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MỞ ĐẦU

Lý thuyết bất biến nghiên cứu tác động của nhóm, các điểm bất động và các quỹ
đạo. Thông thường, nhóm tác động trên các không gian véctơ (phân bậc), hoặc các
đại số trên một trường. Đây là một trong những lĩnh vực nghiên cứu trung tâm của
đại số, với liên hệ và ứng dụng trong nhiều nhánh nghiên cứu khác của toán học như
tổ hợp, lý thuyết nhóm, đối đồng điều của nhóm, tôpô đại số và lý thuyết biểu diễn.

Đối tượng nghiên cứu cổ điển và quan trọng nhất là tác động tuyến tính của các
nhóm hữu hạn trên vành đa thức. Ký hiệu V là một không gian véctơ n chiều trên
trường k nào đó, và x1, . . . , xn là một cơ sở của V . Ký hiệu GL(V ) là nhóm các phép
biến đổi tuyến tính khả nghịch của V . Ta có thể đồng nhất GL(V ) với nhóm nhân
các ma trận khả nghịch cấp n với hệ số trong k. Ký hiệu S là đại số đa thức theo các
biến x1, . . . , xn với hệ số trong k,

S = k[x1, . . . , xn].
Do đó không gian các dạng tuyến tính trong S chính là V . Tác động của một tự đồng
cấu σ ∈ GL(V ) trên V mở rộng một cách duy nhất thành một tự đẳng cấu đại số
của S bởi công thức

(σf)(x1, . . . , xn) = f(σx1, . . . , σxn),
ở đó σxj = ∑

σi,jxi. Ta cần tìm tất cả các đa thức f ∈ S sao cho σf = f với mọi σ
thuộc một nhóm con hữu hạn G nào đó của GL(V ).

Một ví dụ quen thuộc là các bất biến của nhóm đối xứng Σn, tác động theo cách
thông thường như là nhóm hoán vị của các biến x1, . . . , xn.

k[x1, . . . , xn]Σn = k[e1, . . . , en],
ở đó ek là các đa thức đối xứng sơ cấp thứ k, 1 ≤ k ≤ n. Các đa thức đối xứng là các
đối tượng toán học quen thuộc trong nhiều lĩnh vực khác nhau của toán học.

Trong lý thuyết bất biến, cũng như lý thuyết biểu diễn, có sự khác biệt rất lớn
giữ trường hợp modular và non-modular. Trong trường hợp non-modular, đặc số của
trường k bằng 0, hoặc nguyên tố cùng nhau với cấp của nhóm. Khi đó, lý thuyết trở
nên tương tự như bất biến trên trường số phức. Từ quan điểm ứng dụng trong tôpô
đại số, và đối đồng điều của nhóm, lý thuyết bất biến modular có vai trò quan trọng
hơn, nhiều vấn đề trở nên thú vị hơn và là chủ đề của các nghiên cứu thời sự.

Luận án này sẽ chỉ quan tâm tới tác động nhóm hữu hạn trên các không gian véctơ
phân bậc trên trường hữu hạn có q phần tử, ký hiệu là Fq, ở đó q là luỹ thừa của đặc
số p là một số nguyên tố nào đó.

Đối với các vành giao hoán trên trường Fq, ánh xạ lấy luỹ thừa q, thường được
biết đến dưới tên gọi đồng cấu Frobenius, đóng vai trò vô cùng quan trọng. Người ta
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thường tìm các cách thức khác nhau để khai thác sự tồn tại của đồng cấu Frobenius.
Một trong những kỹ thuật đó là toán tử Steenrod P i, i ≥ 0, và đại số Steenrod A.
Mặc dù có nguồn gốc từ tôpô đại số, với vai trò là các toán tử đối đồng điều của các
không gian tôpô, đại số Steenrod có thể được xây dựng một cách hoàn toàn đại số.
Các không gian bất biến thường sẽ có cấu trúc của một môđun trên đại số Steenrod,
và vì thế việc sử dụng các hiểu biết về đại số Steenrod trong lý thuyết bất biến
modular trở nên hoàn toàn tự nhiên. Hướng nghiên cứu về các cấu trúc của vành bất
biến xem như môđun trên đại số Steenrod đã được nghiên cứu rộng rãi. Các tài liệu
tham khảo tiêu biểu là các công trình của Boardman, Meyer và Smith, cũng như của
Walker và Wood cùng các tài liệu tham khảo liên quan.

Vành đa thức modulo luỹ thừa Frobenius

Với mỗi số nguyên dương m, ký hiệu Im là iđêan của vành đa thức S sinh bởi các
luỹ thừa Frobenius thứ m, Im = (xqm

1 , . . . , xqm

n ). Đặt Qm(n) là vành thương

Qm(n) = S/Im.

Do Im ổn định dưới tác động của G = GLn(Fq), vành thương Qm(n) có tác động cảm
sinh của G. Cấu trúc G-môđun của Qm(n), và đặc biệt là không gian G-bất biến của
nó là đối tượng nghiên cứu chính của luận án này.

Từ cách xây dựng, ta thấy Qm(n) là một đại số hữu hạn chiều. Ở bậc cao nhất
n(qm − 1), ta có một không gian véctơ một chiều, sinh bởi đơn thức

xqm−1
1 · · · xqm−1

n ,

với tác động tầm thường của GLn. Ta có thể định nghĩa một dạng song tuyến tính
không suy biến trên Qm(n) bởi công thức

(f, g) =
fg, nếu deg(fg) = n(qm − 1),

0, trong các trường hợp khác.

Vì vậy, tồn tại một đẳng cấu giữa các không gian véctơ

Qm(n)GLn ∼= Qm(n)GLn.

Do đối ngẫu Poincare, thông tin về không gian bất biến Qm(n)GL
n sẽ cho thông tin

về không gian đối cố định Qm(n)GLn, và khi cho m đến vô cùng, ta thu được thông
tin về không gian đối cố định SGLn của vành đa thức. Một điều đáng ngạc nhiên là
trong khi không gian bất biến SGLn, hay còn gọi là đại số Dickson, đã được xác định
hoàn toàn từ năm đầu thế kỷ 20, trong khi đó gần như không có hiểu biết nào về
SGLn cho đến các công trình của Lewis-Reiner và Stanton.

Vành đa thức modulo Frobenius cũng cho thông tin về đại số đối bất biến1. Nhắc
lại rằng nếu GLn (Fq), vành đối bất biến của GLn là vành thương của đại số đa thức
S bởi iđêan sinh bởi các đa thức bất biến SGLn không chứa hằng (tức là không chứa
các thành phần bậc 0).

S ⊗SGLn k = S/(SGLn
+ ),

1coinvariant algebra
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ở đó k được hiểu là SGLn-môđun tầm thường. Lưu ý rằng SGLn vẫn còn tác động
cảm sinh của GLn. Chevalley, dựa trên các nghiên cứu trước đó của Shephard và
Todd phân loại các nhóm phản xạ phức chứng minh rằng khi k = C là trường số
phức, đại số đối bất biến SGLn đẳng cấu với biểu diễn chính quy C[GLn], xem như là
GLn-môđun. Điều thú vị là đẳng cấu này giúp tạo nên một phân bậc cho biểu diễn
chính quy, và nhiều nghiên cứu sâu sắc về liên hệ giữa phân bậc này và các biểu diễn
bất khả quy của GLn.

Đối tượng nghiên cứu chính của luận án là các vành bất biến Qm(n) dưới tác động
của nhóm tuyến tính tổng quát GLn (Fq) và các nhóm con parabolic. Trong công trình
rất sâu sắc của mình, Lewis, Reiner và Stanton đã đưa ra một loạt các giả thuyết
về chuỗi Hilbert của các vành bất biến nói trên của vành đa thức modulo lũy thừa
Frobenius, và các hệ quả. Đây là kết của của một chuỗi các công trình nghiên cứu
từ hơn 20 năm nay về hiện tượng sàng xyclic2 trong đại số tổ hợp và các q-phiên
bản của Reiner, Stanton và các cộng sự. Trong đó, vành đa thức modulo lũy thừa
Frobenius đóng vai trò như là một phiên bản tương tự của không gian q-W Fuss
Catalan, Cat(m)(W, q) khi nhóm phản xạ hữu hạn W được thay thế bởi nhóm tuyến
tính tổng quát GLn (Fq).

Các nghiên cứu về hiện tượng CSP từ nhóm đối xứng sang các nhóm phản xạ đã
dẫn đến bài toán tự nhiên cần khảo sát cấu trúc của vành bất biến Qm (n). Cũng dựa
trên các kết quả thu được trước đó đối với nhóm phản xạ cổ điển, Lewis, Reiner và
Stanton đã đề xuất một chuỗi các giả thuyết về chuỗi Hilbert của các vành bất biến
này thông qua các hệ số nhị thức tổng quát (q, t), là phiên bản phân bậc của các q-hệ
số nhị thức ở trên.

