]
δ3;m−λ3

(1)

= Q
qm−2−λ3−qλ2−λ3

q−1

3,2 Q
qλ2−λ3−1

q−1

3,1 + các hạng tử chia hết cho Q
qλ2−λ3+1−1

q−1

3,1 hoặc Q3,0.

Do đó,

(
δ3;λ2−λ3+1(1)

)qλ3
δ3;m

(
Qqλ3

2,1Q
qλ3−1
q−1

2,0

)
−
(
δ3;λ2−λ3+1 (Q2,1)

)qλ3
δ3;m

(
Q

qλ3−1
q−1

2,0

)
= Q

qm−2−qλ2

q−1

3,2 Q
qλ2−qλ3

q−1

3,1 Q
qλ3−1
q−1

3,0 + các hạng tử khác,

mà các hạng tử khác chia hết cho Q
qλ3−1
q−1

3,0 Qλ3

3,0 = Q
qλ3+1−1

q−1

3,0 hoặc chia hết cho

Q
qλ2+1−qλ3

q−1

3,1 Q
qλ3−1
q−1

3,0 . Vậy, ta có điều phải chứng minh.

Hệ quả 3.4.13. Các đơn thức Dickson ở biên của ∆m
3 sau cũng thuộc trong

không gian sinh bởi Bm(3).

(1) Q
qm−2−1

q−1

3,0 .

(2) Q
qm−2−qλ3

q−1

3,1 Q
qλ3−1
q−1

3,0 với m− 3 ≥ λ3.

(3) Q
qm−2−qλ2

q−1

3,2 Q
qλ2−qλ3

q−1

3,1 Q
qλ3−1
q−1

3,0 với m− 3 ≥ λ2 ≥ λ3.

Chứng minh. Theo phần (1) của Bổ đề 3.4.10 thì Q
qm−2−1

q−1

3,0 thuộc δ3 (∆
m
2 ). Đối với

hai họ còn lại, ta sẽ chứng minh bằng quy nạp ngược theo λ3.

Thậy vậy, nếu λ3 = m− 3 thì λ2 = λ3 = m− 3. Khi đó, Các đơn thức biên

của họ (2) và (3) lần lượt là Qqm−3

3,1 Q
qm−3−1

q−1

3,0 và Qqm−3

3,2 Q
qm−3−1

q−1

3,0 . Theo (3) và (1) của

Bổ đề 3.4.10 ta có

Qqm−3

3,1 Q
qm−3−1

q−1

3,0 = δ3

(
Qqm−3

2,1 Q
qm−3−1

q−1

2,0

)
,
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Qqm−3

3,2 Q
qm−3−1

q−1

3,0 = δ3

(
Q

qm−3−1
q−1

2,0

)
.

Vì vậy, với λ3 = m− 3 thì họ (2) và họ (3) thuộc không gian con của Bm(3). Hơn

nữa, theo Mệnh đề 3.1.9 các đơn thức Dickson chia hết cho các đơn thức này

cũng thuộc ảnh của δ3, do đó cũng thuộc không gian sinh bởi Bm(3).

Giả sử, theo giả thiết quy nạp, tất cả các đơn thức biên với số mũ của

Q3,0 là
qλ3+1−1

q−1 thuộc không gian sinh bởi Bm(3) và các bội của chúng cũng thuộc

không gian này theo Mệnh đề 3.1.9. Xét các đơn thức biên tương ứng với λ3

Q
qm−2−qλ3

q−1

3,1 Q
qλ3−1
q−1

3,0 và Q
qm−2−qλ2

q−1

3,2 Q
qλ2−qλ3

q−1

3,1 Q
qλ3−1
q−1

3,0 .

Theo i) của Hệ quả 3.4.12 thì

Q
qm−2−qλ3

q−1

3,1 Q
qλ3−1
q−1

3,0

thuộc ảnh của δ3(∆
m
2 ) modulo các hạng tử là các đơn thức Dickson ứng λ3 lớn

hơn. Theo giả thiết quy nạp, các hạng tử lớn hơn này đã thuộc không gian sinh

bởi Bm(3).

Với đơn thức thứ hai, nếu tồn tại đơn thức có cùng số mũ Q3,0 là qλ3−1
q−1

nhưng số mũ của Q3,1 lớn hơn, sao cho đơn thức đó không là cốt yếu, thì đơn

thức này phải là bội của đơn thức Dickson

Q
qm−2−qλ3

q−1

3,1 Q
qλ3−1
q−1

3,0 .

Hơn nữa, theo chứng minh trước đó, biểu thức này đã nằm trong không gian

được sinh bởi Bm(3). Ngoài ra, nếu số mũ của Q3,0 vượt quá
qλ3−1
q−1 , thì ta có thể

áp dụng trực tiếp giả thiết quy nạp để suy ra điều phải chứng minh.

Mệnh đề 3.4.14. Tập hợp Bm(3) gồm 4 họ phần tử sau là một cơ sở của không

gian bất biến Qm(n)GL3.

(1) δ31(∆
m
0 ) = xq

m−1
1 xq

m−1
2 xq

m−1
3 .
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(2) δ22(∆
m
1 ).

(3) δ3(∆
m
2 ).

(4) ∆m
3 .

Chứng minh. Theo Bổ đề 3.4.6, ta có tập B′ gồm 4 họ sau là một hệ sinh của

Qm(3)GL3.

(1) δ31(∆
m
0 ) = xq

m−1
1 xq

m−1
2 xq

m−1
3 .

(2) δ22(∆
m
1 ) =

{
am,3,s, 0 ≤ s ≤ [m]q

}
.

(3) δ3(D2).

(4) D3.

Mặt khác theo Bổ đề 3.4.9 thì họ thứ (3) trong hệ trên là δ3(D2) được sinh bởi

ba họ phần tử gồm họ (1), họ (2) trong hệ trên và họ δ3(∆
m
2 ).

Cuối cùng, với một đơn thức Dickson không thuộc ∆m
3 thì nó có dạng là

tích của đơn thức biên với các đơn thức Dickson. Mặt khác theo Hệ quả 3.4.13

thì các đơn thức biên đều thuộc không gian con sinh bởi Bm(3), tuy nhiên theo

Mệnh đề 3.1.9 thì tích tập Bm(3) là đóng dưới tác động của đại số Dickson. Vì

vậy, ta có thể thay họ (4) trong B′ bởi họ ∆m
3 . Tức là, Bm(3) là hệ sinh của không

gian bất biến Qm(n)GL3. Từ đó, suy ra Bm(3) là cơ sở của không gian bất biến

Qm(n)GL3 theo Nhận xét 3.2.3.