Nhóm G = GLn(Fq) muốn làm nhóm Coxeter

Ta đã biết từ định lý của Dickson rằng vành bất biến SG là một đại số đa thức
sinh bởi các bất biến Dickson Qn,i, 0 ≤ i ≤ n − 1 với bậc lớn nhất qn − 1. Như vậy
G = GLn(Fq) cũng là một nhóm phản xạ. Tuy không phải là một nhóm phản xạ thực
(nhóm Coxeter), nhưng nó có nhiều tính chất và thể hiện khá tương tự. Vì thế có thể
đặt câu hỏi về tương tự của các kết quả trên cho G. Nếu đặt

Θ = (θ1, . . . , θn) = (xqm

1 , . . . , xqm

n )

thì chúng đều thuần nhất bậc (qn − 1) + 1, lập thành một hệ tham số cho S và không
gian căng bởi chúng đẳng cấu với không gian căng bởi x1, . . . , xn. Như vậy, khi tìm
kiếm phiên bản tương tự của Cat(W, q) từ nhóm Coxeter cổ điển sang cho nhóm
GLn(Fq), ta thu được vành đa thức modulo lũy thừa Frobenius Qm(n).

Các nghiên cứu về hiện tượng CSP từ nhóm đối xứng sang các nhóm phản xạ đã
dẫn đến bài toán tự nhiên cần khảo sát cấu trúc của vành bất biến Qm (n). Cũng dựa
trên các kết quả thu được trước đó đối với nhóm phản xạ cổ điển, Lewis, Reiner và
Stanton đã đề xuất một chuỗi các giả thuyết về chuỗi Hilbert của các vành bất biến
này thông qua các hệ số nhị thức tổng quát (q, t), là phiên bản phân bậc của các q-hệ
số nhị thức ở trên.

Để phát biểu giả thuyết của Lewis, Reiner và Stanton, chúng ta giới thiệu thêm
2cyclic sieving phenomena - CSP
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một số ký hiệu và định nghĩa. Một hợp thành yếu3 β = (β1, . . . , βℓ) là một dãy các
số nguyên không âm. Ta đặt Bi = ∑i

j=1 βj và |β| = ∑ℓ
j=1 βj. Tập hợp các phân hoạch

yếu có thể được trang bị một thứ tự cục bộ, ở đó β ≤ β′ nếu βi ≤ β′
i với mọi i.

Giả sử α = (α1, . . . , αℓ) là một hợp thành của số nguyên dương k, theo Reiner-
Staton, (q, t)-hệ số nhị thức tổng quát của k bởi α được cho bởi công thức

[
k
α

]
q,t

=
∏k−1

j=0

(
1 − tqk−qj

)
∏l

i=1
∏αi

j=1
(
1 − tqAi−qAi−j

) ,

trong đó Ai = ∑i
j=1 αj.

Lewis, Reiner và Stanton đã đề xuất một chuỗi các giả thuyết về chuỗi Hilbert
của không gian véctơ phân bậc các bất biến Qm (n) dưới tác động của các nhóm con
parabolic của nhóm tuyến tính tổng quát GLn như sau:
Giả thuyết 1.4.1 (Giả thuyết 1.1, Lewis-Reiner-Stanton) Chuỗi Hilbert-Poincaré
của Fq-không gian véctơ phân bậc của các GLn-bất biến Qm (n)GLn là chuỗi lũy thừa
Cn,m (t) xác định bởi công thức

Hilb
(
Qm (n)GLn , t

)
= Cn,m (t) =

min{n,m}∑
k=0

t(n−k)(qm−qk)
[
m
k

]
q,t

.

Giả thuyết 1.4.2 (Giả thuyết Parabolic 1.5, Lewis-Reiner-Stanton). Cho n
là số nguyên dương, α = (α1, . . . , αl) là một hợp thành của n và gọi Pα là nhóm con
parabolic của GLn. Chuỗi Hilbert-Poincaré của Fq-không gian véctơ phân bậc của các
Pα-bất biến Qm (n)Pα là chuỗi lũy thừa Cα,m (t) xác định bởi công thức

Hilb
(
Qm (n)Pα , t

)
= Cα,m (t) =

∑
β≤α,|β|≤m

te(m,α,β)
[

m
β, m − |β|

]
q,t

,

ở đó e (m, α, β) = ∑l
i=1 (αi − βi)

(
qm − qBi

)
và Bi = β1 + . . . + βi.

Chẳng hạn, khi m ≥ n = 2 và α = (1, 1) thì Pα là nhóm con Borel của GL2
và β ∈ {(0, 0) , (0, 1) , (1, 0) , (1, 1)}. Theo giả thuyết thì chuỗi Hilbert-Poincaré của
Qm (n)B2 là

t2(qm−1) + tqm−1 1 − tqm−1

1 − tq−1 + tqm−q 1 − tqm−1

1 − tq−1 +
(
1 − tqm−1

) (
1 − tqm−q

)
(1 − tq−1)

(
1 − tq2−q

) .

Lewis, Reiner và Stanton đã chứng minh cho giả thuyết của họ trong trường hợp
m = 1, n bất kỳ. Trong công trình của mình, Goyal thu được một số kết quả về giả
thuyết Parabolic đối với nhóm Borel trong trường hợp m = n = 2 và xây dựng được
một số bất biến cho trường hợp m = 2 và n bất kỳ. Goyal đã xây dựng một cách
cụ thể một số các họ bất biến "đặc biệt", không phải là các đa thức bất biến thông
thường. Một phiên bản của giả thuyết Parabolic đã được nghiên cứu bởi Drescher và
Shepler nghiên cứu. Gần đây, Taiwang Deng trong công trình của mình đã xác định
được các bất biến và đối bất biến của vành đa thức rút gọn, ứng dụng vào nghiên
cứu các lớp xoắn trong đối đồng điều của nhóm SL2 (Z).

3weak composition
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Chương 1

Kiến thức chuẩn bị

Trong chương này, chúng tôi trình bày một số kiến thức chuẩn bị có liên quan đến
các nội dung chính ở các chương tiếp theo của luận án.

1.1 Lý thuyết bất biến modular

1.1.1 Giới thiệu

Định lý 1.1.1 (Mệnh đề 4.5.5 Neusel M.D.). Giả sử G là một nhóm con hữu hạn của
GLn (Fq), và Fq[V ]G là vành các đa thức bất biến dưới tác động tuyến tính tự nhiên của
G trên không gian véctơ V = Fn

q . Nếu tồn tại các phần tử bất biến f1, . . . , fn ∈ Fq[V ]G
sao cho:

i) Các đa thức f1, . . . , fn độc lập đại số trên Fq,

ii) Tích các bậc thỏa mãn deg(f1) ·deg(f2) · · · deg(fn) = |G|, thì Fq[V ]G là một vành
đa thức tự do trên các phần tử sinh fi, 1 ≤ i ≤ n, tức là:

Fq[V ]G = Fq[f1, . . . , fn].

1.1.2 Bất biến Dickson

Đại số con SGLn gồm các đa thức trong S bất biến dưới tác động của GLn, được
xác định lần đầu tiên bởi L. Dickson vào những năm đầu thế kỷ 20. Cụ thể, Dickson
chứng minh được rằng

SGLn = Fq[Qn,0, . . . , Qn,n−1].
Trong đó Qn,i với 0 ≤ i ≤ n − 1 là các đa thức của các biến x1, . . . , xn, xác định bởi
đẳng thức sau

Qn (t) =
∏

v=(v1,...,vn)∈Fn
q

(t + v1x1 + · · · + vnxn) = tqn

+
n−1∑
i=0

(−1)n−i
Qn,it

qi

.

Từ đó, chứng ta có kết quả sau.



1.1.3 Bất biến Mùi

Định nghĩa 1.1.6. Với mỗi i = 1, . . . , n, các đa thức Vi được định nghĩa như sau

Vi =
∏

λ1,...,λi−1∈Fq

(xi + λi−1xi−1 + · · · + λ1x1) .

Định lý 1.1.8 (Định lý 3 Minh P.A. - Tung V.T.). Vành các bất biến của S dưới tác
động của nhóm Borel Bn là đại số đa thức

SBn = Fq[V q−1
1 , V q−1

2 , . . . , V q−1
n ].

1.2 Đại số Steenrod

Đại số Steenrod xuất hiện như một công cụ quan trọng trong tô pô đại số và có
những ứng dụng sâu rộng trong lý thuyết bất biến. Với nền tảng từ đồng cấu Frobenius
và các phép toán Steenrod, đại số này cung cấp một cách tiếp cận để nghiên cứu các
lớp đồng điều trong không gian tô pô và lý thuyết đại số của các nhóm hữu hạn.

1.2.1 Toán tử Steenrod và Đại số Steenrod

Định nghĩa 1.2.2 (Toán tử Steenrod). Các toán tử P i được gọi là các toán tử luỹ
thừa rút gọn Steenrod trên F, khi q = 2, toán tử Sqi được gọi là toán tử Steenrod bình
phương. Toán tử P i và Sqi được gọi chung là toán tử Steenrod.

Công thức Cartan

Pk (u · v) =
∑

i+j=k

P i (u) · Pj (v) , ∀k ≥ 0.

Xét một phần tử x có bậc 1 trong F[V ] ∼= F[x1, x2, . . . , xn]. Khi đó, với mọi số mũ
j ≥ 0, ta có công thức

P i
(
xj

)
=

j

i

 x j+i(q−1).

Đại số Steenrod

Định nghĩa 1.2.4. Xét hàm tử

F [−] : VectF −→ AlgF,

từ phạm trù các không gian véctơ trên F sang phạm trù các đại số phân bậc giao
hoán trên F.

Định nghĩa 1.2.5 (Đại số Steenrod). Đại số Steenrod trên trường F, ký hiệu là A,
là đại số con của đại số phân bậc của các tự đồng cấu của hàm tử F[−] từ không gian
véctơ sang các đại số phân bậc giao hoán trên F được sinh bởi các toán tử Steenrod.
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Quan hệ Adem
Một hệ đầy đủ các quan hệ giữa các toán tử Steenrod trên trường có đặc số nguyên
tố đã được xây dựng bằng sự kết hợp giữa các phương pháp đại số và tôpô. Các quan
hệ này được gọi là quan hệ Adem.

• Khi q = 2 thì SqiSqj = ∑[ i
2 ]

k=0
(

j−k−1
i−2k

)
Sqi+j−kSqk, với mọi i, j > 0 sao cho i < 2j.

• Khi q ̸= 2 thì P iPj = ∑[ i
q ]

k=0 (−1)i+k
((q−1)(j−k)−1

i−qk

)
P i+j−kPk, với mọi i, j > 0 sao

cho i < qj, trong đó [a/b] là phần nguyên của a/b.
Đơn thức chấp nhận được

Cho một dãy I = (i1, i2, . . . , ik), ta viết PI = P i1P i2 · · · P ik . Các phép lặp của các
phép toán Steenrod này được gọi là các đơn thức cơ bản.
Định nghĩa 1.2.6 (Larry Smith). Một đơn thức cơ bản được gọi là chấp nhận được
nếu is ≥ qis+1 với mọi s ≥ 1.

Có một toàn ánh từ đại số kết hợp tự do được sinh bởi các toán tử Steenrod{
P i|i ∈ N

}
modulo iđêan sinh bởi các quan hệ Adem sang đại số Steenrod. Thực ra,

ánh xạ này là đẳng cấu, và do đó các quan hệ Adem là một tập hợp đầy đủ các quan
hệ xác định cho đại số Steenrod. Cụ thể,
Mệnh đề 1.2.7 (Hệ quả 3.3 Larry Smith). Các đơn thức chấp nhận được tạo thành
một F-cơ sở của đại số Steenrod A.

1.2.2 Ứng dụng của Đại số Steenrod trong Lý thuyết Bất biến

Một trong những ứng dụng chính của đại số Steenrod là trong lý thuyết bất biến,
các toán tử Steenrod đóng vai trò quan trọng trong việc tính toán các iđêan bất biến
dưới tác động của các nhóm hữu hạn.

Cụ thể, khi làm việc trên một trường có đặc số p, các toán tử Steenrod P i (với
p > 2) và Sqi (với p = 2) đóng vai trò quan trọng trong việc nghiên cứu các đa thức
bất biến dưới tác động của một nhóm hữu hạn.
Định nghĩa 1.2.8 (Đồng cấu chuyển). Đồng cấu chuyển là ánh xạ

TrG : F[V ] −→ F[V ]G

được định nghĩa bởi TrG(f) = ∑
g∈G g · f, f ∈ F[V ].

1.3 Hệ số nhị thức

1.3.1 q-hệ số nhị thức

Định nghĩa 1.3.1 (Reiner-Stanton, Định nghĩa 1.1). q-hệ số nhị thức của cặp số
nguyên k và n sao cho 0 ≤ k ≤ n và hệ số bất định q được xác định bởi công thức[

n
k

]
q

= (q)n

(q)k (q)n−k

,

ở đó (q)n = (1 − q)
(
1 − q2

)
· · · (1 − qn).
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1.3.2 (q, t)-hệ số nhị thức

Định nghĩa 1.3.3 (Reiner-Staton, Định nghĩa 1.1). (q, t)-hệ số nhị thức của cặp số
nguyên k và n sao cho 0 ≤ k ≤ n và hệ số bất định q được xác định bởi công thức[

n
k

]
q,t

= n!q,t

k!q,t. (n − k)!q,tqk

,

với n!q,t =
(
1 − tqn−1

) (
1 − tqn−q

)
· · ·

(
1 − tqn−qn−1)

.

1.3.3 (q, t)-đa hệ số nhị thức

Định nghĩa 1.3.5. Cho α = (α1, . . . , αl) và α1 + . . . + αl = n là một hợp thành của
n, (q, t)-đa hệ số nhị thức của n và α được xác định bởi công thức

[
n
α

]
q,t

=
∏n−1

j=0
(
1 − tqn−qj )

∏l
i=1

∏αi−1
j=0

(
1 − tqAi−qAi−1+j

) , với Ai =
i∑

k=1
αk.

1.4 Giả thuyết của Lewis - Reiner - Stanton về chuỗi Hilbert-
Poincaré của không gian bất biến Qm (n) dưới tác động của
nhóm con parabolic

Giả thuyết 1.4.1 (Giả thuyết 1.1, Lewis-Reiner-Staton). Chuỗi Hilbert-Poincaré của
Fq-không gian véctơ phân bậc của các GL-bất biến Qm (n)GL là chuỗi lũy thừa Cn,m (t)
xác định bởi công thức

Hilb
(
Qm (n)GL

, t
)

= Cn,m (t) =
min{n,m}∑

k=0
t(n−k)(qm−qk)

[
m
k

]
q,t

.

Giả thuyết 1.4.2 (Giả thuyết Parabolic 1.5, Lewis-Reiner-Staton). Cho n là số
nguyên dương, α = (α1, . . . , αl) là một hợp thành của n và gọi Pα là nhóm con
parabolic tương ứng của GLn (Fq). Chuỗi Hilbert-Poincaré của Fq-không gian véctơ
phân bậc của các Pα-bất biến Qm (n)Pα là chuỗi lũy thừa Cα,m (t) xác định bởi công
thức

Hilb
(
Qm (n)Pα , t

)
= Cα,m (t) =

∑
β≤α,|β|≤m

te(m,α,β)
[

m
β, m − |β|

]
q,t

,

ở đó e (m, α, β) = ∑l
i=1 (αi − βi)

(
qm − qBi

)
và Bi = β1 + · · · + βi.
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Chương 2

Bất biến của vành đa thức modulo lũy
thừa Frobenius dưới tác động của
nhóm con Borel

Trong chương này chúng tôi giới thiệu toán tử δ, một biến thể của hàm Schur theo
Macdonald I.G., lấy cảm hứng từ cách xây dựng các đa thức Dickson. Toán tử này
cho phép tạo ra các bất biến bậc cao từ các bất biến bậc thấp đã biết, mở rộng khả
năng xây dựng bất biến của vành đa thức Qm(n) dưới tác động của nhóm con Borel.

Trên cơ sở toán tử δ, chúng tôi định nghĩa các hàm hữu tỷ Y (I; J) gắn với hai dãy
I, J cho trước. Bằng việc phân tích các tính chất của δ, chúng tôi chỉ ra rằng các hàm
Y (I; J) là đa thức và hơn nữa các đa thức này bất biến dưới tác động của nhóm con
Borel Bn. Đây là bước trung gian quan trọng để kết nối giữa việc xây dựng toán tử
δ và việc hình thành các hệ cơ sở của không gian bất biến Qm (n)Bn.

Tiếp theo, chúng tôi xây dựng hệ Bm(1n) theo phương pháp quy nạp, trong đó
bao hàm các đa thức Y (I; J) với I, J thỏa mãn những điều kiện xác định. Chúng tôi
chứng minh rằng hệ Bm(1n) tạo thành một cơ sở tuyến tính của không gian bất biến
Qm(n)Bn.

Cuối cùng, dựa trên cơ sở này, chúng tôi xác định chuỗi Hilbert-Poincaré của
Qm(n)Bn và chứng minh giả thuyết của Lewis-Reiner-Stanton trong trường hợp nhóm
con Borel.