Từ các Mệnh đề 3.4.14, 3.4.4, 3.4.2, 3.3.3 và các Hệ quả 3.4.1, 3.3.1, ta

suy ra kết quả sau.

Định lý 3.4.15. Các giả thuyết về cơ sở của không gian bất biến 3.0.1 3.0.2

và các Giả thuyết 1.4.1, 1.4.2 về chuỗi Hilbert-Poincaré của không gian bất biến

đúng với hạng không vượt quá 3.
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3.5. Lọc của các môđun con

Với mỗi số nguyên dương n, 0 ≤ k ≤ n, gọi Fn,k là Fq-không gian con của

Qm(n)GLn được xác định

Fn,k = Span
{
δn−s
s+1 (f) : f ∈ ∆m

s , 0 ≤ s ≤ min(m, k)
}
.

Với n = 3 ta đã chứng minh rằng lọc tăng dần của các không gian con

này là đầy đủ. Các kết quả trước đã chỉ ra rằng cơ sở Bm(3) của không gian bất

biến Qm(3)GL3 là tự nhiên theo nghĩa rằng lọc này là một lọc của các D3-môđun.

Hơn nữa, tác động của các bất biến Dickson giống như mô hình đã được trình

bày trong [19], liên quan đến cấu trúc của không gian SGL được xem là một

SGL-môđun. Thật vậy, ta thấy rằng

• Q3,0 triệt tiêu F3,2,

• Q3,0 và Q3,1 triệt tiêu F3,1,

• Q3,0, Q3,1, Q3,2 triệt tiêu F3,0.

Với n = 2 ta cũng có kết quả tương tự cũng. Mục tiêu của phần này là

chỉ ra rằng Fn,k cũng là một lọc của đại số Steenrod A modulo q trong trường

hợp n ≤ 3. Chúng tôi có giả thuyết tổng quát sau.

Giả thuyết 3.5.1. Với 0 ≤ k ≤ min(m,n), các không gian con

Fn,k = Span
{
δn−s
s+1 (f) : f ∈ ∆m

s , 0 ≤ s ≤ min(m, k)
}

là một A-môđun con và cũng là một Dn- môđun con của Qm(n)GLn. Hơn nữa,

Fn,k bị triệt tiêu bởi các bất biến Dickson Qn,0, Qn,1, . . . , Qn,n−k−1.

Trong phần này chúng tôi sẽ chứng minh giả thuyết trên đúng cho trường

hợp hạng n ≤ 3.
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Trước hết, đại số Steenrod mod q và vai trò của nó trong lý thuyết bất

biến môđun đã được chúng tôi trình bày lại tại Chương 1. Cụ thể, toán tử

Steenrod P i thỏa mãn các điều kiện sau.

(1) Điều kiện không ổn định: P i(f) = f q nếu deg f = i và P i(f) = 0 nếu

i > deg f .

(2) Công thức Cartan: P i(fg) =
∑

a+b=iP
a(f)Pb(g).

Hơn nữa, toán tử P0 là toán tử đồng nhất. Trên vành đa thức S = Fq[x1, . . . , xn],

các xi có bậc 1, tác động của đại số Steenrod hoàn toàn được xác định bởi điều

kiện không ổn định và công thức Cartan. Cụ thể hơn, ta có

P i(vj) =

(
j

i

)
vj+i(q−1),

với v là một đa thức tuyến tính. Ở đây, hệ số nhị thức được lấy modulo p. Do

đó, nếu j là lũy thừa q, thì P i(vj) ̸= 0 chỉ khi i = 0 (trong trường hợp này thì P0

là toán tử đồng nhất) hoặc i = j (trong trường hợp này thì P i(vj) = vqi là toán

tử Frobenius).

Tác động của đại số Steenrod và tác động của GLn trên S là giao hoán. Hơn

nữa, rõ ràng rằng iđêan Im là ổn định dưới tác động của các toán tử Steenrod,

do đó Qm = S/Im cũng ổn định dưới tác động của toán tử Steenrod. Điều này có

nghĩa là một toán tử lũy thừa Steenrod cảm sinh ánh xạ lũy thừa từ Qm(n)Pα

vào chính nó. Nói cách khác, Qm(n)Pα là một A-môđun.

Chúng tôi bắt đầu bằng một kết quả cơ bản sau, qua đó giúp tăng tính linh

hoạt khi làm việc với không gian Fn,k.

Bổ đề 3.5.2. Với n ≤ 3, với mỗi 0 ≤ k ≤ min(m,n) thì

Fn,k = Span
{
δn−s
s+1 (f) : f ∈ Ds, 0 ≤ s ≤ min(m, k)

}
.

Điều này chỉ ra rằng lọc này không phụ thuộc vào không gian con ∆m
s .
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Chứng minh. i) Khi n = 2 thì

– F2,0 = Span
{
δ21(∆

m
0 )
}
= Span

{
δ21(D0)

}
,

– F2,1 = Span
{
δ21(∆

m
0 ), δ2(∆

m
1 )
}
= Span

{
δ21(D0), δ2(∆

m
1 )
}
. Mặt khác, theo

Ví dụ 3.1.7 ta có

δ2(Q
s
1,0) = 0 với mọi s ≥ [m]q , s ̸= [m]q + 1,

δ2(Q
[m]q+1

1,0 ) = −δ21(1).

Do đó, F2,1 = Span
{
δ21(D0), δ2(D1)

}
.

– Theo ii) của Mệnh đề 3.3.3 thì các đa thức Dickson D2 được sinh bởi

∆m
2 và δ2(∆

m
1 ), δ21(∆

m
0 ). Do đó, ta có

F2,2 = Span
{
δ21(D0), δ2(D1),D2

}
.

Vậy, ta suy ra Mệnh đề đúng với trường hợp n = 2.

ii) Khi n = 3, lập luận tương tự như trường hợp n = 2, theo các kết quả trong

Ví dụ 3.1.8, Bổ đề 3.4.9 và Mệnh đề 3.4.14 ta suy ra điều phải chứng minh.

Tiếp theo, chúng tôi mô tả cách các toán tử Steenrod tác động lên toán

tử δ. Để mô tả tác động của toán tử Steenrod lên các toán tử δ, chúng tôi có kết

quả sau. Mệnh đề này cung cấp công thức biểu diễn Pk(δ2f) thông qua các tổ

hợp của các toán tử Pj(f) và các toán tử δ2, δ2;m+1. Đây là bước quan trọng để

phân tích sâu hơn cấu trúc của các bất biến trong không gian Qm(n) xem như

là một môđun trên đại số Steenrod A.