2.1 Toán tử δ và một số tính chất

Định nghĩa 2.1.1. Cho a, b, c là ba số nguyên dương sao cho 1 ≤ a ≤ c + 1, định
nghĩa toán tử δa;b xác định bởi công thức

δa;b : Fq [x1, . . . , xc] → Fq (x1, . . . , xc+1) ,
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sao cho với f ∈ Fq [x1, . . . , xc] thì

δa;b (f) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 . . . xa

xq
1 . . . xq

a

. . .
. . . . . .

xqa−2

1 . . . xqa−2

a

xqb

1 f (x̂1, x2, . . . , xc+1) . . . xqb

a f (x1, . . . , x̂a, . . . , xc+1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 . . . xa

xq
1 . . . xq

a

. . .
. . . . . .

xqa−1

1 . . . xqa−1

a

∣∣∣∣∣∣∣∣∣∣∣

.

Chúng tôi mô tả tác động lặp của toán tử δ, qua đó cho phép biểu diễn một cách
tường minh δh

r+1(f) theo các tập con của tập chỉ số và các ánh xạ Frobenius tương
ứng.
Mệnh đề 2.1.4. Với f là hàm hữu tỷ có r′ ẩn, r′ ≥ r, h là một số nguyên dương.
Khi đó, ta có

δh
r+1 (f) (x1, x2, . . . , xr′+h) =

∑
I⊂[r+h]

|I|=h

f
(
I

)
φb (I)

V
(
I, I

)
ở đó I là phần bù của I trong [r+h], φ là ánh xạ Frobenius, khi I = (i1 < i2 < . . . < ih)
thì

f
(
I

)
= f (x1, . . . , x̂i1, . . . , x̂ih

, . . . , xr+h, xr+h+1, . . . , xr′+h) .

Định nghĩa 2.1.5. Với mỗi hàm hữu tỷ g gồm r′ ≥ r ẩn và T ∈ T (s, h) ta xác định

Ar;T (g) =
∑

I⊂[r+h],|I|=h

g
(
I

)
αT (I)

V
(
I, I

) ,

ở đó αT (I) = αT (xi1, . . . , xih
) khi I = (xi1 < . . . < xih

). I là phần bù của I trong
[r + h] và

g
(
I

)
= g (x1, . . . , x̂i1, . . . , x̂ih

, . . . , xr+h, xr+h+1, . . . , xr′+h) .

Ví dụ sau minh họa một trường hợp đặc biệt của định nghĩa trên, trong đó tác
động lặp của toán tử δ chính là trường hợp riêng của toán tử Ar;T (g).
Ví dụ 2.1.6. Với s = b và τ = (τ0 = 0, . . . , τs−1 = 0, τs = h), theo Mệnh đề 2.1.4, ta
có

Ar,τ (g) = δh
r+1 (g) .

Tiếp theo, chúng tôi đưa ra một kết quả kỹ thuật, giúp làm rõ cách toán tử δ tác
động lên các biểu thức đại số. Kết quả này sẽ đóng vai trò quan trọng trong việc thiết
lập cơ sở tuyến tính cho không gian các bất biến ở các phần sau.
Mệnh đề 2.1.7. Cho r, s, k là các số nguyên dương sao cho r ≤ s + k. Giả sử
f (x1, . . . , xs′) và g (x1, . . . , xr′) là các hàm hữu tỷ với r′ ≥ r, s′ ≥ s. Khi đó,

δh
r+1

(
g · δk

s+1 (f)
)

=
∑

T ∈T (s,h)
Ar;T (g) δh+k

s+1 (βT f)
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2.2 Xây dựng hệ Bm (1n)

Trong phần này, chúng tôi xây dựng một hệ các phần tử tạo nên cơ sở tuyến tính
cho không gian bất biến Qm (n)Bn trong trường hợp nhóm con Parabolic đặc biệt
Pα = Bn. Trước hết, chúng tôi định nghĩa các biểu thức dạng Yb (I; J) đóng vai trò
cơ bản trong quá trình xây dựng hệ cơ sở.

Định nghĩa 2.2.1. Với hai dãy I = (i1, . . . , ik) và J = (j1, . . . , jk) các số nguyên
không âm, định nghĩa hàm hữu tỷ

Yb (I; J) = δi1
1;b

(
Dj1

1 δi2
2;b

(
Dj2

2 . . . δik
k;b

(
Djk

k

)
. . .

))
,

ở đó Da = δa;a (1) và ΦYb (I; J) = Yb+1 (0, I; 0, J), tức là

ΦYb (I; J) = δi1
2;b+1

(
Dj1

2 δi2
3;b+1

(
Dj2

3 . . . δik
k+1;b+1

(
Djk

k+1
)

. . .
))

,

Tiếp theo, chúng tôi xây dựng tập hợp Bm (1n) gồm các phần tử được tạo thành
từ các biểu thức Yb (I; J) như trên, bằng cách sử dụng phương pháp quy nạp.

Định nghĩa 2.2.2. Với n ≥ 1 và m ≥ 0, tập hợp Bm (1n) được xác định bằng cách
quy nạp như sau.

i) B0 (1n) = {1} với mọi n ≥ 1.

ii) Bm (1) =
{
Da

1 | a ≤ [m]q
}
, với mọi m ≥ 0.

iii) Bm(1n) =
{
δ1;m(Y ) | Y ∈ Bm(1n−1)

} ⊔ {
Da

1Φ(Y ) | a < [m]q, Y ∈ Bm−1(1n−1)
}
.

Ở đó, [a]q = qa−1
q−1 .

Từ định nghĩa trên, chúng tôi mô tả cụ thể hơn cấu trúc của tập hợp Bm (1n) thông
qua phân hoạch rời rạc thành các lớp con Bk

m (1n) như sau.

Mệnh đề 2.2.3. Bm (1n) là hợp rời rạc ⊔min(n,m+1)
k=1 Bk

m (1n), ở đó các tập hợp Bk
m (1n)

là tập hợp chứa tất cả các phần tử Ym (I, J) mà hai dãy I = (i1, . . . , ik) và J =
(j1, . . . , jk) thỏa mãn các điều kiện{

i1 + . . . + ik = n − k,
j1 < [m]q , . . . , jk−1 < [m − k + 2]q, jk ≤ [m − k + 1]q.

2.3 Tính đa thức của Y

Trong phần này, chúng tôi sẽ chứng minh rằng họ các hàm hữu tỷ Ym (I, J) thực
chất là các đa thức. Trước khi đi vào chứng minh chính, chúng tôi thiết lập một số
khái niệm trung gian và kết quả hỗ trợ nhằm mô tả chính xác tác động của các toán
tử trong vào định nghĩa của Ym (I, J).

Đầu tiên, chúng tôi mở rộng khái niệm tác động của toán tử δ thông qua việc định
nghĩa một tích chập hai hàm hữu tỷ, cho phép biểu diễn các tác động lặp của toán
tử δ dưới dạng đại số thuận tiện hơn.

11



Định nghĩa 2.3.1. Với hai hàm hữu tỷ f (x1, . . . , xr) và g (x1, . . . , xh), tích chập của
f và g được định nghĩa bởi công thức

f • g =
∑

I⊔J=[r+h],|I|=r,|J |=h

f (I) g (J)
V (I, J) .

Tiếp theo, chúng tôi minh họa cách mà các toán tử như δh
r+1 và Ar;T có thể được

biểu diễn thông qua tích chập qua các ví dụ sau.
Ví dụ 2.3.2. i) Theo Mệnh đề 2.1.4, ta có

δh
r+1 (f) (x1, x2, . . . , xr′+h) =

∑
I⊂[r+h],|r|=h

f
(
I

)
φb (I)

V
(
I, I

) .

Vì vậy,
δh

r+1 (f) (x1, x2, . . . , xr′+h) = f • φb
h.

Ở đó, φh là ánh xạ lũy thừa Frobenius với h ẩn.
ii) Theo Định nghĩa 2.1.5, ta có

Ar;T (g) =
∑

I⊂[r+h],|I|=h

g
(
I

)
αT (I)

V
(
I, I

) .

Vì vậy,
Ar;T (g) = g • αT .

Trong mệnh đề tiếp theo, chúng tôi đưa ra các điều kiện cụ thể của f và g để đảm
bảo rằng tích chập giữa hai đa thức như vậy là đa thức.
Mệnh đề 2.3.3. Nếu đa thức f (x1, . . . , xs) là GLs-bất biến và g (x1, . . . , xk−s) là đa
thức đối xứng, đa tuyến tính và chia hết cho x1 . . . xk−s thì f • g là đa thức trong
Fq[x1, . . . , xk].

Cuối cùng, chúng tôi áp dụng mệnh đề trên để chứng minh rằng các biểu thức
Yb (I, J) thực sự là đa thức. Kết quả này được trình bày trong hệ quả quan trọng sau.
Hệ quả 2.3.4. Với hai dãy I và J thì Yb (I, J) được xác định trong Định nghĩa 2.2.1
là đa thức.

2.4 Tính bất biến của Y

Trong phần này, chúng tôi sẽ chứng minh rằng các đa thức Ym(I; J) được xây dựng
từ các toán tử δ và các đa thức Dickson là bất biến modulo

(
xqm

1 , . . . , xqm

n

)
dưới tác

động của nhóm con Borel Bn. Trước tiên chúng tôi sẽ giới thiệu khái niệm một lớp
đa thức mới được gọi là (k, m)-bất biến, đóng vai trò trung gian quan trọng trong lập
luận quy nạp.
Định nghĩa 2.4.1. Đa thức f (x1, . . . , xk) ∈ Fq[x1, . . . , xk] được gọi là (k, m)-bất biến
nếu nó thỏa mãn các điều kiện sau đây.
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i) f (λ1x1, . . . , λkxk) = f (x1, . . . , xk) với mọi λi ∈ F∗
q. Nói cách khác, f bất biến

dưới tác động của nhóm con ma trận đường chéo chính.

ii) f (x1, . . . , xi, . . . , xj + xi, . . . , xk) = f (x1, . . . , xk) +
(
xqm

i

)
với mọi 1 ≤ i < j ≤ k.

Mệnh đề dưới đây cho thấy rằng toán tử δr;m bảo toàn tính (k, m)-bất biến trong
trường hợp tác động của toán tử δr;m bảo toàn tính đa thức. Kết quả này đóng vai
trò then chốt cho phép ta áp dụng lập luận quy nạp trong phần còn lại.
Mệnh đề 2.4.3. Với r ≤ k + 1, f (x1, . . . , xk) là (k, m)-bất biến và δr;m (f) là đa
thức. Khi đó, δr;m là (k + 1, m)-bất biến.

Bằng cách áp dụng Mệnh đề trên theo phương pháp quy nạp, chúng tôi thu được
hệ quả sau, khẳng định rằng Ym(I; J) là một đa thức.
Hệ quả 2.4.4. Mỗi đa thức Ym (I; J) là Bn-bất biến modulo

(
xqm

1 , . . . , xqm

n

)
.

2.5 Cơ sở tuyến tính của không gian bất biến Qm (n)Bn

Trong phần này, chúng tôi sẽ thiết lập một cơ sở tường minh cho không gian
Fq-véctơ các Bn-bất biến trong Qm(n). Cụ thể, chúng tôi chứng minh rằng tập hợp
Bm(1n) gồm các đa thức Ym(I; J) tạo thành một cơ sở tuyến tính của không gian này.

Giả sử F (x1, . . . , xn) là một đa thức Bn-bất biến trong Qm(n). Do các số mũ xuất
hiện trong F đều là bội của q − 1, ta có thể khai triển F theo biến x1 và phân tích
số hạng có bậc thấp nhất. Trường hợp số mũ của x1 bằng qm − 1 sẽ được xử lý đầu
tiên thông qua bổ đề sau.
Bổ đề 2.5.1. Với m ≥ 0, n ≥ 2 và F (x1, . . . , xn) = xqm−1

1 f (x2, . . . , xn) là Bn-bất
biến của Qm (n) thì f (x2, . . . , xn) là B (x2, . . . , xn)-bất biến modulo

(
xqm

2 , . . . , xqm

n

)
.

Trường hợp khi số mũ của x1 nhỏ hơn qm − 1 với m ≥ 1 thì ta biểu diễn F dưới
dạng

F (x1, . . . , xn) = x
(q−1)i
1 f (x2, . . . , xn) + x

(q−1)(i+1)
1 f ′ (x1, x2, . . . , xn) .

Tiếp theo, chúng tôi xét trường hợp số mũ của x1 trong đa thức F (x1, . . . , xn) nhỏ
hơn qm − 1. Khi đó, F có thể được khai triển theo x1 với số hạng bậc thấp nhất là
x

(q−1)i
1 f(x2, . . . , xn) với i < [m]q. Để hiểu rõ hơn cấu trúc của thành phần f(x2, . . . , xn)

trong khai triển này, chúng tôi đưa ra bổ đề sau, cho thấy f là lũy thừa bậc q của
một đa thức bất biến ở chiều thấp hơn.
Bổ đề 2.5.2. Đa thức f (x2, . . . , xn) trong biểu diễn trên là lũy thừa với số mũ bằng
q của đa thức g (x2, . . . , xn) nào đó. Hơn nữa, g (x2, . . . , xn) là B (x2, . . . , xn)-bất biến
modulo

(
xqm−1

2 , . . . , xqm−1

n

)
.

Từ cấu trúc đặc biệt của f(x2, . . . , xn) trong Bổ đề 2.5.2, chúng tôi khai thác thêm
mối liên hệ giữa các toán tử δa;b và phép nâng lũy thừa trong trường hợp f là lũy
thừa bậc q của một đa thức g. Bổ đề sau mô tả tác động của toán tử δ trên các đa
thức như vậy khi thay thế biến đầu tiên bằng 0, đồng thời cung cấp công cụ quan
trọng cho phép xác định cách toán tử Φ tác động lên các phần tử trong Bm−1(1n−1).
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Bổ đề 2.5.3. Nếu đa thức f (x1, x2, . . . , xc) thỏa mãn

f (0, x2, . . . , xc) = g (x2, . . . , xc)q
,

và δa+1,b+1 (f) là đa thức thì δa+1;b+1 (f) (0, x2, . . . , xc+1) = (δa;b (g) (x2, . . . , xc+1))q.
Vì vậy, nếu Y ∈ Bm−1

(
1n−1

)
thì

ΦY (0, x2, . . . , xn) = Y (x2, . . . , xn)q
.

Từ các bổ đề trên, chúng tôi thu được kết quả tổng quát sau, khẳng định rằng tập
Bm(1n) tạo thành một cơ sở của không gian các Bn-bất biến trong Qm(n).
Định lý 2.5.4. Hệ Bm (1n) là một cơ sở của Fq-không gian véctơ các Bn-bất biến
Qm (n)Bn.

2.6 Chuỗi Hilbert-Poincaré của không gian bất biến Qm (n)Bn

Sau khi đã thiết lập cơ sở tuyến tính cho không gian bất biến Qm(n)Bn, chúng tôi
khảo sát chuỗi Hilbert-Poincaré tương ứng. Từ đó, chúng tôi chứng minh Giả thuyết
Parabolic 1.5 của Lewis, Reiner và Stanton đối với trường hợp nhóm con Borel của
GLn.

Chuỗi Hilbert-Poincaré của không gian bất biến Qm (n)Bn là hàm Fn,m (t) được
xác định như sau

Fn,m (t) =
∑

β≤1n,|β|≤m

te(m,1n,β)
[

m
β, m − |β|

]
q,t

,

ở đó

• e (m, 1n, β) = ∑n
i=1 (1 − βi)

(
qm − qBi

)
với β = (β1, . . . , βn) và Bi = ∑

j≤i βj,

•
[

m
β, m − |β|

]
q,t

=
∏|β|−1

j=1

(
1−tqm−qj

)
∏n

i=1
∏βi−1

j=0

(
1−tqBi −q

Bi−1+j
) .

Tiếp theo, chúng ta có tính chất đơn giản sau về hàm Fn,m (t). Kết quả này cho thấy
hàm Fn,m (t) được xây dựng một cách quy nạp tương tự như tập Bm (1n).

Bổ đề 2.6.2. Ta có

Fn,m (t) = tqm−1Fn−1,m (t) + 1 − tqm−1

1 − tq−1 Fn−1,m−1 (tq) .

Dựa vào kết quả trên, chúng ta có thể chứng minh được Giả thuyết 1.5 của Lewis,
Reiner và Stanton cho trường hợp nhóm con Borel của nhóm tuyến tính tổng quát.

Định lý 2.6.3. Chuỗi Hilbert-Poincaré của không gian bất biến Qm (n)Bn là Fn,m (t).
Vậy giả thuyết 1.5 của Lewis - Reiner - Stanton đúng cho trường hợp nhóm con Borel.

Mỗi số hạng trong tổng định nghĩa Fn,m(t) đều tương ứng với các phần tử trong
cơ sở Bm(1n) của không gian bất biến Qm(n)Bn. Nhận xét sau mô tả rõ cấu trúc của
các phần tử Ym(I, J) tương ứng với từng chỉ số của β.
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Chương 3

Bất biến của vành đa thức modulo lũy
thừa Frobenius dưới tác động của các
nhóm con Parabolic chiều thấp

Giả thuyết Parabolic 1.5 của Lewis, Reiner và Stanton đưa ra một công thức dự
đoán cho chuỗi Hilbert-Poincaré của không gian bất biến Qm(n)Pα, trong đó Pα là
một nhóm con Parabolic của nhóm tuyến tính tổng quát GLn.