Bổ đề 3.5.3. Nếu f là một đa thức GL1-bất biến theo ẩn đầu tiên và 1 ≤ k ≤

137



deg(δ2(f)) = qm − q + deg(f) thì

Pk (δ2f) +Q2,1Pk−q (δ2f) +Q2,0Pk−q−1 (δ2f) =

δ2
(
Q1,0Pk−1f

)
+ δ2

(
Pkf

)
+ δ2;m+1

(
Q1,0Pk−1−qmf

)
+ δ2;m+1

(
Pk−qmf

)
.

Chứng minh. (1) Trước hết, ta tính toán các tác động của toán tử Steenrod

lên đa thức L2. Để làm việc này, ta xét tác động của toán tử Steenrod

lên một số đơn thức cơ bản, sau đó khai triển công thức tổng quát. Cụ

thể, trước hết ta xét tác động của Pq lên đơn thức x1x
q
2. Theo công thức

Cartan, ta có

Pq(x1x
q
2) =

q∑
i=0

P i(x1)Pq−i
(
xq2
)
.

Ta tính từng hạng tử trong tổng trên.

– Với i = 0, P0(x1) = x1, và Pq
(
xq2
)
=
(
q
q

)
x
q+q(q−1)
2 = xq

2

2 .

– Với i = 1, P1(x1) = xq1 và Pq−1
(
xq2
)
=
(

q
q−1

)
x
q+(q−1)(q−1)
2 = 0.

– Các hạng tử khác triệt tiêu do hệ số nhị thức bằng 0 trong Fq.

Do đó, sau khi thu gọn ta được

Pq
(
x1x

q
2

)
= x1x

q2

2 .

Tương tự, Pq
(
xq1x2

)
= xq

2

1 x2. Từ đó suy ra

PqL2 = Pq
(
x1x

q
2 − xq1x2

)
= x1x

q2

2 − xq
2

1 x2 = Q2,1L2.

Tiếp tục, ta xét Pq+1(x1x
q
2). Áp dụng công thức Cartan, ta có

Pq+1
(
x1x

q
2

)
=

q+1∑
i=0

P i (x1)Pq+1−i
(
xq2
)
.
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Trong đó, hạng tử duy nhất không triệt tiêu là khi i = 1

Pq+1
(
x1x

q
2

)
= xq1x

q2

2 .

Tương tự, ta có Pq
(
xq1x2

)
= xq

2−q
1 xq2. Vì vậy, ta suy ra

Pq+1L2 = xq1x
q2

2 − xq
2−q
1 xq2 = Q2,0L2.

Cuối cùng, ta xét tác động của toán tử Steenrod Pk lên x1x
q
2 trong hai

trường hợp còn lại.

Trường hợp 1 ≤ k ≤ q − 1, ta có

Pk(x1x
q
2) =

k∑
i=0

P i(x1)Pk−i
(
xq2
)
.

Tuy nhiên, vì
(
q
k

)
= 0 hoặc

(
1
k

)
= 0 với mọi 1 ≤ k ≤ q − 1 nên các hạng tử

đều triệt tiêu. Do đó, Pk(x1x
q
2) = 0 nên suy ra Pk(L2) = 0.

Trường hợp k > q + 1, theo công thức Cartan thì

Pk(x1x
q
2) =

∑
i+j=k

P i(x1)Pj
(
xq2
)
.

Vì k > q + 1, nên với mọi cặp i+ j = k, ta có hoặc i > 1 hoặc j > q. Do đó,

tất cả các hệ số nhị thức là triệt tiêu.Từ đó, suy ra Pk(x1x
q
2) = 0, vì vậy

Pk(L2) = 0.

(2) Ta xét toán tử toàn phần P, được định nghĩa bởi công thức

P =

∞∑
i=0

P i.

Ta sẽ chỉ ra toán tử P có tính chất phân phối đối với phép nhân. Cụ thể,
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với mọi đa thức f, g, ta có

P(fg) =

∞∑
i=0

P i(fg) =

∞∑
i=0

∑
k+l=i

Pk(f) · P l(g)

=

∞∑
k=0

Pk(f) ·
∞∑
l=0

P l(g) = P(f) · P(g).

(3) Cuối cùng, theo công thức xác định toán tử δ2 thì

δ2(f) =

∣∣∣∣∣∣ x1 x2

xq
m

1 f(x̂1, x2, . . .) xq
m

2 f(x1, x̂2, . . .)

∣∣∣∣∣∣
L2

.

Từ đó, ta thu được đẳng thức

L2δ2(f) = x1x
qm

2 f(x1, x̂2, . . .)− xq
m

1 x2f(x̂1, x2, . . .).

Áp dụng toán tử P lên hai vế và sử dụng tính chất phân phối của P như

đã chứng minh ở trên. Đồng thời theo kết quả trên, ta có

PqL2 = L2Q2,1,

Pq+1L2 = L2Q2,0,

PkL2 = 0 với mọi k ≥ 1, và k ̸= q, q + 1.

Tiếp theo, ta xét các trường hợp cụ thể cho vế phải.

– Trường hợp k = 0.

P0
(
x1x

qm

2 f(x1, x̂2, . . .)− xq
m

1 x2f(x̂1, x2, . . .)
)

= x1x
qm

2 f(x1, x̂2, . . .)− xq
m

1 x2f(x̂1, x2, . . .)

= L2δ2(f).
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– Trường hợp k = 1.

P1
(
x1x

qm

2 f(x1, x̂2, . . .)− xq
m

1 x2f(x̂1, x2, . . .)
)

= xq1x
qm

2 f(x1, x̂2, . . .)− xq
m

1 xq2f(x̂1, x2, . . .)

+ x1x
qm

2 P1(f(x1, x̂2, . . .))− xq
m

1 x2P1(f(x̂1, x2, . . .))

= L2δ2(Q1,0f) + L2δ2(P1f).

– Trường hợp 1 < k < qm.

Pk
(
x1x

qm

2 f(x1, x̂2, . . .)− xq
m

1 x2f(x̂1, x2, . . .)
)

= xq1x
qm

2 Pk−1(f(x1, x̂2, . . .))− xq
m

1 xq2P
k−1(f(x̂1, x2, . . .))

+ x1x
qm

2 Pk(f(x1, x̂2, . . .))− xq
m

1 x2Pk(f(x̂1, x2, . . .))

= L2δ2(Q1,0Pk−1f) + L2δ2(Pkf).

– Trường hợp k = qm.

Pqm
(
x1x

qm

2 f(x1, x̂2, . . .)− xq
m

1 x2f(x̂1, x2, . . .)
)

= xq1x
qm

2 Pqm−1(f(x1, x̂2, . . .))− xq
m

1 xq2P
qm−1(f(x̂1, x2, . . .))

+ x1x
qm

2 Pqm(f(x1, x̂2, . . .))− xq
m

1 x2Pqm(f(x̂1, x2, . . .))

+ x1x
qm+1

2 f(x1, x̂2, . . .)− xq
m

1 x2f(x̂1, x2, . . .)

= L2δ2
(
Q1,0Pqm−1f

)
+ L2δ2

(
Pqmf

)
+ L2δ2;m+1(f).
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– Trường hợp k = l + qm, với l ≥ 1.

P l+qm
(
x1x

qm

2 f(x1, x̂2, . . .)− xq
m

1 x2f(x̂1, x2, . . .)
)

= xq1x
qm

2 P l+qm−1(f(x1, x̂2, . . .))− xq
m

1 xq2P
l+qm−1(f(x̂1, x2, . . .))

+ x1x
qm+1

2 P l(f(x1, x̂2, . . .))− xq
m+1

1 x2P l(f(x̂1, x2, . . .))

+ xq1x
qm+1

2 P l−1(f(x1, x̂2, . . .))− xq
m+1

1 xq2P
l−1(f(x̂1, x2, . . .))

= L2δ2(P l+qmf) + L2δ2(Q1,0P l+qm−1f)

+ L2δ2;m+1(P lf) + L2δ2;m+1(Q1,0P l−1f).

Chia hai vế cho L2 và cân bằng các phần tử có bậc qm−q+deg(f)+k(q−1)

ở hai vế, ta thu được đẳng thức

Pk (δ2f) +Q2,1Pk−q (δ2f) +Q2,0Pk−q−1 (δ2f) =

δ2
(
Q1,0Pk−1f

)
+ δ2

(
Pkf

)
+ δ2;m+1

(
Q1,0Pk−1−qmf

)
+ δ2;m+1

(
Pk−qmf

)
.

Vậy ta có điều phải chứng minh.

Hệ quả 3.5.4. Với mỗi 0 ≤ k ≤ 2 thì F2,k là một môđun con của Qm(2)GL2 trên

đại số Steenrod A.

Chứng minh. Theo định nghĩa F2,k, ta có

• F2,0 = Span
{
δ21(1)

}
,

• F2,1 = Span
{
δ21(1), δ2(∆

m
1 )
}
,

• F2,2 = Span
{
δ21(1), δ2(∆

m
1 ),∆m

2

}
.

Khi đó, tác động của toán tử Steenrod lên họ thứ nhất Pk(δ21(1)) sẽ là chính nó

hoặc 0. Tác động của toán tử Steenrod lên đại số Dickson là đại số Dickson. Do

đó, ta cần chỉ ra tác động của các toán tử Steenrod lên phần tử δ2(f), trong đó
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f = Qa
1,0 với a < [m]q. Trong trường hợp hạng 2 thì hai số hạng cuối trong vế phải

của công thức trong Bổ đề 3.5.3 triệt tiêu trong Qm(2). Thật vậy, ta thấy bậc của

δ2;m+1(Q1,0Pk−1f) lớn hơn 2(qm − 1) với mọi q và m. Với đa thức δ2;m+1(Pk−qmf)

thì bậc của nó không lớn hơn 2(qm − 1) khi và chỉ khi q = 2, k ≥ qm và deg f = 0,

nhưng khi đó thì k > qm − q + deg(f) và điều này là mâu thuẫn. Do đó, theo Bổ

đề 3.5.3 ta có

Pk(δ2f) +Q2,1Pk−q(δ2f) +Q2,0Pk−q−1(δ2f) = δ2(Q1,0Pk−1f) + δ2(Pkf).

Hơn nữa, theo kết quả trong Mệnh đề 3.1.9 thì

• Q2,0δ2(f) = 0 với mọi f ,

• Q2,1δ2(f) = δ2(Q
q
1,0f) với mọi f ∈ D1.

Vì vậy, nếu g ∈ F2,1 thì Q2,0g,Q2,1g ∈ F2,1. Mặt khác, ta có

P0(δ2(f)) = δ2(f) ∈ F2,1,

do đó quy nạp theo k ta thu được

Pk(δ2(f)) = −Q2,1Pk−q(δ2f)−Q2,0Pk−q−1(δ2f)

+ δ2
(
Q1,0Pk−1f

)
+ δ2

(
Pkf

)
∈ Qm(2)GL2 .

Vậy, ta có điều phải chứng minh.

Hệ quả 3.5.5. F3,1 là một môđun con của Qm(3)GL3 trên đại số Steenrod A.

Chứng minh. Ta có Span
{
δ31(1)

}
tạo thành không gian một chiều của Qm(3)GL3

có bậc cao nhất 3(qm − 1). Do đó, ta cần chứng minh rằng với mỗi k ≥ 1 và

0 ≤ a < [m]q, thì Pk
(
δ22Q

s
1,0

)
thuộc Fq-không gian con sinh bởi δ31(1) và δ22(∆

m
1 ).

Đầu tiên, nếu k ≥ qm, thì bậc của Pk(δ22Q
s
1,0) là qm(q − 1) + 2(qm − q) +

s(q − 1) ≥ 3(qm − 1), trừ trường hợp q = 2 và k = 2m, s = 0. Khi đó, Qm(3) hoặc
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được sinh bởi δ33(1), hoặc bằng không.

Nếu q = 2, k = 2m, s = 0, thì P2m(δ22(1)) có bậc là 3(2m − 1)− 1.

Ta sẽ chỉ ra rằng không tồn tại đa thức đối xứng GL3-bất biến nào trong bậc

này. Thật vậy, đa thức đối xứng không tầm thường duy nhất là

x2
m−1

1 x2
m−1

2 x2
m−2

3 + x2
m−1

1 x2
m−2

2 x2
m−1

3 + x2
m−2

1 x2
m−1

2 x2
m−1

3 .

Dễ dàng thấy rằng, đa thức này không bất biến dưới phép hoán vị x1 7→ x1+x2

và giữ nguyên x2, x3.

Tiếp tục, xét trường hợp k < qm. Từ Bổ đề 3.5.3, ta có đẳng thức

Pk (δ2f) +Q2,1Pk−q (δ2f) +Q2,0Pk−q−1 (δ2f) = δ2
(
Q1,0Pk−1f

)
+ δ2

(
Pkf

)
, (3.1)

với mọi đa thức f là GL1-bất biến dưới theo ẩn thứ nhất. Áp dụng điều này cho

trường hợp f = Qs
1,0, ta có Pk(δ2Q

s
1,0) là tổ hợp tuyến tính của các đa thức dạng

Qa
2,1Q

b
2,0δ2(Q

c
1,0).