Dựa trên giả thuyết về chuỗi Hilbert-Poincaré, chúng tôi đề xuất một giả thuyết
mạnh hơn, không chỉ xác định kích thước của không gian bất biến mà còn cung cấp
mô tả tường minh về một hệ cơ sở tuyến tính cụ thể của không gian Qm(n)Pα.

Giả thuyết tổng quát của chúng tôi về hệ cơ sở tuyến tính của không gian Qm(n)Pα

được trình bày cụ thể như sau.

Giả thuyết 3.0.1. Một cơ sở cho không gian bất biến Qm (n)Pα là tập Bm (α) gồm
các phần tử có dạng

δα1−β1
B1+1;m

(
f1δ

α2−β2
B2+1;m

(
. . . fl−1δ

αl−βl

Bl+1;m (fl) . . .
))

, 0 ≤ s ≤ min (α1, m) ,

với β ≤ α, |β| ≤ m, Bi = β1 + . . . + βi (quy ước B0 = 0) và

fi ∈ ΦBi−1∆m−Bi−1
βi

⊂ ∆m−Bi
Bi

.

Với trường hợp đặc biệt của nhóm Parabolic là nhóm tuyến tính tổng quát GLn

ứng với nhóm Pα, α = (n), chúng tôi có giả thuyết.
Giả thuyết 3.0.2. Tập hợp Bm (n) gồm các phần tử có dạng

δn−s
s+1;m (f) , f ∈ ∆m

s , 0 ≤ s ≤ min (m, n)

tạo thành một cơ sở cho không gian véctơ Qm (n)GLn trên Fq.

3.1 Toán tử δ và tập ∆

Trong lý thuyết bất biến trên trường hữu hạn, các đa thức Dickson giữ vai trò
trung tâm trong việc xây dựng và mô tả các không gian bất biến dưới tác động của
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nhóm tuyến tính tổng quát GLn và các nhóm con Parabolic của nó. Không chỉ cung
cấp một hệ sinh cho không gian bất biến, các bất biến Dickson còn là nền tảng cho
việc phát triển các cấu trúc đại số, đặc biệt là trong định nghĩa và vận dụng các toán
tử δ cũng như tập ∆m

s , đóng vai trò thiết yếu trong việc xây dựng các cơ sở tuyến
tính cho các không gian bất biến.

3.1.1 Toán tử δ và vai trò kết hợp với ∆

Tiếp theo, chúng tôi trình bày định nghĩa và tác động của toán tử δ, cùng với cách
thức kết hợp nó với các đơn thức trong ∆m

s để tạo nên các bất biến Parabolic. Nội
dung này sẽ làm sáng tỏ vai trò của ∆m

s như một khối xây dựng quan trọng trong
cấu trúc của không gian bất biến.

Trước khi giới thiệu định nghĩa về tập ∆m
s , chúng tôi nhắc lại khái niệm đơn thức

Dickson có kiểu phân hoạch.
Định nghĩa 3.1.1. Với một số nguyên dương s và phân hoạch (λ1, λ2, . . . , λs) sao cho
λ1 ≥ λ2 ≥ . . . ≥ λs ≥ 0, một đơn thức Dickson Qe1

s,s−1 · · · Qes
s,0 trong đại số Dickson

Ds được gọi là có kiểu (λ1, . . . , λs) nếu từng phần tử ei thoả mãn điều kiện

ei ∈
qλi − qλi+1

q − 1 ,
qλi+1 − qλi+1

q − 1


với 1 ≤ i ≤ s.
Định nghĩa 3.1.2 (Định nghĩa 5.4 Reiner - Staton). Không gian con ∆m

s của đại số
Dickson được xác định là hợp rời rạc của các tập con ∆(λ1,...,λs) trong đó

• Mỗi phân hoạch (λ1, . . . , λs) thỏa mãn điều kiện m − s ≥ λ1.
• ∆(λ1,...,λs) là tập hợp tất cả các đơn thức Dickson có kiểu tương ứng.
• Nếu s > m thì quy ước ∆m

s = ∅.
Các đơn thức Dickson trong ∆m

s với s ≤ min(m, n), cùng với các toán tử δ đóng
vai trò quan trọng để xây dựng cơ sở của không gian bất biến. Ta gọi một đơn thức
Dickson trong ∆m

s là một đơn thức cốt yếu.
Định nghĩa 3.1.3. Chúng ta gọi các đơn thức biên là các đơn thức Dickson không
nằm trong ∆m

s nhưng có tính chất "biên" thoả mãn

ei ∈
qλi − qλi+1

q − 1 ,
qλi+1 − qλi+1

q − 1

 với mọi i ̸= j,

và
ej = qλj+1 − qλj+1

q − 1
với chỉ số j cố định trước.

Theo Định nghĩa toán tử δ, nếu f(x1, x2) ∈ Fq[x1, x2] thì

δ3(f) =

∣∣∣∣∣∣∣∣
x1 x2 x3
xq

1 xq
2 xq

3
xqm

1 f(x2, x3) xqm

2 f(x1, x3) xqm

3 f(x1, x2)

∣∣∣∣∣∣∣∣
L3

.
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Trong Chương 2 chúng ta đã chứng minh tổng quát hơn rằng δs(f) thông thường
không phải là đa thức, nhưng trong nhiều trường hợp nó không những là một đa thức
mà còn là một đa thức bất biến của Qm(s + 1) dưới tác động của nhóm Borel Bs+1.
Mệnh đề tiếp theo, chúng tôi đưa một phát biểu chính xác cho trường hợp riêng của
toán tử δ3 và trình bày một chứng minh "cơ bản" hơn về tính đa thức của δ3(f), đồng
thời sử dụng kết quả này để chỉ ra tính GL3-bất biến của δ3(f) khi f là GL2-bất biến.
Mệnh đề 3.1.4. Nếu f là một đa thức GL2-bất biến thì δ3(f) là một đa thức và là
một GL3-bất biến của không gian Qm(3).

3.1.2 Toán tử δ và Đại số Dickson

Với mỗi hợp thành α của n, không gian bất biến Qm(n)Pα là một môđun trên đại
số Dickson Dn. Kết quả sau đây mô tả cách toán tử δ tương tác với đại số Dickson
trong trường hợp hạng thấp.
Mệnh đề 3.1.6. Ta có các đẳng thức sau trong Qm.

(1) Qs,0δs(f) = 0 với mọi f .

(2) Q2,1δ2(f) = δ2
(
Qq

1,0f
)

với mọi f ∈ D1.

(3) Q3,iδ3(f) = δ3
(
Qq

2,i−1f
)

với i = 1 hoặc 2 và mọi f ∈ D2.

(4) Q3,2δ
2
2(f) = δ2

2

(
Qq2

1,0f
)

với mọi f ∈ D1.

(5) Q3,1δ
2
2(f) = 0 với mọi f ∈ D1.

3.2 Chặn trên của tổng số chiều của các không gian con bất biến

Giả thuyết Parabolic dự đoán rằng chuỗi Hilbert-Poincaré cho không gian bất biến
Qm(n)Pα, trong đó α là một hợp thành của n, là đa thức (hữu hạn) Cα,m(t) có công
thức tường minh được nhắc lại trong Giả thuyết 1.4.2. Đặc biệt, giá trị của Cα,m(t)
khi t = 1 là tổng số chiều của các Fq-không gian véctơ phân bậc Qm(n)Pα. Chúng tôi
chỉ ra kết quả sau.
Mệnh đề 3.2.1. Với mỗi m, n ≥ 1 và hợp thành α bất kỳ của n, tổng số chiều của
không gian véctơ phân bậc Qm(n)Pα không nhỏ hơn Cα,m(1).

Tiếp theo, chúng tôi có kết quả sau về chuỗi chuỗi Hilbert-Poincaré sinh bởi tập
Bm(α).
Bổ đề 3.2.2. Với mỗi hợp thành α của n, chuỗi Hilbert-Poincaré của Fq-không gian
véctơ sinh bởi tập Bm(α) không lớn hơn Cα,m(t).
Nhận xét 3.2.3. i) Giả sử chúng ta có thể xây dựng một hệ sinh cho không gian

bất biến Qm(n)Pα sao cho sau khi tính toán số chiều thì chuỗi Hilbert-Poincaré
C ′

m,α(t) của Qm(n)Pα không lớn hơn Cα,m(t) (ở đó, f(t) ≤ g(t) nếu g − f là một
đa thức với các hệ số không âm). Sau đó, vì có một bất đẳng thức ngược lại
C ′

m,α(1) ≥ Cα,m(1) khi xét tại t = 1, chúng ta có thể kết luận rằng hai chuỗi này
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là đồng nhất vì cả hai đều là các đa thức có bậc hữu hạn với hệ số không âm.
Do đó, hệ sinh của chúng ta thực chất là một cơ sở cho Qm(n)Pα.