Áp dụng công thức 3.1 cho trường hợp f = δ2(Q
s
1,0), ta thu được

Pk(δ22(Q
s
1,0)) +Q2,1Pk−q(δ22(Q

s
1,0)) +Q2,0Pk−q−1(δ22(Q

s
1,0)) =

δ2(Q1,0Pk−1(δ2(Q
s
1,0))) + δ2(Pkδ2(Q

s
1,0)).

Vế phải là tổ hợp của các đa thức dạng

(1) δ2
(
Q1,0Q

a
2,1Q

b
2,0δ2(Q

c
1,0)
)
,

(2) δ2
(
Qa

2,1Q
b
2,0δ2(Q1,0)

)
.

Các đẳng thức trên đúng trong S. Từ Bổ đề 3.4.7, ta suy ra các tổ hợp này

thuộc không gian con của Qm(3) được sinh bởi các đa thức có dạng

• δ22
(
Qa

1,0

)
,

144



• xq
m−1
1 xq

m−1
2 x

a(q−1)
3 .

Cả hai vế của đẳng thức 3.1 đều bất biến dưới tác động của P(2,1). Xét ánh xạ

chuyển từ P(2,1) đến GL3. Ta có

P i
(
δ22
(
Qs

1,0

))
là GL3-bất biến trong Qm (3) ,

và

TrGL3

P(2,1)
(Q2,1) = TrGL3

P(2,1)
(Q2,0) = TrGL3

P(2,1)

(
xq

m−1
1 xq

m−1
2 x

a(q−1)
3

)
= 0.

Ở đây, hai phần đầu triệt tiêu trong S vì không tồn tại phần tử GL3-bất biến

thực sự ở bậc q2 − q và q2 − 1. Phần thứ ba triệt tiêu trong Qm (3) vì nếu

xq
m−1
1 xq

m−1
2 x

a(q−1)
3 là một tổng không tầm thường của một đơn thức GL3-bất

biến, thì nó cũng bất biến dưới tác động của nhóm P(1,2), nhưng theo Chú ý

3.4.5 thì điều đó chỉ xảy ra ở bậc cao nhất.

Do đó, Pk
(
δ22
(
Qs

1,0

))
phải là tổ hợp tuyến tính của các δ22

(
Qa

1,0

)
, vì vậy nó thuộc

F3,1.

Tiếp theo, chúng tôi trình bày một số kết quả liên quan đến sự liên hệ

giữa các toán tử Steenrod và toán tử δ3. Những kết quả này làm cơ sở cho việc

thiết lập các hệ thức tương tự trong không gian con F3,2.

Bổ đề 3.5.6.

Pk (δ3f) +
∑
i<k

Pk−iL3

L3
P i (δ3f) =

Pk


∣∣∣∣∣∣∣

x1 x2 x3

xq1 xq2 xq3

xq
m

1 f(x2, x3) xq
m

2 f(x1, x3) xq
m

3 f(x1, x2)

∣∣∣∣∣∣∣


L3
.

Hơn nữa, vế phải của đẳng thức trên bằng δ3;m(F ) hoặc δ3;m+1(F ), trong đó F

là một tổ hợp tuyến tính của các đa thức có dạng gP if , với g ∈ D2 và 0 ≤ i ≤ k.

145



Chứng minh. Theo định nghĩa toán tử δ3, ta có

L3δ3(f) =

∣∣∣∣∣∣∣∣∣
x1 x2 x3

xq1 xq2 xq3

xq
m

1 f(x2, x3) xq
m

2 f(x1, x3) xq
m

3 f(x1, x2)

∣∣∣∣∣∣∣∣∣
.

Áp dụng công thức Cartan cho Pk(L3δ3f), sau đó chia hai vế cho L3 ta suy ra

đẳng thức cần chứng minh.

Tiếp theo, ta cần chỉ ra vế phải của đẳng thức trên sẽ là δ3;m(F ) hoặc

δ3;m+1(F ), trong đó F là một tổ hợp tuyến tính của các đa thức có dạng gP if ,

với g ∈ D2 và 0 ≤ i ≤ k. Thật vậy, khai triển định thức∣∣∣∣∣∣∣
x1 x2 x3

xq1 xq2 xq3

xq
m

1 f(x2, x3) xq
m

2 f(x1, x3) xq
m

3 f(x1, x2)

∣∣∣∣∣∣∣
thì mỗi hạng tử có dạng x1x

q
2x

qm

3 f(x1, x2) (và các hoán vị của nó). Mặt khác ta

có tác động của toán tử P i như sau

P i(x1) =


x1 khi i = 0

xq1 khi i = 1

0 trong các trường hợp khác

,

P i
(
xq1
)
=


xq1 khi i = 0

xq
2

1 khi i = q

0 trong các trường hợp khác

,

P i
(
xq

m

1

)
=


xq

m

1 khi i = 0

xq
m+1

1 khi i = qm

0 trong các trường hợp khác

.

Với các ẩn x2 và x3 ta cũng có các kết quả tương tự. Áp dụng công thức Cartan
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cho Pk(x1x
q
2x

qm

3 f(x1, x2)) thì thu được các phần tử có dạng

xq
a

1 xq
b

2 xq
c

3 Pdf(x1, x2),

với a = 0 hoặc 1, b = 1 hoặc 2 và c = m hoặc m+1 và các hoán vị của nó. Do đó,

tử thức của vế phải đẳng thức cần chứng minh là tổng các định thức có dạng∣∣∣∣∣∣∣∣∣
xq

a

1 xq
a

2 xq
a

3

xq
b

1 xq
b

2 xq
b

3

xq
c

1 Pdf(x2, x3) xq
c

2 Pdf(x1, x3) xq
c

3 Pdf(x1, x2)

∣∣∣∣∣∣∣∣∣
.

Định thức này chính là

L3δ3;c

(
[a, b]

[0, 1]
Pdf

)
,

trong đó [a,b]
[0,1]

∈ D2, và c là m hoặc là m + 1. Vì vậy, ta có điều phải chứng

minh.

Tiếp theo, chúng tôi phân tích trường hợp δ3;m+1(f) tương ứng với c = m+1

trong Bổ đề trên. Kết quả thu được được trình bày trong Bổ đề sau.

Bổ đề 3.5.7. Nếu h ∈ D2 và q ≥ 3 thì ta có đẳng thức sau trong Qm

δ3;m+1(h) =


0 nếu q > 3

hoặc q = 3 và deg(h) > 0

δ3;m(Qqm−1

2,1 ) nếu q = 3 và h = 1.

Với q = 2 thì δ3;m+1(h) ∈ Span
{
δ22;m(∆m

1 ), δ31;m(1)
}
.

Chứng minh. Ta có bậc của δ3;m+1(h) là qm+1− q2+deg(h). Vì vậy, nếu q > 3 thì

giá trị này lớn hơn 3(qm− 1), và do đó δ3;m+1(h) = 0 trong Qm. Vì vậy, ta chỉ cần

xét trường hợp q = 3 và q = 2.
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Trước hết, từ phương trình cơ bản

xq
m+1

i −Qqm−2

3,2 xq
m

i +Qqm−2

3,1 xq
m−1

i −Qqm−2

3,0 xq
m−2

i = 0

ta suy ra

δ3;m+1(h)−Qqm−2

3,2 δ3;m(h) +Qqm−2

3,1 δ3;m−1(h)−Qqm−2

3,0 δ3;m−2(h) = 0.

i) Khi q = 3 thì qm+1 − q2 + deg(h) ≤ 3(qm − 1) chỉ khi deg(h) ≤ q2 − 3 = 6. Vì

h ∈ D2 nên ta chỉ cần xét h = 1 hoặc h = Q2,1 (sai khác một bội vô hướng).

Với trường hợp h = Q2,1 thì δ3;m+1(Q2,1) có bậc là 3m+1 − 3, vì vậy nó có

thể là bằng không hoặc phần tử có bậc cao nhất x3
m−1

1 x3
m−1

2 x3
m−1

3 . Ta sẽ

chỉ ra rằng δ3;m+1(Q2,1) = 0 trong Qm bằng cách quy nạp theo m. Trước

hết, dễ dàng kiểm tra được rằng δ3;3(Q2,1) = Q3,1 = 0 trong Q2. Tiếp theo,

ta thấy rằng Q3,0 = Q3,1 = 0 trong Q2, vì vậy Qqm−2

3,1 = Qqm−2

3,0 = 0 trong Qm.

Do đó, trong Qm, ta có

δ3;m+1(Q2,1) = Qqm−2

3,2 δ3;m(Q2,1).

Mặt khác, Q3,2 = x61x
6
2x

6
3 trong Q2, vì vậy Qqm−2

3,2 = x2.3
m−1

1 x2.3
m−1

2 x2.3
m−1

3 trong

Qm. Vì vậy nếu δ3;m(Q2,1) = 0 trong Qm−1 thì suy ra δ3;m+1(Q2,1) = 0 trong

Qm. Do đó, ta suy ra δ3;m+1(Q2,1) = 0 trong Qm.

Với trường hợp h = 1, theo Mệnh đề 3.1.9 ta có

δ3;m+1 (1) = Q3m−2

3,2 δ3;m (1) = δ3;m

(
Q3m−1

2,1

)
.

ii) Khi q = 2 thì ta vẫn có Qqm−2

3,0 = 0 trong Qm(3). Do đó, theo hệ quả của

phương trình cơ bản ở trên ta suy ra

δ3;m+1(h) = Qqm−2

3,2 δ3;m(h)−Qqm−2

3,1 δ3;m−1(h).
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tuy nhiên

Q2m−2

3,1 = x2
m−1

1 x2
m−1

2 x2
m−1

3 .

Vì vậy, theo định nghĩa của toán tử δ3 thì δ3;m+1(h) = Q2m−2

3,2 δ3;m(h) −
Q2m−2

3,1 δ3;m−1(h) trong Qm bằng

1

L3

∣∣∣∣∣∣∣
x1 x2 x3

x21 x22 x23

x2
m

1 h(x2, x3)(x
2m
2 + x2

m

3 ) x2
m

2 h(x1, x3)(x
2m
1 + x2

m

3 ) x2
m

3 h(x1, x2)(x
2m
1 + x2

m

2 )

∣∣∣∣∣∣∣ .
Mặt khác, dễ thấy rằng

x2
m

1 + x2
m

2 = Q2,1δ2;m(1)− δ2;m(Q2
1,0),

vì vậy biểu thức trên trở thành

δ3;m(Q2,1hδ2;m(1))− δ3;m(hδ2;m(Q2
1,0)).

Theo Bổ đề 3.4.9 ta suy ra điều phải chứng minh.

Chú ý 3.5.8. Sử dụng Bổ đề 3.4.7 và tính toán tương tự có thể chỉ ra rằng khi

q = 2, thì đối với h ∈ D2, ta có kết quả sau

δ3;m+1(h) =


0 nếu h là bội của Q2,0,

δ22;m(Q2s
1,0) nếu h = Qs

2,1.

Chứng minh. Trước hết ta có công thức sau theo Bổ đề 3.5.7 (trường hợp q = 2),

δ3;m+1(h) = δ3;m(Q2,1hδ2;m(1))− δ3;m(hδ2;m(Q2
1,0)).

Theo Hệ quả 3.4.8 với g ∈ D2 và có dạng

g =
∑

(s,t)∈A⊂N2

V s
1 V

t
2
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thì với mọi i ≥ 0 ta có

δ3;m

 ∑
(s,t)∈A

V s
1 V

t
2 δ2;m(Qi

1,0)

 =
∑

(s,t)∈A;t≥1

δ2;m
(
V s
1 V

t−1
2 δ2;m(Qi

1,0)
)
.

• Xét trường hợp h là bội của Q2,0, tức là h = Q2,0 · h1 = V1V2 · h1 ∈ D2. Khi

đó

δ3;m+1(Q2,0h1) = δ3;m(Q2,0Q2,1h1δ2;m(1))− δ3;m(Q2,0h1δ2;m(Q2
1,0))

= δ3;m(V1V2Q2,1h1δ2;m(1))− δ3;m(V1V2h1δ2;m(Q2
1,0)).

Khi h1 = 1 ta có

δ3;m+1(Q2,0) = δ3;m(V1V2Q2,1δ2;m(1))− δ3;m(V1V2δ2;m(Q2
1,0))

= δ2;m
(
V1V

2
1 δ2;m(1)

)
+ δ2;m (V1V2δ2;m(1))− δ2;m

(
V1δ2;m(Q2

1,0)
)
.

Áp dụng Bổ đề 3.4.7 cho các trường hợp (s = 3, t = 0), (s = 1, t = 1) và

(s = 1, t = 0) ta có

δ3;m+1(Q2,0) = δ22;m(Q3
1,0)− x2

m−1
1 x2

m−1
2 x13 + x2

m−1
1 x2

m−1
2 x13 − δ22;m(Q3

1,0)

= 0.

Ngoài ra, theo Bổ đề 3.4.7 với trường hợp s > 1, t ≥ 1 ta có

δ2;m
(
V s
1 V

t
2 δ2;m(Qi

1,0)
)
= 0.