3.3 Cơ sở của không gian bất biến của Qm(2) dưới tác động của các
nhóm con Parabolic

Trường hợp hạng 2 thì nhóm tuyến tính tổng quát GL2 chỉ có hai nhóm con là
chính nó và nhóm Borel B2. Không gian bất biến dưới tác động của nhóm con Borel
B2 là trường hợp riêng của Định lý 2.5.4, theo đó chúng ta có kết quả sau.
Hệ quả 3.3.1. Hệ gồm 2 họ các phần tử lập thành một Fq-cơ sở của Qm(2)B2 (m ≥ 1).

(1) δ1;m (Da
1) = δ1;m

(
Qa

1,0
)

, a ≤ [m]q.

(2) Da
1Db

2 = Qa
1,0Q

b
2,1, a < [m]q , b ≤ [m − 1]q.

Tiếp theo, chúng tôi trình bày một nhận xét quan trọng liên quan đến các đơn thức

Dickson có dạng Q
qm−1−qi

q−1
2,1 Q

qi−1
q−1

2,0 nằm ở "biên" của ∆m
2 . Kết quả này rất quan trọng

trong việc xác định hệ sinh của không gian bất biến Qm(2)GL2.
Mệnh đề 3.3.2. Với mỗi 0 ≤ i ≤ m − 1, ta có phép phân tích trong Qm(2)

Q
qm−1−qi

q−1
2,1 Q

qi−1
q−1

2,0 = δ2(Q
qi−1
q−1

1,0 ) + đơn thức cốt yếu chia hết cho Q2,0.

Mệnh đề 3.3.3. Tập hợp Bm(2), bao gồm 3 họ phần tử

(1) δ1(δ1(1)) = xqm−1

1 xqm−1

2 ,
(2) δ2(∆m

1 ),
(3) ∆m

2

lập thành một Fq-cơ sở của không gian con bất biến Qm(2)GL2.

3.4 Cơ sở của không gian bất biến của Qm(3) dưới tác động của các
nhóm con Parabolic

Trường hợp hạng 3 thì nhóm tuyến tính tổng quát GL3 có bốn nhóm con gồm
nhóm Borel B3 = P(1,1,1), nhóm con Parabolic P(2,1), nhóm con Parabolic P(1,2) và
nhóm tuyến tính tổng quát GL3 = P(3). Không gian bất biến dưới tác động của nhóm
con Borel B3 là trường hợp riêng của Định lý 2.5.4, theo đó chúng ta có kết quả sau.
Hệ quả 3.4.1. Hệ gồm 4 họ phần tử sau tạo thành một Fq-cơ sở của Qm(3)B3

(m ≥ 2).

(1) δ2
1 (Da

1) = δ2
1

(
Qa

1,0
)

, a ≤ [m]q.

(2) δ1
(
Da

1Db
2
)

= δ1
(
Qa

1,0Q
b
2,1

)
, a < [m]q , b ≤ [m − 1]q.
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(3) Da
1δ2

(
Db

2
)

= Qa
1,0δ2

(
Qb

2,1
)

, a < [m]q , b ≤ [m − 1]q.

(4) Da
1Db

2D
c
3 = Qa

1,0Q
b
2,1Q

c
3,2, a < [m]q , b < [m − 1]q, c ≤ [m − 2]q.

3.4.1 Đối với nhóm con Parabolic P(2,1)

Trong phần này, chúng tôi phát biểu và chứng minh Giả thuyết 3.0.1 cho trường
hợp nhóm con Parabolic P(2,1).

Mệnh đề 3.4.2. Tập hợp Bm(2, 1) bao gồm 6 nhóm dưới đây tạo thành một Fq-cơ sở
cho không gian bất biến Qm(3)P(2,1).

(1) Qi1
2,1Q

i2
2,0Q

i
3,2, (i1, i2) ∈ ∆m

2 , i < [m − 2]q.

(2) Qi1
2,1Q

i2
2,0δ3(1), (i1, i2) ∈ ∆m

2 .

(3) δ2
(
Qi1

1,0Q
i
2,1

)
, i1 < [m]q , i < [m − 1]q.

(4) δ2
(
Qi1

1,0δ2(1)
)

, i1 < [m]q .

(5) δ1
(
δ1(Qi

1,0)
)

, i < [m]q .

(6) δ1 (δ1(δ1(1))) .

3.4.2 Đối với nhóm con Parabolic P(1,2)

Trong phần này, chúng tôi phát biểu và chứng minh Giả thuyết 3.0.1 cho trường
hợp nhóm con Parabolic P(1,2).

Mệnh đề 3.4.4. Tập hợp Bm(1, 2) bao gồm 6 họ dưới đây tạo thành một cơ sở cho
không gian con bất biến Qm(3)P(1,2).

(1) Qj1
1,0Q

i1
3,2Q

i2
3,1, j1 < [m]q , (i1, i2) ∈ ∆m−1

2 .

(2) Qj1
1,0δ3

(
Qj2

2,1
)

, j1 < [m]q , j2 < [m − 1]q.

(3) Qj1
1,0δ2 (δ2(1)) , j1 < [m]q .

(4) δ1
(
Qi1

2,1Q
i2
2,0

)
, (i1, i2) ∈ ∆m

2 .

(5) δ1
(
δ2(Qj1

1,0)
)

, j1 < [m]q .

(6) δ1 (δ1(δ1(1))) .

3.4.3 Đối với nhóm tuyến tính tổng quát GL3

Trong phần này, chúng tôi sẽ chứng minh Giả thuyết 3.0.2 cho trường hợp nhóm
tuyến tính tổng quát hạng 3. Cụ thể, chúng tôi sẽ chỉ ra Bm(3) là một hệ sinh của
Qm(3)GL3, từ đó suy ra nó cũng là một cơ sở của Qm(3)GL3. Phương pháp chứng minh
được tiến hành tương tự như trong trường hợp hạng 2. Chứng minh được chia thành
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ba bước. Đầu tiên, sử dụng ánh xạ transfer và xây dựng một hệ sinh B′ lớn hơn so
với hệ sinh mong muốn là Bm(3) mà trong B′ không hạn chế các đa thức Dickson

B′ = δ3
1 (∆m

0 )
∐

δ2
2 (∆m

1 )
∐

δ3 (D2)
∐

D3.

Sau đó, chúng ta chứng minh rằng δ3(D2) thuộc trong không gian sinh bởi

δ3
1 (∆m

0 )
∐

δ2
2 (∆m

1 )
∐

δ3 (∆m
2 ) ,

tức là D2 có thể được thay thế bằng tập con nhỏ hơn ∆m
2 . Cuối cùng, chúng ta chứng

minh rằng khi giới hạn trong Qm(3) thì đại số Dickson hạng 3 thuộc không gian con
sinh bởi Bm(3). Điều này được chứng minh bằng cách chỉ ra rằng tất cả các đơn thức
"biên" của ∆m

3 đều thuộc vào trong không gian này. Do đó, không gian con sinh bởi
Bm(3) là một D3-môđun con của Qm(3)GL3. Vì nó chứa ∆m

3 nên nó sẽ chứa toàn bộ
D3. Trước hết, chúng ta có kết quả sau.

Bổ đề 3.4.6. Tập B′ gồm 4 họ phần tử sau là một hệ sinh của Qm(3)GL3.

(1) δ3
1(∆m

0 ) = xqm−1
1 xqm−1

2 xqm−1
3 .

(2) δ2
2(∆m

1 ) =
{
am,3,s, 0 ≤ s < [m]q

}
.

(3) δ3(D2).

(4) D3.

Tiếp theo, chúng tôi trình bày một kết quả kỹ thuật hỗ trợ việc mô tả tường minh
các phần tử trong không gian bất biến.

Hệ quả 3.4.8. Với g ∈ D2 và i ≥ 0, thì δ3
(
gδ2

(
Qi

1,0
))

là tổ hợp tuyến tính của các
họ sau.

i) δ2
2

(
Qs

1,0
)

, 0 ≤ s < [m]q .

ii) xqm−1
1 xqm−1

2 x
s(q−1)
3 , 0 ≤ s ≤ [m]q .

Từ kết quả trên, chúng tôi thu được mô tả tường minh về hệ sinh của không gian
con của không gian bất biến Qm(3)GL3, được trình bày trong mệnh đề sau.

Bổ đề 3.4.9. Không gian con của Qm(3)GL3 được sinh bởi ba họ phần tử gồm

(1) δ3
1(∆m

0 ),

(2) δ2
3(∆m

1 ),

(3) δ3(∆m
2 )

chứa không gian con bất biến δ3(D2).