Do đó, Khi h ̸= 1 thì có thể biểu diễn h1 qua các bất biến tam giác trên và
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áp dụng Hệ quả 3.4.8 ta có

δ3;m+1(Q2,0h1) = δ3;m(V1V2Q2,1h1δ2;m(1))− δ3;m(V1V2h1δ2;m(Q2
1,0))

= δ2;m

(
V1V

2(a+1)
1 δ2;m(1)

)
+ δ2;m

(
V1V

a+1
2 δ2;m(1)

)
− δ2;m

(
V1V

2a
1 δ2;m(Q2

1,0)
)
− δ2;m

(
V1V

a
2 δ2;m(Q2

1,0)
)
.

Tiếp tục sử dụng kết quả của Bổ đề 3.4.7 cho trường hợp (s = 1, t ≥ 1) và

(s ≥ 2, t = 0). Khai triển và rút gọn các hạng tử, ta nhận được

δ3;m+1(Q2,0h1) = δ22;m
(
Q2a+3

1,0

)
− x2

m−1
1 x2

m−1
2 x2a+1

3 + x2
m−1

1 x2
m−1

2 x2a+1
3

− δ22;m
(
Q2a+3

1,0

)
+ x2

m−1
1 x2

m−1
2 x2a+1

3 + x2
m−1

1 x2
m−1

2 x2a+1
3

= 0.

• Xét trường hợp h ∈ D2 với h = Qs
2,1 = (V 2

1 + V2)
s, tương tự như trên ta có

δ3;m+1(Q
s
2,1) = δ3;m(Qs+1

2,1 δ2;m(1))− δ3;m(Qs
2,1δ2;m(Q2

1,0))

= δ3;m((V 2
1 + V2)

s+1δ2;m(1))− δ3;m((V 2
1 + V2)

sδ2;m(Q2
1,0)).

Khi đó, ta xét các khả năng sau.

– Khi s = 0 thì

δ3;m+1(1) = δ3;m(Q2,1δ2;m(1))− δ3;m(δ2;m(Q2
1,0))

= δ3;m((V 2
1 + V2)δ2;m(1))

= δ2;m(δ2;m(1)) = δ22;m(1).

– Khi s = 1, áp dụng kết quả của Bổ đề 3.4.7 cho trường hợp (s = 0, t = 1)
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ta có

δ3;m+1(Q2,1) = δ3;m(Q2
2,1δ2;m(1))− δ3;m(Q2,1δ2;m(Q2

1,0))

= δ3;m((V 2
1 + V2)

2δ2;m(1))− δ3;m((V 2
1 + V2)δ2;m(Q2

1,0))

=

(
2

1

)
δ2;m(V 2

1 δ2;m(1)) + δ2;m(V2δ2;m(1))− δ2;m(δ2;m(Q2
1,0))

=

(
2

1

)
δ2;m(V 2

1 δ2;m(1)) + (1 + 1)x2
m−1

1 x2
m−1

2 − δ22;m(Q2
1,0)

= δ22;m(Q2
1,0).

– Khi s ≥ 2, áp dụng kết quả của Bổ đề 3.4.7 cho trường hợp (s ≥ 1, t = 0)

và (s = 0, t ≥ 1) ta có

δ3;m+1(Q
s
2,1) = δ3;m(Qs+1

2,1 δ2;m(1))− δ3;m(Qs
2,1δ2;m(Q2

1,0))

= δ3;m((V 2
1 + V2)

s+1δ2;m(1))− δ3;m((V 2
1 + V2)

sδ2;m(Q2
1,0))

=

(
s+ 1

1

)
δ2;m(V 2s

1 δ2;m(1)) + δ2;m(V s
2 δ2;m(1))

−
(
s

1

)
δ2;m(V

2(s−1)
1 δ2;m(Q2

1,0))− δ2;m(V s−1
2 δ2;m(Q2

1,0))

=

(
s+ 1

1

)(
δ2;m(Q2s

1,0 − x2
m−1

1 x2
m−1

2 x2s−2
3 )

)
+ (s+ 1)x2

m−1
1 x2

m−1
2 x2s−2

3

−
(
s

1

)(
δ2;m(Q2s

1,0)− x2
m−1

1 x2
m−1

2 x2s−2
3

)
− (s− 1 + 1)x2

m−1
1 x2

m−1
2 x2s−2

3

= δ22;m(Qs
1,0)

Vậy, ta có điều phải chứng minh.

Từ đó, ta có kết quả sau.

Định lý 3.5.9. Giả thuyết 3.5.1 đúng với trường hợp n ≤ 3. Tức là, với n ≤ 3
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và 0 ≤ k ≤ n, các không gian con của không gian Qm(n)GLn

Fn,k = Span
{
δn−s
s+1 (f) : f ∈ ∆m

s , 0 ≤ s ≤ min(m, k)
}
.

là một A-môđun con và cũng là một Dn-môđun con của Qm(n)GLn. Hơn nữa,

Fn,k bị triệt tiêu bởi các đa thức Dickson Qn,0, Qn,1, . . . , Qn,n−k−1.

Chứng minh. Theo Mệnh đề 3.1.9 thì với n ≤ 3 thì các không gian con Fn,k là

Dn-môđun con của không gian bất biến Qm(3)GL3. Hơn nữa, các không gian con

Fn,k bị triệt tiêu bởi các bất biến Dickson Qn,0, Qn,1, . . . , và Qn,n−k−1.

Tiếp theo, ta sẽ chứng minh các không gian con này cũng là các A-môđun

con của không gian bất biến. Theo Hệ quả 3.5.4 thì Định lý đúng với n ≤ 2. Với

trường hợp n = 3 thì Định lý đúng với không gian con F3,1 theo Hệ quả 3.5.5.

Hơn nữa, ta có

• F3,0 = Span
{
δ31(1)

}
,

• F3,3 = Span
{
δ31(1), δ

2
2(∆

m
1 ), δ3(∆

m
2 ),∆m

3

}
.

Vì vậy, F3,0 chỉ gồm GL3-bất biến của Qm có bậc cao nhất, F3,3 gồm toàn bộ các

GL3-bất biến của Qm. Tác động của toán tử Steenrod giao hoán với tác động

của nhóm GL3 nên các không gian con F3,0 và F3,3 cũng là các A-môđun con.

Do đó, việc còn lại là chứng minh rằng F3,2 là một A-môđun con của Qm(3)GL3.

Thật vậy, từ Bổ đề 3.5.6 và Bổ đề 3.5.7, ta thấy rằng nếu f ∈ D2, thì

Pk (δ3f) +
∑
i<k

Pk−iL3

L3
P i (δ3f) ∈ F3,2.