Cuối cùng, chúng ta sẽ thay thế toàn bộ đại số Dickson D3 bằng các tập hợp được
tạo ra từ các toán tử δ tác động lên các không gian ∆m

s , cụ thể là δ3
1(∆m

0 ), δ2
2(∆m

1 ),
δ3(∆m

2 ) và ∆m
3 .
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Hệ quả 3.4.13. Các đơn thức Dickson ở biên của ∆m
3 sau cũng thuộc trong không

gian sinh bởi Bm(3).

(1) Q
qm−2−1

q−1
3,0 .

(2) Q
qm−2−qλ3

q−1
3,1 Q

qλ3 −1
q−1

3,0 với m − 3 ≥ λ3.

(3) Q
qm−2−qλ2

q−1
3,2 Q

qλ2 −qλ3
q−1

3,1 Q
qλ3 −1

q−1
3,0 với m − 3 ≥ λ2 ≥ λ3.

Mệnh đề 3.4.14. Tập hợp Bm(3) gồm 4 họ phần tử sau là một cơ sở của không gian
bất biến Qm(n)GL3.

(1) δ3
1(∆m

0 ) = xqm−1
1 xqm−1

2 xqm−1
3 .

(2) δ2
2(∆m

1 ).

(3) δ3(∆m
2 ).

(4) ∆m
3 .

Từ đó, chúng tôi có kết quả sau.

Định lý 3.4.15. Các giả thuyết về cơ sở của không gian bất biến 3.0.1 3.0.2 và các
Giả thuyết 1.4.1, 1.4.2 về chuỗi Hilbert-Poincaré của không gian bất biến đúng với
hạng không vượt quá 3.

3.5 Lọc của các môđun con

Với mỗi số nguyên dương n, 0 ≤ k ≤ n, gọi Fn,k là Fq-không gian con của Qm(n)GLn

được xác định

Fn,k = Span
{
δn−s

s+1 (f) : f ∈ ∆m
s , 0 ≤ s ≤ min(m, k)

}
.

Chúng tôi có giả thuyết tổng quát sau.

Giả thuyết 3.5.1. Với 0 ≤ k ≤ min(m, n), các không gian con

Fn,k = Span
{
δn−s

s+1 (f) : f ∈ ∆m
s , 0 ≤ s ≤ min(m, k)

}
là một A-môđun con và cũng là một Dn- môđun con của Qm(n)GLn. Hơn nữa, Fn,k

bị triệt tiêu bởi các bất biến Dickson Qn,0, Qn,1, . . . , Qn,n−k−1.

Tiếp theo, chúng tôi mô tả cách các toán tử Steenrod tác động lên toán tử δ.

Bổ đề 3.5.3. Nếu f là một đa thức GL1-bất biến theo ẩn đầu tiên và 1 ≤ k ≤
deg(δ2(f)) = qm − q + deg(f) thì

Pk (δ2f) + Q2,1Pk−q (δ2f) + Q2,0Pk−q−1 (δ2f) =
δ2

(
Q1,0Pk−1f

)
+ δ2

(
Pkf

)
+ δ2;m+1

(
Q1,0Pk−1−qm

f
)

+ δ2;m+1
(
Pk−qm

f
)

.
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Hệ quả 3.5.4. Với mỗi 0 ≤ k ≤ 2 thì F2,k là một môđun con của Qm(2)GL2 trên đại
số Steenrod A.

Hệ quả 3.5.5. F3,1 là một môđun con của Qm(3)GL3 trên đại số Steenrod A.

Tiếp theo, chúng tôi trình bày một số kết quả liên quan đến sự tương tác giữa các
toán tử Steenrod và toán tử δ3. Những kết quả này làm cơ sở cho việc thiết lập các
hệ thức tương tự trong không gian con F3,2.

Bổ đề 3.5.6.

Pk (δ3f) +
∑
i<k

Pk−iL3

L3
Pi (δ3f) =

Pk

∣∣∣∣∣∣
x1 x2 x3

xq
1 xq

2 xq
3

xqm

1 f(x2, x3) xqm

2 f(x1, x3) xqm

3 f(x1, x2)

∣∣∣∣∣∣


L3
.

Hơn nữa, vế phải của đẳng thức trên bằng δ3;m(F ) hoặc δ3;m+1(F ), trong đó F là
một tổ hợp tuyến tính của các đa thức có dạng gP if , với g ∈ D2 và 0 ≤ i ≤ k.

Tiếp theo, chúng tôi phân tích trường hợp δ3;m+1(f) tương ứng với c = m+1 trong
Bổ đề trên. Kết quả thu được được trình bày trong Bổ đề sau.

Bổ đề 3.5.7. Nếu h ∈ D2 và q ≥ 3 thì ta có đẳng thức sau trong Qm

δ3;m+1(h) =


0 nếu q > 3

hoặc q = 3 và deg(h) > 0
δ3;m(Qqm−1

2,1 ) nếu q = 3 và h = 1.

Với q = 2 thì δ3;m+1(h) ∈ Span
{
δ2

2;m(∆m
1 ), δ3

1;m(1)
}

.

Từ các kết quả trên, ta có

Định lý 3.5.9. Giả thuyết 3.5.1 đúng với trường hợp n ≤ 3. Tức là, với n ≤ 3 và
0 ≤ k ≤ n, các không gian con của không gian Qm(n)GLn

Fn,k = Span
{
δn−s

s+1 (f) : f ∈ ∆m
s , 0 ≤ s ≤ min(m, k)

}
.

là một A-môđun con và cũng là một Dn- môđun con của Qm(n)GLn. Hơn nữa, Fn,k

bị triệt tiêu bởi các đa thức Dickson Qn,0, Qn,1, . . . , Qn,n−k−1.
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KẾT LUẬN
Trong luận án này chúng tôi đã thu được những kết quả sau.

Thứ nhất, chúng tôi định nghĩa toán tử δ như là một biến thể của hàm Schur

(Macdonal I.G.) và trình bày một số tính chất quan trọng của nó. Cụ thể, chúng tôi

đưa ra công thức tính các toán tử δ lặp (Mệnh đề 2.1.4) và mở rộng nó trong các

trường hợp tổng quát hơn (Mệnh đề 2.1.7). Dựa trên các tính chất của toán tử δ,

chúng tôi xây dựng cơ sở tuyến tính cho không gian bất biến Qm(n)Bn dưới tác động

của nhóm Borel trong trường hợp tổng quát (Định lý 2.5.4). Từ đó, chúng tôi đã

chứng minh được giả thuyết của Lewis - Reiner - Staton về chuỗi Hilbert của không

gian bất biến Qm(n)Bn (Định lý 2.6.3).

Thứ hai, chúng tôi xây dựng các giả thuyết về cơ sở tuyến tính cho các không gian

bất biến, cụ thể là không gian Qm(n)Pα và Qm(n)GLn dựa trên cơ sở tuyến tính đã

biết của không gian Qm(n)Bn (Giả thuyết 3.0.1 và 3.0.2). Chúng tôi chứng minh các

giả thuyết này đúng với hạng 2 và hạng 3, bằng cách sử dụng tác động của ánh xạ

chuyển để xây dựng các hệ sinh và thu gọn chúng sao cho phù hợp với các hệ sinh

trong giả thuyết. Cụ thể, đối với hạng 2, chỉ có hai nhóm con parabolic là nhóm Borel

và nhóm tuyến tính tổng quát GL2 (Mệnh đề 3.3.3). Đối với hạng 3, các nhóm con

parabolic bao gồm nhóm Borel và ba nhóm khác như P(2,1), P(1,2), cùng với nhóm

tuyến tính tổng quát GL3 (Mệnh đề 3.4.2, 3.4.4, 3.4.14 và Định lý 3.4.15). Chúng tôi

cũng trình bày và chứng minh giả thuyết về lọc Fn,k (Giả thuyết 3.5.1), chứng minh

rằng giả thuyết này đúng với hạng ≤ 3, và xem xét nó như một môđun trên đại số

Dickson và Steenrod (Định lý 3.5.9). Các kết quả này đã xác định rõ ràng các cơ sở

tuyến tính của không gian bất biến ứng với các nhóm parabolic và nhóm tuyến tính

tổng quát GL3, qua đó góp phần khẳng định tính Giả thuyết là đúng với trường hợp

hạng không vượt quá 3.
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- Seminar Bộ môn Đại số - Hình học - Tô pô, Khoa Toán Cơ Tin, Trường Đại học

Khoa học Tự nhiên, Đại học Quốc gia Hà Nội (13/8/2025).

- Hội thảo Gặp gỡ Toán học 2025 do Viện Toán học Việt Nam - Đại học Khoa học Tự

nhiên, Đại học Quốc gia Hà Nội - Đại học Bách khoa Hà Nội - Đại học Sư phạm Hà

Nội 2 phối hợp tổ chức tại Đại học Sư phạm Hà Nội 2(27-28/9/2025).
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