Hơn nữa, P iL3 là một định thức có các phần tử là lũy thừa của q, vì vậy nó

luôn là một bội của L3, và thương PiL3

L3
là một đa thức Dickson trong D3. Do

đó, nếu các P i (δ3f) thuộc F3,2 thì từ Mệnh đề 3.1.9 ta suy ra các Pk−iL3

L3
P i (δ3f)

cũng thuộc F3,2. Vì vậy, theo quy nạp thì Pk (δ3f) cũng thuộc F3,2. Vậy, định lý

đã được chứng minh.
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KẾT LUẬN CHƯƠNG 3

Trong chương này, chúng tôi trình bày các nội dung sau đây.

• Chúng tôi đề xuất một một cơ sở tuyến tính cho không gian bất biến

Qm(n)Pα, và trường hợp đặc biệt không gian bất biến Qm(n)GLn dựa trên cơ sở

tuyến tính của không gian bất biến Qm(n)Bn (Giả thuyết 3.0.1 và 3.0.2).

• Chúng tôi nhắc lại định nghĩa tập hợp ∆m
s (theo [28]), theo đó tập ∆m

s

là tập hợp gồm các đơn thức Dickson thỏa mãn các điều kiện liên quan đến phân

hoạch của s (Định nghĩa 3.1.1 và 3.1.3 ), tập hợp này quan trọng trong việc xây

dựng các cơ sở tuyến tính cho các không gian con bất biến ở các phần tiếp theo.

• Tiếp theo, chúng tôi chỉ ra chặn trên của tổng số chiều của các không

gian con bất biến. Dựa trên kết quả này, chúng tôi nhận thấy rằng việc chứng

minh tính hệ sinh của các tập trong Giả thuyết là đủ để có thể khẳng định được

tính cơ sở của nó mà không cần chứng minh trực tiếp. Kết quả này giúp việc

đơn giản hóa quá trình chứng minh Giả thuyết (Mệnh đề 3.2.1 và Hệ quả 3.2.2).

• Sau đó, chúng tôi chứng minh Giả thuyết đúng với hạng 2. Đối với hạng

2 thì chỉ có hai nhóm con parabolic là nhóm con Borel (đã chứng minh tổng

quát trong Chương 2) và nhóm tuyến tính tổng quát. Công việc còn lại là chứng

minh Giả thuyết với nhóm tuyến tính tổng quát GL2. Chúng tôi tính toán ánh

xạ chuyển từ không gian bất biến ứng với nhóm con Borel lên không gian bất

biến ứng với nhóm tuyến tính tổng quát để thu được hệ sinh của không gian bất

biến Qm(2)GL2. Tiếp theo, chúng tôi tìm cách thu gọn hệ sinh này sao cho phù

hợp với hệ sinh trong Giả thuyết. Dựa vào lập luận trước đó, chúng tôi chỉ ra

cơ sở tuyến tính của không gian bất biến Qm(2)GL2 (Mệnh đề 3.3.3).

• Tương tự cách làm cho trường hợp hạng 2, chúng tôi chứng minh Giả

thuyết cho hạng 3. Hạng 3 gồm 4 nhóm con parabolic gồm nhóm Borel B3, nhóm

P(2,1), P(1,2) và nhóm tuyến tính tổng quát GL3. Chúng tôi xây dựng các hệ sinh

bằng cách sử dụng ánh xạ chuyển và thu gọn các hệ sinh này sao cho phù hợp
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với hệ sinh trong Giả thuyết, từ đó suy ra Giả thuyết đúng với trường hợp hạng

3. Chúng tôi tìm được các cơ sở tuyến tính của không gian bất biến ứng với

các nhóm P(2,1), P(1,2) và nhóm tuyến tính tổng quát GL3 (Mệnh đề 3.4.2, 3.4.4,

3.4.14). Vì vậy, chúng tôi khẳng định Giả thuyết 3.0.1 và 3.0.2 đúng với hạng

≤ 3 (Định lý 3.4.15).

• Cuối cùng, chúng tôi trình bày Giả thuyết về lọc Fn,k từ hệ cơ sở tuyến

tính vừa xây dựng và chứng minh Giả thuyết về lọc Fn,k xem như là môđun

trên đại số Dickson và đại số Steenrod (Giả thuyết 3.5.1). Tiếp theo, chúng tôi

chứng minh giả thuyết này đúng với trường hợp hạng ≤ 3 (Định lý 3.5.9).
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KẾT LUẬN

Trong luận án này chúng tôi đã thu được những kết quả sau.

Thứ nhất, chúng tôi định nghĩa toán tử δ như là một biến thể của hàm

Schur [20] và trình bày một số tính chất quan trọng của nó. Cụ thể, chúng tôi

đưa ra công thức tính các toán tử δ lặp (Mệnh đề 2.1.4) và mở rộng nó trong

các trường hợp tổng quát hơn (Mệnh đề 2.1.7). Dựa trên các tính chất của toán

tử δ, chúng tôi xây dựng cơ sở tuyến tính cho không gian bất biến Qm(n)Bn dưới

tác động của nhóm Borel trong trường hợp tổng quát (Định lý 2.5.4). Từ đó,

chúng tôi đã chứng minh được giả thuyết của Lewis - Reiner - Staton về chuỗi

Hilbert của không gian bất biến Qm(n)Bn (Định lý 2.6.3).

Thứ hai, chúng tôi xây dựng các giả thuyết về cơ sở tuyến tính cho các

không gian bất biến, cụ thể là không gian Qm(n)Pα và Qm(n)GLn dựa trên cơ sở

tuyến tính đã biết của không gian Qm(n)Bn (Giả thuyết 3.0.1 và 3.0.2). Chúng

tôi chứng minh các giả thuyết này đúng với hạng 2 và hạng 3, bằng cách sử

dụng tác động của ánh xạ chuyển để xây dựng các hệ sinh và thu gọn chúng sao

cho phù hợp với các hệ sinh trong giả thuyết. Cụ thể, đối với hạng 2, chỉ có hai

nhóm con parabolic là nhóm Borel và nhóm tuyến tính tổng quát GL2 (Mệnh

đề 3.3.3). Đối với hạng 3, các nhóm con parabolic bao gồm nhóm Borel và ba

nhóm khác như P(2,1), P(1,2), cùng với nhóm tuyến tính tổng quát GL3 (Mệnh đề

3.4.2, 3.4.4, 3.4.14 và Định lý 3.4.15). Chúng tôi cũng trình bày và chứng minh

giả thuyết về lọc Fn,k (Giả thuyết 3.5.1), chứng minh rằng giả thuyết này đúng

với hạng ≤ 3, và xem xét nó như một môđun trên đại số Dickson và Steenrod

(Định lý 3.5.9). Các kết quả này đã xác định rõ ràng các cơ sở tuyến tính của

không gian bất biến ứng với các nhóm parabolic và nhóm tuyến tính tổng quát

GL3, qua đó góp phần khẳng định tính Giả thuyết là đúng với trường hợp hạng

không vượt quá 3.
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